
Finance Stoch. Vol. 9, No. 2, 2005, (251-267)

Research Report No. 433, 2003, Dept. Theoret. Statist. Aarhus

The Russian Option: Finite Horizon

GORAN PESKIR
�

We show that the optimal stopping boundary for the Russian option with finite

horizon can be characterized as the unique solution of a nonlinear integral equation

arising from the early exercise premium representation (an explicit formula for

the arbitrage-free price in terms of the optimal stopping boundary having a clear

economic interpretation). The results obtained stand in a complete parallel with

the best known results on the American put option with finite horizon. The key

argument in the proof relies upon a local time-space formula.

1. Introduction

According to the financial theory (see e.g. [14] or [6]) the arbitrage-free price of the Russian

option is given by (2.1) below where M denotes the maximum of the stock price S . This option

is characterized by ’reduced regret’ because its owner is paid the maximum stock price up to the

time of exercise and hence feels less remorse for not having exercised the option earlier.

In the case of infinite horizon T , and when M� in (2.1) is replaced by e���M� , the

problem was solved by Shepp and Shiryaev. The original derivation [11] was two-dimensional (see

[9] for a general principle in this context) and the subsequent derivation [12] reduced the problem

to one dimension using a change-of-measure theorem. The latter methodology will also be adopted

in the present article.

Apart from the fact that practitioners find finite horizons more desirable, the infinite horizon

formulation requires the discounting rate � > 0 to be present, since otherwise the option price

would be infinite. Clearly, such a discounting rate is not needed when the horizon T is finite, so

that the most attractive feature of the option—no regret—remains fully preserved.

The work of Shepp and Shiryaev [12] showed that the Russian option problem becomes one-

dimensional after the change-of-measure theorem is applied (see (2.4)-(2.7) below) thus setting the

mathematical problem on an equal footing with the American option problem (put or call) with

finite horizon. The latter problem, on the other hand, has been studied since the 1960’s, and for

more details and references including the latest definite results we refer to [10]. The main aim of

the present article is to extend these results to the Russian option with finite horizon.

In Section 2 we formulate the Russian option problem with finite horizon and recall some

known facts needed later. In Section 3 we present the main result and proof. The key argument

in the proof of uniqueness relies upon a local time-space formula (see [10]). To obtain a more

complete understanding of the results given here we refer to [10] for mathematical complements

and to [1] for financial interpretations. Both carry over to the present case with no major change.
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2. Formulation of the problem

The arbitrage-free price of the Russian option with finite horizon is given by:

(2.1) V = sup
0���T

E
�
e�r�M�

�
where � is a stopping time of the geometric Brownian motion S = (St)0�t�T solving:

(2.2) dSt = rSt dt + �St dBt (S0 = s)

and M = (Mt)0�t�T is the maximum process given by:

(2.3) Mt =
�
max
0�u�tSu

�
_ m

where m � s > 0 are given and fixed. [Throughout B = (Bt)t�0 denotes a standard Brownian

motion started at zero.] We recall that T > 0 is the expiration date (maturity), r > 0 is the

interest rate, and � > 0 is the volatility coefficient.

For the purpose of comparison with the infinite-horizon results [11] we will also introduce a

discounting rate � � 0 so that M� in (2.1) is to be replaced by e���M� . By the change-of-

measure theorem it then follows that:

(2.4) V = sup
0���T

eE�e���X�

�
where following the key fact of [12] we set:

(2.5) Xt =
Mt

St

and eP is defined by d eP = exp(�BT � (�2=2)T ) dP so that eBt = Bt � �t is a standard

Brownian motion under eP for 0 � t � T . By Itô’s formula one finds that X solves:

(2.6) dXt = �rXt dt + �Xt d bBt + dRt (X0 = x)

under eP where bB = � eB is a standard Brownian motion, and we set:

(2.7) Rt =

Z t

0
I(Xs = 1)

dMs

Ss

for 0 � t � T . It follows that X is a diffusion in [1;1i having 1 as a boundary point of

instantaneous reflection. The infinitesimal generator of X is therefore given by:

(2.8) ILX = �rx @

@x
+

�2

2
x2

@2

@x2
in h1;1i

@

@x
= 0 at 1+ .

[The latter means that the infinitesimal generator of X is acting on a space of C2 functions f
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defined on [1;1i such that f 0(1+) = 0 .] For more details on the derivation (2.4)-(2.7) see [12].

For further reference recall that the strong solution of (2.2) is given by:

(2.9) St = s exp
�
�Bt + (r��2=2) t

�
= s exp

�
� eBt + (r+�2=2) t

�
for 0 � t � T under P and eP respectively. When dealing with the process X on its own,

however, note that there is no restriction to assume that s = 1 and m = x with x � 1 .

Summarizing the preceding facts we see that the Russian option problem with finite horizon

reduces to solve the following optimal stopping problem (extended in accordance with a well-

known argument from general theory):

(2.10) V (t; x) = sup
0���T�t

eEt;x

�
e���Xt+�

�
where � is a stopping time of the diffusion process X satisfying (2.5)-(2.8) above and Xt = x
under ePt;x with (t; x) 2 [0; T ]� [1;1i given and fixed.

