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Maximal Inequalities for the
Ornstein-Uhlenbeck Process

S. E. GRAVERSEN� and G. PESKIR�

Let V = (Vt)t�0 be the Ornstein-Uhlenbeck velocity process solving

dVt = ��Vt dt + dBt

with V0 = 0 , where � > 0 and B = (Bt)t�0 is a standard Brownian motion.

Then there exist universal constants C1 > 0 and C2 > 0 such that

C1p
�
E
p

log (1+��) � E

�
max
0�t��

jVtj
�
� C2p

�
E
p

log (1+��)

for all stopping times � of V . In particular, this yields the existence of universal

constants D1 > 0 and D2 > 0 such that
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for all stopping times � of B . This inequality may be viewed as a stopped

law of iterated logarithm. The method of proof relies upon a variant of Lenglart’s

domination principle [2] and makes use of Itô calculus.

1. Introduction

Consider the random movement of a Brownian particle suspended in a liquid. The Einstein-

Smoluchowski theory suggests the standard Brownian motion Bt �N(0; t) as a model for the

position of the particle. The Ornstein-Uhlenbeck theory [6] relies upon Newtonian mechanics and

suggests that the position of the Brownian particle should be modelled as Xt =
R t
0 Vr dr where

Vt = e��t
R t
0 e

�rdBr � N(0; 1
2� (1�e�2�t)) is the Brownian velocity solving the Langevin equation:

(1.1) dVt = ��Vt dt + dBt (� > 0)

(see [3] for more details). The Einstein-Smoluchowski theory may be seen as an idealised Ornstein-

Uhlenbeck theory, and predictions of either cannot be distinguished by experiment. However, if

the Brownian particle is under influence of an external force, the Einstein-Smoluchowski theory

breaks down, while the Ornstein-Uhlenbeck theory remains successful (see [3] p.53-78). Perhaps

one of the main reasons that the Einstein-Smoluchowski model is so popular in stochastic calculus

today is due to the fact that the standard Brownian motion is a martingale.

Consider the standard Brownian motion B = (Bt)t�0 . Then the celebrated Burkholder-Gundy

inequality [1] states that there exist universal constants A1>0 and A2>0 such that
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for all stopping times � of B . In other words, and less formally, this inequality states that the

maximal position of the Brownian particle, taken up to a random instant of time � which does

not anticipate the future, in average behaves as
p
� .

In this note we address the same question for the velocity process V = (Vt)t�0 . Our main

result (Theorem 2.5) shows that the maximal velocity of the Brownian particle, taken up to a random

instant of time � which does not anticipate the future, in average behaves as
p
log (1+�) . In

view of the “reverse” drift term in (1.1), which is due to a “frictional” force towards the origin

(equilibrium state of velocity zero), the quantitative difference in the result is in agreement with

our intuition. The result of Theorem 2.5 can also be restated in terms of the standard Brownian

motion B , and this may be viewed as a stopped law of iterated logarithm (Corollary 2.7).

2. The result and proof

The following domination principle was initially proved in [2] in the case H(x) = xp for

0 < p < 1 . Its extension to more general functions x 7! H(x) follows along the same lines

and can be found in [5] (p.155-156). This extension appears crucial in our treatment below, and

we present the proof for completeness.

Proposition 2.1 (Lenglart)

Let (
;F ; (Ft)t�0; P ) be a filtered probability space, let X = (Xt)t�0 be an (Ft)-adapted

non-negative right-continuous process, let A = (At)t�0 be an (Ft)-adapted increasing continuous

process satisfying A0=0 , and let H : R+ ! R+ be an increasing continuous function satisfying

H(0) = 0 . Assume that

(2.1) E(X� ) � E(A� )

for all bounded (Ft)-stopping times � . Then

(2.2) E

�
sup

0�t��
H(Xt)

�
� E

� eH(A� )
�

for all (Ft)-stopping times � , where

(2.3) eH(x) = x

Z 1
x

1

s
dH(s) + 2H(x)

for all x � 0 .

Proof. By Fubini’s theorem we obtain
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�
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o�
dH(s)

since s 7! H(s) is increasing and continuous. Consider the following stopping times:
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(2.5) �1 = inf f t > 0 j Xt > s g
�2 = inf f t > 0 j At > s g .