Standard Markovian arguments (cf. [3]) indicate that V from (2.10) solves the following free-

boundary problem of parabolic type:

(2.11) Vt + ILXV = �V in C

(2.12) V (t; x) = x for x = b(t) or t = T

(2.13) Vx(t; x) = 1 for x = b(t) (smooth-fit)

(2.14) Vx(t; 1+) = 0 (normal reflection)

(2.15) V (t; x) > x in C

(2.16) V (t; x) = x in D

where the continuation set C and the stopping set S = �D are defined by:

(2.17) C = f (t; x) 2 [0; T i� [1;1i j x < b(t) g
(2.18) D = f (t; x) 2 [0; T i� [1;1i j x > b(t) g

and b : [0; T ] ! IR is the (unknown) optimal stopping boundary, i.e. the stopping time:

(2.19) �b = inf f 0� s� T�t j Xt+s� b(t+s) g

is optimal in (2.10) (i.e. the supremum is attained at this stopping time).

It will follow from the result of Theorem 3.1 below that the free-boundary problem (2.11)-(2.16)

characterizes the value function V and the optimal stopping boundary b in a unique manner.

Our main aim, however, is to follow the train of thought initiated by Kolodner [8] where V is

firstly expressed in terms of b , and b itself is shown to satisfy a nonlinear integral equation. A

particularly simple approach for achieving this goal in the case of the American put option has been

suggested in [7], [5], [1] and we will take it up in the present paper as well. We will moreover see

(as in [10]) that the nonlinear equation derived for b cannot have other solutions.
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3. The result and proof

In this section we adopt the setting and notation of the Russian option problem from the previous

section. Below we will make use of the following functions:

(3.1) F (t; x) = eE0;x(Xt) =

Z 1

1

Z m

0

�
m_x
s

�
f(t; s;m) ds dm

(3.2) G(t; x; y) = eE0;x

�
Xt I(Xt�y)

�
=

Z 1

1

Z m

0

�
m_x
s

�
I
��

m_x
s

��y� f(t; s;m) ds dm

for t > 0 and x; y � 1 , where (s;m) 7! f(t; s;m) is the probability density function of

(St;Mt) under eP with S0 =M0 =1 given by (see e.g. [6] p. 368):

(3.3) f(t; s;m) =
2

�3
p
2�t3

log(m2=s)

sm
exp

�
� log2(m2=s)

2�2t
+
�

�
log(s)� �2

2
t

�
for 0 < s � m and m � 1 with � = r=� + �=2 , and is equal to 0 otherwise.

The main result of the paper may now be stated as follows.

Theorem 3.1

The optimal stopping boundary in the Russian option problem (2.10) can be characterized as

the unique continuous decreasing solution b : [0; T ]! IR of the nonlinear integral equation:

(3.4) b(t) = e��(T�t)F (T�t; b(t)) + (r+�)

Z T�t

0
e��uG(u; b(t); b(t+u)) du

satisfying b(t) > 1 for all 0 < t < T . [The solution b satisfies b(T�) = 1 and the stopping

time �b from (2.19) is optimal in (2.10) (see Figure 1 below).]

The arbitrage-free price of the Russian option (2.10) admits the following ’early exercise

premium’ representation:

(3.5) V (t; x) = e��(T�t)F (T�t; x) + (r+�)

Z T�t

0
e��uG(u; x; b(t+u)) du

for all (t; x) 2 [0; T ]�[1;1i . [Further properties of V and b are exhibited in the proof below.]

Proof. The proof will be carried out in several steps. We begin by stating some general remarks

which will be freely used below without further mentioning.

It is easily seen that E(max 0�t�T Xt) < 1 so that V (t; x) < 1 for all (t; x) 2 [0; T ]�
[1;1i . Recall that it is no restriction to assume that s = 1 and m = x so that Xt = (Mt_x)=St
with S0 = M0 = 1 . We will write Xx

t instead of Xt to indicate the dependence on x when

needed. Since Mt _ x = (x�Mt)
++Mt we see that V admits the following representation:

(3.6) V (t; x) = sup
0���T�t

eE�e��� (x�M� )
++M�

S�

�
for (t; x) 2 [0; T ]� [1;1i . It follows immediately from (3.6) that:
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(3.7) x 7! V (t; x) is increasing and convex on [1;1i

for each t� 0 fixed. It is also obvious from (3.6) that t 7! V (t; x) is decreasing on [0; T ]
with V (T; x) = x for each x � 1 fixed.

1. We show that V : [0; T ]�[1;1i ! IR is continuous. For this, using sup(f)�sup(g) �
sup(f�g) and (y�z)+�(x�z)+ � (y�x)+ for x; y; z 2 IR , we get:

(3.8) V (t; y)�V (t; x) � (y�x) sup
0���T�t

eE�e��� (1=S� )� � y�x

for 1 � x < y and all t � 0 , where in the second inequality we used (2.9) to deduce that 1=St
= exp(�B̂t�(r+�2=2)t) � exp(�B̂t�(�2=2)t) and the latter is a martingale under eP . From

(3.8) with (3.7) we see that x 7! V (t; x) is continuous uniformly over t 2 [0; T ] . Thus to prove

that V is continuous on [0; T ]�[1;1i it is enough to show that t 7! V (t; x) is continuous on

[0; T ] for each x � 1 given and fixed. For this, take any t1 < t2 in [0; T ] and " > 0 , and

let � "1 be a stopping time such that eE(e���
"
1Xx

t1+�"1
) � V (t1; x)�" . Setting � "2 = � "1 ^ (T�t2)

we see that V (t2; x) � eE(e���
"
2Xx

t2+� "2
) . Hence we get:

(3.9) 0 � V (t1; x)�V (t2; x) � eE�e��� "1Xx
t1+� "1

�e��� "2Xx
t2+� "2

�
+ " .

Letting first t2�t1 ! 0 using � "1�� "2 ! 0 and then " # 0 we see that V (t1; x)�V (t2; x)
! 0 by dominated convergence. This shows that t 7! V (t; x) is continuous on [0; T ] , and

the proof of the initial claim is complete.

Denote G(x) = x for x � 1 and introduce the continuation set C = f(t; x) 2 [0; T i�[1;1ij
V (t; x) > G(x) g and the stopping set S = f (t; x) 2 [0; T i�[1;1i j V (t; x) = G(x) g . Since

V and G are continuous, we see that C is open and S is closed in [0; T i� [1;1i .

Standard arguments based on the strong Markov property (cf. [13]) show that the first hitting time

�S = inf f 0� s� T � t j (t+s;Xt+s) 2 S g is optimal in (2.10).

2. We show that the continuation set C just defined is given by (2.17) for some decreasing

function b : [0; T i ! h1;1i . It follows in particular that the stopping set S coincides with the

closure �D in [0; T i� [1;1i of the set D in (2.18) as claimed. To verify the initial claim,

note that by Itô’s formula and (2.6) we have:

(3.10) e��sXt+s = Xt � (r+�)

Z s

0
e��uXt+u du +

Z s

0
e��u dMt+u

St+u
+ Ns

where Ns = �
R s
0 e

��uXt+u d bBt+u is a martingale for 0 � s � T � t . Let t 2 [0; T ] and

x > y � 1 be given and fixed. We will first show that (t; x) 2 C implies that (t; y) 2 C .

For this, let �� = ��(t; x) denote the optimal stopping time for V (t; x) . Taking the expectation

in (3.10) stopped at �� , first under ePt;y and then under ePt;x , and using the optional sampling

theorem to get rid of the martingale part, we find:

(3.11) V (t; y) � y � eEt;y

�
e����Xt+��

�
� y

= �(r+�) eEt;y

�Z ��

0
e��uXt+u du

�
+ eEt;y

�Z ��

0
e��u dMt+u

St+u

�

5



� �(r+�) eEt;x

�Z ��

0
e��uXt+u du

�
+ eEt;x

�Z ��

0
e��u dMt+u

St+u

�
= eEt;x

�
e����Xt+��

�
� x = V (t; x) � x > 0

proving the claim. To explain the second inequality in (3.11) note that the process X underePt;z can be realized as the process Xt;z under P where we set Xt;z
t+u = (S�u _ z)=Su with

S�u = max 0�v�u Sv . Then note that Xt;y
t+u � Xt;x

t+u and d(S�u_y) � d(S�u_x) whenever y � x ,

and thus each of the two terms on the left-hand side of the inequality is larger than the corresponding

term on the right-hand side, implying the inequality. The fact just proved establishes the existence

of a function b : [0; T ]! [1;1] such that the continuation set C is given by (2.17) above.

Let us show that b is decreasing. For this, with x � 1 and t1 < t2 in [0; T ] given and

fixed, it is enough to show that (t2; x) 2 C implies that (t1; x) 2 C . To verify this implication,

recall that t 7! V (t; x) is decreasing on [0; T ] , so that we have:

(3.12) V (t1; x) � V (t2; x) > x

proving the claim.

Let us show that b does not take the value 1 . For this, assume that there exists t0 2 h0; T ]
such that b(t) =1 for all 0 � t � t0 . It implies that (0; x) 2 C for any x � 1 given and fixed,

so that if �� = ��(0; x) denote the optimal stopping time for V (0; x) , we have V (0; x) > x
which by (3.10) is equivalent to:

(3.13) eE0;x

�Z ��

0
e��u

dMu

Su

�
> (r+�) eE0;x

�Z ��

0
e��uXu du

�
.

Recalling that Mu = S�u _ x we see that:

(3.14) eE0;x

�Z ��

0
e��u

dMu

Su

�
� eE�� max

0�u�T
(1=Su)

��
(S�T _ x) � x

��
� eE�� max

0�u�T
(1=Su)

�
S�T I(S

�
T >x)

�
! 0

as x !1 . Recalling that Xu = (S�u _ x)=Su and noting that �� > t0 we see that:

(3.15) eE0;x

�Z ��

0
e��uXu du

�
� e��t0 x eE�Z t0

0

du

Su

�
! 1

as x!1 . From (3.14) and (3.15) we see that the strict inequality in (3.13) is violated if x is

taken large enough, thus proving that b does not take the value 1 on h0; T ] . To disprove the

case b(0+) = 1 , i.e. t0 = 0 above, we may note that the gain function G(x) = x in (2.10) is

independent of time, so that b(0+) = 1 would also imply that b(t) = 1 for all 0 � t � �
in the problem (2.10) with the horizon T+� instead of T where � > 0 . Applying the same

argument as above to the T+� problem (2.10) we again arrive to a contradiction. We thus may

conclude that b(0+) <1 as claimed. Yet another quick argument for b to be finite in the case

� > 0 can be given by noting that b(t) < � for all t 2 [0; T ] where � 2 h1;1i is the optimal

stopping point in the infinite horizon problem given explicitly in (2.3) of [11]. Clearly b(t) " �
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as T ! 1 for each t � 0 , where we set � = 1 in the case � = 0 .