Then by Markov’s inequality and (2.1) we find:

(2.6) P

�
sup
0�t��

Xt > s ; A� � s

�
� P

n
�1 � � ; �2 � �

o
� P

n
X�1^�2^� � s

o
� 1

s
E
�
A�1^�2^�

�
whenever � is bounded. From (2.4) and (2.6) we can conclude:
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for all bounded � . Finally, observe that x 7! eH(x) is increasing, and pass to the limit when

k ! 1 to reach any � through bounded ones � ^ k . This completes the proof.

Remark 2.2: If H(x) = xp with 0<p<1 , then eH(x) = ((2�p)=(1�p))xp ; if H(x) = x ,

then eH(x) � +1 , and the bound on the right-hand side in (2.2) is non-interesting; generally, the

right-hand side in (2.2) gives a non-trivial bound if H(x) tends to infinity as slow as xp for some

0 < p < 1 ; the bound is better (asymptotically optimal) if the error in (2.1) is smaller (negligible).

1. The initial result which we state now is motivated by the considerations in [4]. This is

addressed in more detail in Remark 2.4 following the proof below.

Theorem 2.3

Let V = (Vt)t�0 be the Ornstein-Uhlenbeck velocity process solving (1.1) with V0 = 0 , where

B = (Bt)t�0 is a standard Brownian motion. Introduce the following functional:

(2.8) It =

Z t

0
e�V

2
r dr .

Then there exist universal constants A1 > 0 and A2 > 0 such that

(2.9)
A1p
�
E

r
log

�
1 + �I�

�
� E

�
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0�t��

jVtj
�
� A2p

�
E

r
log

�
1 + �I�

�
for all stopping times � of V .

Proof. If x 7! F (x) is even and C2 , then by Itô formula we find:

(2.10) F
�jVtj� = F (0) +

Z t

0

�
ILV F

�
(Vr) dr +

Z t

0
F 0(Vr) dBr

where ILV denotes the infinitesimal generator of V :
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(2.11) ILV = ��v @

@v
+

1

2

@2

@v2
.

Motivated by our considerations in [4], we shall set

(2.12) F (v) =
1

�

�
e�v

2�1
�

.

Then it is easily verified that ILV (F ) = c where c(v) = e�v
2

. By applying the optional sampling

theorem in (2.10), it follows easily that

(2.13) E
�
F
�jV� j�� = E

�
I�
�

for all bounded stopping times � of V . This shows that the condition (2.1) is satisfied with

Xt = F (jVtj) and At = It . Denote H(x) = F�1(x) and observe that

(2.14) H(x) = H(x; �) =
1p
�

p
log (1+�x)

where by H(x; �) we indicate the dependence on � . By (2.3) we then have

(2.15) eH(x; �) = x

Z 1
x

1

s
dH(s; �) + 2H(x; �) .

Consider the following function:

(2.16) G(x; �) =
x

H(x; �)

Z 1
x

1

s
dH(s; �) .

Observe that for all x we have:

(2.17) G(x; �) = G(�x; 1) .

Thus, if we want to compute the limit of G(x; �) when x!1 or x! 0 , it is no restriction

to assume that � = 1 . Note that

(2.18) G(x; 1) =
x

2
p

log(1 + x)

Z 1
x

dsp
log(1 + s) (1 + s) s

.

Elementary calculations show that

(2.19) lim
x!0

G(x; 1) = 1

(2.20) lim
x!1G(x; 1) = 0

(2.21) 0 � G(x; 1) � 1 (8x > 0) .

From (2.15) we then find:

(2.22) eH(x; �) � 3 H(x; �)
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for all x � 0 , and hence the right-hand inequality in (2.9) follows from (2.2) and (2.14).

To prove the left-hand inequality in (2.9), we shall note by (2.13) that

(2.23) E
�
I�
� � E

�
max
0�t��

F
�jVtj��

for all bounded stopping times � of V . Thus, the left-hand inequality in (2.9) follows from (2.2)

and (2.14) upon the identification Xt = It and At = max0�r�t F (jVrj) . The proof is complete.

Remark 2.4: It was proved in [4] that

(2.24) E

�
max
0�t��

jVtj
�
� Cp

�

r
logE

�
e�V

2
�

�
for all stopping times � of V for which the process (e�V

2
�^t)t�0 is uniformly integrable; by

Itô formula this inequality is equivalently written as follows:

(2.25) E

�
max
0�t�� jVtj

�
� Cp

�

r
log
�
1+�E(I� )

�
where C>0 is some constant. Our result (2.9) shows that the second expectation sign in (2.25)

can be pulled out in front of the square-root and logarithm sign; in view of Jensen’s inequality this

bound is better, although not easily computed; as the inequality (2.9) above is two-sided, this also

detects the real size of the error in the terminal-value bound (2.24); observe also that our proof

above establishes (2.9) with A1 = 1=3 and A2 = 3 ; thus C in (2.24) can be taken as small as 3 .