Let us show that b cannot take the value 1 on [0; T i . This fact is equivalent to the fact

that the process (St;Mt) in (2.1) [ with r+� instead of r ] cannot be optimally stopped at

the diagonal s = m in h0;1i�h0;1i . The latter fact is well-known for diffusions in the

maximum process problems of optimal stopping with linear cost (see e.g. Proposition 2.1 in [9])

and only minor modifications are needed to extend the argument to the present case. For this,

set Zt = �Bt + (r��2=2)t and note that the exponential case of (2.1) [ with r+� instead of

r ] reduces to the linear case of [9] for the diffusion Z and c = r+� by means of Jensen’s

inequality as follows:

(3.16) E
�
e�(r+�)�M�

�
= E

�
exp

�
max
0�t�� Zt�c�

��
� exp

�
E
�

max
0�t�� Zt�c�

��
.

Denoting �n = inf f t > 0 j Zt 6= h�1=n; 1=nig it is easily verified that (cf. Proposition 2.1 in [9]):

(3.17) E
�

max
0�t��n

Zt

�
� �

n
and E(�n) � �

n2

for all n � 1 with some constants � > 0 and � > 0 . Choosing n large enough, upon recalling

(3.16), we see that (3.17) shows that it is never optimal to stop at the diagonal in the case of infinite

horizon. To derive the same conclusion in the finite horizon case replace �n by �n = �n ^ T
and note by Markov’s inequality and (3.17) that:

(3.18) E
�

max
0�t��n

Zt � max
0�t��n

Zt

�
� 1

n
P
�
�n>T

� � E(�n)

nT
� �

n3 T
= O(n�3)

which together with (3.16) and (3.17) shows that:

(3.19) E
�
e�(r+�)�nM�n

�
� exp

�
E
�

max
0�t��n

Zt�c�n
��

> 1

for n large enough. From (3.19) we see that it is never optimal to stop at the diagonal in the case

of finite horizon either, and thus b does not take the value 1 on [0; T i as claimed.

Since the stopping set equals �D = f (t; x) 2 [0; T i�[1;1ijx � b(t)g and b is decreasing, it

is easily seen that b is right-continuous on [0; T i . Before we pass to the proof of its continuity

we first turn to the key principle of optimal stopping in the problem (2.10).

3. We show that the smooth-fit condition (2.13) holds. For this, let t 2 [0; T i be given and

fixed and set x = b(t) . We know that x > 1 so that there exists " > 0 such that x�" > 1
too. Since V (t; x) = G(x) and V (t; x�") > G(x�") , we have:

(3.20)
V (t; x)� V (t; x�")

"
� G(x)�G(x�")

"
= 1

so that by letting " # 0 in (3.20) and using that the left-hand derivative V �x (t; x) exists since

y 7! V (t; y) is convex, we get V �x (t; x) � 1 . To prove the reverse inequality, let �" = ��" (t; x�")
denote the optimal stopping time for V (t; x�") . We then have:

(3.21)
V (t; x)� V (t; x�")

"
� 1

"
eE�e���"�(x�M�")

++M�"

S�"
� (x�"�M�")

++M�"

S�"

��
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=
1

"
eE�e���"

S�"

�
(x�M�")

+� (x�"�M�")
+
��

� 1

"
eE�e���"

S�"

�
(x�M�")

+� (x�"�M�")
+
�
I(M�" � x�")

�
= eE�e���"

S�"
I(M�" � x�")

�
! 1

as " # 0 by bounded convergence since �" ! 0 so that M�" ! 1 with 1 < x�" and

likewise S�" ! 1 . It thus follows from (3.21) that V �x (t; x) � 1 and therefore V �x (t; x) = 1 .

Since V (t; y) = G(y) for y > x , it is clear that V +
x (t; x) = 1 . We may thus conclude that

y 7! V (t; y) is C1 at b(t) and Vx(t; b(t)) = 1 as stated in (2.13).

4. We show that b is continuous on [0; T ] and that b(T�) = 1 . For this, note first that

since the supremum in (2.10) is attained at the first exit time �b from the open set C , standard

arguments based on the strong Markov property (cf. [3]) imply that V is C1;2 on C and satisfies

(2.11). Suppose that there exists t 2 h0; T ] such that b(t�) > b(t) and fix any x 2 [b(t); b(t�)i .

Note that by (2.13) we have:

(3.22) V (s; x) � x =

Z b(s)

x

Z b(s)

y
Vxx(s; z) dz dy

for each s 2 ht��; ti where � > 0 with t�� > 0 . Since Vt � rxVx + (�2=2) x2Vxx��V
= 0 in C we see that (�2=2) x2Vxx = �Vt + rxVx + �V � rVx in C since Vt � 0 and

Vx � 0 upon recalling also that x � 1 and �V � 0 . Hence we see that there exists c > 0
such that Vxx � cVx in C \ f (t; x) 2 [0; T i�[1;1i j x� b(0) g , so that this inequality applies

in particular to the integrand in (3.22). In this way we get:

(3.23) V (s; x) � x � c

Z b(s)

x

Z b(s)

y
Vx(s; z) dz dy = c

Z b(s)

x

�
b(s) � V (s; y)

�
dy

for all s 2 ht��; ti . Letting s " t we get:

(3.24) V (t; x) � x � c

Z b(t�)

x

�
b(t�) � y

�
dy = (c=2)

�
b(t�) � x

�2
> 0

which is a contradiction since (t; x) belongs to the stopping set �D . This shows that b is

continuous on [0; T ] . Note also that the same argument with t = T shows that b(T�) = 1 .

5. We show that the normal reflection condition (2.14) holds. For this, note first that since

x 7! V (t; x) is increasing (and convex) on [1;1i it follows that Vx(t; 1+) � 0 for all

t 2 [0; T i . Suppose that there exists t 2 [0; T i such that Vx(t; 1+) > 0 . Recalling that V is

C1;2 on C so that t 7! Vx(t; 1+) is continuous on [0; T i , we see that there exists � > 0 such

that Vx(s; 1+) � " > 0 for all s 2 [t; t+ �] with t+ � < T . Setting �� = �b^ (t+ �) it follows

by Itô’s formula, using (2.11), and the optional sampling theorem (since Vx is bounded) that:

(3.25) eEt;1

�
e���� V (t+��;Xt+��)

�
= V (t; 1) + eEt;1

�Z ��

0
e��u Vx(t+u;Xt+u) dRt+u

�
.

Since (e��(s^�b)V (t+(s ^ �b); Xt+(s^�b)))0�s�T�t is a martingale under ePt;1 , we see that the

8



1

α

x

τb T

M t

St=
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•

Figure 1. A computer drawing of the optimal stopping boundary b from Theorem 3.1. The number

� is the optimal stopping point in the case of infinite horizon. If the discounting rate � is zero, then

� is infinite (i.e. it is never optimal to stop), while b is still finite and looks as above.

expression on the left-hand side in (3.25) equals the first term on the right-hand side, and thus:

(3.26) eEt;1

�Z ��

0
e��u Vx(t+u;Xt+u) dRt+u

�
= 0 .

On the other hand, since Vx(t+u;Xt+u)dRt+u = Vx(t+u; 1+)dRt+u by (2.7), and Vx(t+u; 1+) �
" > 0 for all u 2 [0; ��] , we see that (3.26) implies that:

(3.27) eEt;1

�Z ��

0
dRt+u

�
= 0 .

By (2.6) and the optional sampling theorem we see that (3.27) is equivalent to:

(3.28) eEt;1

�
Xt+��

� � 1 + r eEt;1

�Z ��

0
Xt+u du

�
= 0 .

Since Xs � 1 for all s 2 [0; T ] we see that (3.28) implies that �� = 0 ePt;1-a.s. As clearly this

is impossible, we see that Vx(t; 1+) = 0 for all t 2 [0; T i as claimed in (2.14).

6. We show that b solves the equation (3.4) on [0; T ] . For this, set F (t; x) = e��tV (t; x)
and note that F : [0; T i� [1;1i ! IR is a continuous function satisfying the following conditions:

(3.29) F is C1;2 on C [ D

9



(3.30) Ft + ILXF is locally bounded

(3.31) x 7! F (t; x) is convex

(3.32) t 7! Fx(t; b(t)�) is continuous.

To verify these claims, note first that F (t; x) = e��tG(x) = e��tx for (t; x) 2 D so that

the second part of (3.29) is obvious. Similarly, since F (t; x) = e��tV (t; x) and V is C1;2

on C , we see that the same is true for F , implying the first part of (3.29). For (3.30), note

that (Ft + ILXF )(t; x) = e��t(Vt + ILXV ��V )(t; x) = 0 for (t; x) 2 C by means of (2.11),

and (Ft + ILXF )(t; x) = e��t(Gt + ILXG ��G)(t; x) = �(r + �) x e��t for (t; x) 2 D ,

implying the claim. [When we say in (3.30) that Ft + ILXF is locally bounded, we mean that

Ft + ILXF is bounded on K \ (C [ D) for each compact set K in [0; T i � [1;1i.] The

condition (3.31) follows by (3.7) above. Finally, recall by (2.13) that x 7! V (t; x) is C1 at

b(t) with Vx(t; b(t)) = 1 so that Fx(t; b(t)�) = e��t implying (3.32). Let us also note that the

condition (3.31) can further be relaxed to the form where Fxx = F1 + F2 on C [D where F1
is non-negative and F2 is continuous on [0; T i � [1;1i . This will be referred to below as the

relaxed form of (3.29)-(3.32) (for more details see [10]).

Having a continuous function F : [0; T i�[1;1i ! IR satisfying (3.29)-(3.32) one finds in

exactly the same way as (2.30) in [10] is derived from (2.26) in [10] that for t 2 [0; T i the

following change-of-variable formula holds:

(3.33) F (t;Xt) = F (0; X0) +

Z t

0
(Ft+ILXF )(s;Xs) I(Xs 6= b(s)) ds

+

Z t

0
Fx(s;Xs) �XsI(Xs 6=b(s)) d bBs +

Z t

0
Fx(s;Xs) I(Xs 6=b(s)) dRs

+
1

2

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs= b(s)) d`bs(X)

where `bs(X) is the local time of X at the curve b given by:

(3.34) `bs(X) = IP�lim
"#0

1

2"

Z s

0
I(b(r)�"<Xr <b(r)+") �2X2

r dr

and d`bs(X) refers to the integration with respect to the continuous increasing function s 7! `bs(X) .

Note also that the formula (3.33) remains valid if b is replaced by any other continuous function

of bounded variation c : [0; T ] ! IR for which (3.29)-(3.32) hold with C and D defined

in the same way.

Applying (3.33) to e��sV (t+s;Xt+s) under ePt;x with (t; x) 2 [0; T i�[1;1i yields:

(3.35) e��sV (t+s;Xt+s) = V (t; x) +

Z s

0
e��u

�
Vt+ILXV ��V

�
(t+u;Xt+u) du+Ms

= V (t; x) +

Z s

0
e��u

�
Gt+ILXG��G

�
(t+u;Xt+u)I(Xt+u� b(t+u)) du+Ms

= V (t; x) � (r+�)

Z s

0
e��uXt+u I(Xt+u� b(t+u)) du +Ms

10



upon using (2.11), (2.12)+(2.16), (2.14), (2.13) and Gt+ILXG��G = �(r+�) G , where we

set Ms =
R s
0 e

��uVx(t+u;Xt+u) �Xt+u d bBt+u for 0 � s � T �t . Since 0 � Vx � 1 on

[0; T ]�[1;1i , it is easily verified that (Ms)0�s�T�t is a martingale, so that eEt;x(Ms) = 0 for

all 0 � s � T � t . Inserting s = T � t in (3.35), using that V (T; x) = G(x) = x for all

x 2 [1;1i , and taking the ePt;x-expectation in the resulting identity, we get:

(3.36) e��(T�t) eEt;x(XT ) = V (t; x)� (r+�)

Z T�t

0
e��u eEt;x

�
Xt+u I(Xt+u� b(t+u))

�
du

for all (t; x) 2 [0; T i�[1;1i . By (3.1) and (3.2) we see that (3.36) is the early exercise premium

representation (3.5). Recalling that V (t; x) = G(x) = x for x � b(t) , and setting x = b(t) in

(3.36), we see that b satisfies the equation (3.4) as claimed.

7.1. We show that b is the unique solution of the equation (3.4) in the class of continuous

decreasing functions c : [0; T ]! IR satisfying c(t) > 1 for all 0 � t < T . The proof of this

fact will be carried out in several remaining subsections to the end of the main proof. Let us thus

assume that a function c belonging to the class described above solves (3.4), and let us show that

this c must then coincide with the optimal stopping boundary b .

For this, in view of (3.36), let us introduce the function:

(3.37) U c(t; x) = e��(T�t) eEt;x(XT ) + (r+�)

Z T�t

0
e��u eEt;x

�
Xt+u I(Xt+u�c(t+u))

�
du

for (t; x) 2 [0; T i�[1;1i . Using (3.1) and (3.2) as in (3.5) we see that (3.37) reads:

(3.38) U c(t; x) = e��(T�t)F (T�t; x) + (r+�)

Z T�t

0
e��uG(u; x; c(t+u)) du

for (t; x) 2 [0; T i�[1;1i . A direct inspection of the expressions in (3.38) using (3.1)-(3.3) shows

that U c
x is continuous on [0; T i� [1;1i .

7.2. In accordance with (3.5) define a function V c : [0; T i � [1;1i ! IR by setting

V c(t; x) = U c(t; x) for x < c(t) and V c(t; x) = G(x) for x � c(t) when 0 � t < T .

Note that since c solves (3.4) we have that V c is continuous on [0; T i � [1;1i , i.e.

V c(t; x) = U c(t; x) = G(x) for x = c(t) when 0 � t < T . Let C and D be defined by

means of c as in (2.17) and (2.18) respectively.

Standard arguments based on the Markov property (or a direct verification) show that V c i.e.

U c is C1;2 on C and that:

(3.39) V c
t + ILXV

c = �V c in C

(3.40) V c
x (t; 1+) = 0

for all t 2 [0; T i . Moreover, since U c
x is continuous on [0; T i� [1;1i we see that V c

x is

continuous on �C . Finally, it is obvious that V c i.e. G is C1;2 on �D .

7.3. Summarizing the preceding conclusions one can easily verify that the function F :
[0; T i� [1;1i ! IR defined by F (t; x) = e��tV c(t; x) satisfies (3.29)-(3.32) (in the relaxed

form) so that (3.33) can be applied. In this way, under Pt;x with (t; x) 2 [0; T i�[1;1i given
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and fixed, using (3.40) we get:

(3.41) e��sV c(t+s;Xt+s) = V c(t; x)

+

Z s

0
e��u

�
V c
t +ILXV

c��V c
�
(t+u;Xt+u)I(Xt+u 6= c(t+u)) du+M c

s

+
1

2

Z s

0
e��u�xV

c
x (t+u; c(t+u)) d`

c
u(X)

where M c
s =

R s
0 e

��uV c
x (t+u;Xt+u)�Xt+u I(Xt+u 6= c(t+u))d bBt+u and we set �xV

c
x (v; c(v))

= V c
x (v; c(v)+)� V c

x (v; c(v)�) for t � v � T . Moreover, it is readily seen from the explicit

expression for V c
x obtained using (3.38) above that (M c

s )0�s�T�t is a martingale under ePt;x
so that eEt;x(M

c
s ) = 0 for each 0 � s � T � t .

7.4. Setting s = T�t in (3.41) and then taking the ePt;x-expectation, using that V c(T; x) =
G(x) for all x � 1 and that V c satisfies (3.39) in C , we get:

(3.42) e��(T�t) eEt;x(XT ) = V c(t; x)

� (r+�)

Z T�t

0
e��u eEt;x

�
Xt+u I(Xt+u� c(t+u))

�
du

+
1

2

Z T�t

0
e��u�xV

c
x (t+u; c(t+u)) du eEt;x(`

c
u(X))

for all (t; x) 2 [0; T i�[1;1i . Comparing (3.42) with (3.37), and recalling the definition of V c

in terms of U c and G , we get:

(3.43)

Z T�t

0
e��u�xV

c
x (t+u; c(t+u)) du eEt;x(`

c
u(X)) = 2

�
U c(t; x)�G(x)� I(x� c(t))

for all 0 � t < T and x � 1 , where I(x�c(t)) equals 1 if x � c(t) and 0 if x < c(t) .

7.5. From (3.43) we see that if we are to prove that:

(3.44) x 7! V c(t; x) is C1 at c(t)

for each 0 � t < T given and fixed, then it will follow that:

(3.45) U c(t; x) = G(x) for all x � c(t) .

On the other hand, if we know that (3.45) holds, then using the general fact:

(3.46)
@

@x

�
U c(t; x)�G(x)

����
x=c(t)

= V c
x (t; c(t)�)� V c

x (t; c(t)+) = ��xV
c
x (t; c(t))

for all 0 � t < T , we see that (3.44) holds too (since U c
x is continuous). The equivalence of

(3.44) and (3.45) suggests that instead of dealing with the equation (3.43) in order to derive (3.44)

above we may rather concentrate on establishing (3.45) directly.

7.6. To derive (3.45) first note that standard arguments based on the Markov property (or a
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direct verification) show that U c is C1;2 on D and that:

(3.47) U c
t + ILXU

c��U c = �(r+�)G in D .

Since the function F : [0; T i�[1;1i ! IR defined by F (t; x) = e��tU c(t; x) is continuous and

satisfies (3.29)-(3.32) (in the relaxed form), we see that (3.33) can be applied just like in (3.41)

with U c instead of V c , and this yields:

(3.48) e��sU c(t+s;Xt+s) = U c(t; x)� (r+�)

Z s

0
e��uXt+u I(Xt+u�c(t+u)) du+ fM c

s

upon using (3.39)+(3.40) and (3.47) as well as that �xU
c
x(t+u; c(t+u)) = 0 for 0 � u � s since

U c
x is continuous. In (3.48) we have fM c

s =
R s
0 e

��uU c
x(t+u;Xt+u)�Xt+uI(Xt+u 6=c(t+u))d bBt+u

and (fM c
s )0�s�T�t is a martingale under Pt;x .

Next note that Itô’s formula implies:

(3.49) e��sG(Xt+s) = G(x)� (r+�)

Z s

0
e��uXt+u du+Ms +

Z s

0
e��u dRt+u

upon using that Gt+ILXG�rG = �(r+�)G as well as that Gx(t+u;Xt+u) = 1 for 0 � u � s .

In (3.49) we have Ms =
R s
0 e

��u �Xt+u d bBt+u and (Ms)0�s�T�t is a martingale under Pt;x .

For x � c(t) consider the stopping time:

(3.50) �c = inf f 0 � s � T�t j Xt+s � c(t+s) g .

Then using that U c(t; c(t)) = G(c(t)) for all 0 � t < T since c solves (3.4), and that

U c(T; x) = G(x) for all x � 1 by (3.37), we see that U c(t+�c; Xt+�c) = G(Xt+�c) . Hence

from (3.48) and (3.49) using the optional sampling theorem we find:

(3.51) U c(t; x) = Et;x

�
e���cU c(t+�c; Xt+�c)

�
+ (r+�)Et;x

�Z �c

0
e��uXt+u I(Xt+u� c(t+u)) du

�
= Et;x

�
e�r�cG(Xt+�c)

�
+(r+�)Et;x

�Z �c

0
e��uXt+u I(Xt+u�c(t+u))du

�
= G(x) � (r+�)Et;x

�Z �c

0
e��uXt+u du

�
+ (r+�)Et;x

�Z �c

0
e��uXt+u I(Xt+u� c(t+u)) du

�
= G(x)

since Xt+u � c(t+u) > 1 for all 0 � u � �c . This establishes (3.45) and thus (3.44) holds too.

It may be noted that a shorter but somewhat less revealing proof of (3.45) [and (3.44)] can be

obtained by verifying directly (using the Markov property only) that the process:

(3.52) e��sU c(t+s;Xt+s) + (r+�)

Z s

0
e��uXt+u I(Xt+u� c(t+u)) du

is a martingale under Pt;x for 0 � s � T�t . This verification moreover shows that the martingale
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property of (3.52) does not require that c is increasing but only measurable. Taken together with

the rest of the proof below this shows that the claim of uniqueness for the equation (3.4) holds in

the class of continuous functions c : [0; T ] ! IR such that c(t)>1 for all 0 < t < T .

7.7. Consider the stopping time:

(3.53) �c = inf f 0 � s � T�t j Xt+s � c(t+s) g .

Note that (3.41) using (3.39) and (3.44) reads:

(3.54) e��sV c(t+s;Xt+s) = V c(t; x)� (r+�)

Z s

0
e��uXt+u I(Xt+u�c(t+u)) du+M c

s

where (M c
s )0�s�T�t is a martingale under ePt;x . Thus eEt;x(M

c
�c) = 0 , so that after inserting

�c in place of s in (3.54), it follows upon taking the ePt;x-expectation that:

(3.55) V c(t; x) = eEt;x

�
e���cXt+�c

�
for all (t; x) 2 [0; T i�[1;1i where we use that V c(t; x) = G(x) = x for x � c(t) or t = T .

Comparing (3.55) with (2.10) we see that:

(3.56) V c(t; x) � V (t; x)

for all (t; x) 2 [0; T i� [1;1i .

7.8. Let us now show that b � c on [0; T ] . For this, recall that by the same arguments

as for V c we also have:

(3.57) e��sV (t+s;Xt+s) = V (t; x)� (r+�)

Z s

0
e��uXt+u I(Xt+u� b(t+u)) du+M b

s

where (M b
s )0�s�T�t is a martingale under ePt;x . Fix (t; x) 2 [0; T i� [1;1i such that x >

b(t) _ c(t) and consider the stopping time:

(2.58) �b = inf f 0 � s � T�t j Xt+s � b(t+s) g .

Inserting �b in place of s in (3.54) and (3.57) and taking the ePt;x-expectation, we get:

(3.59) eEt;x

�
e���bV c(t+�b; Xt+�b)

�
= x�(r+�) eEt;x

�Z �b

0
e��uXt+uI(Xt+u�c(t+u))du

�
(3.60) eEt;x

�
e���bV (t+�b; Xt+�b)

�
= x � (r+�) eEt;x

�Z �b

0
e��uXt+u du

�
.

Hence by (3.56) we see that:

(3.61) eEt;x

�Z �b

0
e��uXt+u I(Xt+u� c(t+u)) du

�
� eEt;x

�Z �b

0
e��uXt+u du

�
from where it follows by the continuity of c and b , using Xt+u > 0 , that b(t) � c(t) for

all t 2 [0; T ] .
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7.9. Finally, let us show that c must be equal to b . For this, assume that there is t 2 h0; T i
such that b(t) > c(t) , and pick x 2 hc(t); b(t)i . Under ePt;x consider the stopping time �b from

(2.19). Inserting �b in place of s in (3.54) and (3.57) and taking the ePt;x-expectation, we get:

(3.62) eEt;x

�
e���bXt+�b

�
= V c(t; x)� (r+�) eEt;x

�Z �b

0
e��uXt+u I(Xt+u�c(t+u)) du

�
(3.63) eEt;x

�
e���bXt+�b

�
= V (t; x) .

Hence by (3.56) we see that:

(3.64) eEt;x

�Z �b

0
e��uXt+u I(Xt+u� c(t+u)) du

�
� 0

from where it follows by the continuity of c and b using Xt+u > 0 that such a point x cannot

exist. Thus c must be equal to b , and the proof is complete.
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[4] EKSTRÖM, E. (2003). Russian options with a finite time horizon. Preprint (University of

Uppsala).

[5] JACKA, S. D. (1991). Optimal stopping and the American put. Math. Finance 1 (1-14).

[6] KARATZAS, I. and SHREVE, S. E. (1998). Methods of Mathematical Finance. Springer-

Verlag.

[7] KIM, I. J. (1990). The analytic valuation of American options. Rev. Financial Stud. 3

(547-572).

[8] KOLODNER, I. I. (1956). Free boundary problem for the heat equation with applications

to problems of change of phase I. General method of solution. Comm. Pure Appl. Math.

9 (1-31).

[9] PESKIR, G. (1998). Optimal stopping of the maximum process: The maximality principle.

Ann. Probab. 26 (1614-1640).

15



[10] PESKIR, G. (2005). On the American option problem. Math. Finance 15 (169-181).

[11] SHEPP, L. A. and SHIRYAEV, A. N. (1993). The Russian option: Reduced regret. Ann.

Appl. Probab. 3 (631-640).

[12] SHEPP, L. A. and SHIRYAEV, A. N. (1994). A new look at the Russian option. Theory

Probab. Appl. 39 (103-119).

[13] SHIRYAEV, A. N. (1978). Optimal Stopping Rules. Springer-Verlag.

[14] SHIRYAEV, A. N. (1999). Essentials of Stochastic Finance (Facts, Models, Theory). World

Scientific.

Goran Peskir

Department of Mathematical Sciences

University of Aarhus, Denmark

Ny Munkegade, DK-8000 Aarhus

home.imf.au.dk/goran

goran@imf.au.dk

16