2. A main disadvantage of the inequality (2.9) is the complicated form of the functional I� .

In our attempt to understand better its size, we now prove that I� in (2.9) can be replaced by � .

In view of the obvious inequality I� � � , and that I� is actually much larger than � , this fact

may seem surprising at first. However, noting that we also have the logarithm function in (2.9),

and recalling that the variance of Vt � N(0 ; 1
2� (1�e�2�t)) remains bounded over all t , we see

that everything agrees well with our intuition.

Theorem 2.5

Let V = (Vt)t�0 be the Ornstein-Uhlenbeck velocity process solving (1.1) with V0 = 0 , where

B = (Bt)t�0 is a standard Brownian motion. Then there exist universal constants C1 > 0 and

C2 > 0 such that

(2.26)
C1p
�
E

r
log
�
1+��

�
� E

�
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0�t��

jVtj
�
� C2p

�
E

r
log
�
1+��

�
for all stopping times � of V .

Proof. If x 7! F (x) is even and C2 , then by Itô formula we know that (2.10) holds.

Motivated by this expression, consider the equation:

(2.27) ILV (F ) = 1
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with ILV as in (2.11). The general solution of (2.27) is given by

(2.28) F (x) =

Z x

0
e�u

2

�
2

Z u

0
e��v

2

dv + K1

�
du + K2

where K1 and K2 are constants. Motivated by the fact that A from Proposition 2.1 should

satisfy A0 = 0 , we shall impose the condition F (0) = 0 , which implies that K2 = 0 . Imposing

further that F 0(0) = 0 , which implies that K1 = 0 , we obtain the following solution of (2.27):

(2.29) F (x) = 2

Z x

0
e�u

2

Z u

0
e��v

2

dvdu .

Observe that x 7! F (x) is even and C2 , and thus (2.10) holds.

Applying the optional sampling theorem in (2.10), and using (2.27), we see that

(2.30) E
�
F
�jV� j�� = E(�)

for all bounded stopping times � of V . Thus the condition (2.1) is satisfied with Xt = F (jVtj)
and At = t . From (2.30) we also see that

(2.31) E(�) � E

�
max
0�t�� F

�jVtj��
for all bounded stopping times � of V . Thus the condition (2.1) is also satisfied with Xt = t
and At = max0�r�t F (jVrj) .

Denoting H(x) = F�1(x) , it is possible to prove that

(2.32)
1p
�

p
log (1+�x) � H(x) � Dp

�

p
log (1+�x)

for all x� 0 , where D > 1 is some constant. The left-hand side in (2.32) is verified straight-

forwardly, while the right-hand side requires some more effort. Our calculations show that one

may take D = 1:1265 . . .
The result now follows from (2.30)-(2.32) and (2.2) above upon verifying that eH(x)=H(x) � 3

for all x > 0 ; observe that F (x) � x2 and F 0(x) � 2x so that H(x) � p
x and H 0(x) �

1=(2
p
x) for all x > 0 . The proof is complete.

Remark 2.6: Observe from the proof above that in (2.26) one may take C1 = 1=3 and

C2=3D=3:3795 . . . Note also that (1.2) is obtained from (2.26) by letting � # 0 .

Corollary 2.7

Let B = (Bt)t�0 be standard Brownian motion. Then there exist universal constants D1>0
and D2 > 0 such that

(2.33) D1E
q

log
�
1+log (1+�)

� � E

�
max
0�t��

jBtjp
1+t

�
� D2E

q
log
�
1+log (1+�)

�
for all stopping times � of B .
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Proof. In the setting of Theorem 2.5 above, we shall use the well-known fact that

(2.34) Vt =
1p
2�

e��t B(e2�t�1)

which is derived by a standard time-change argument. Set �t = e2�t � 1 ; then � is a stopping

time of V if and only if �� is a stopping time of B . From (2.34) we see that

(2.35)
p
2� jVtj = jB�tjp

1+�t
.

Set H(x; �) = (1=
p
�)
p
log (1+�x) ; then (2.26) above can equivalently be rewritten as follows:

(2.36) E

�
max
0�t��

jB�tjp
1+�t

�
�
p
2� E

�
H
�
� ; �

��
.

Substituting �t = u in (2.36), we see that

(2.37) E

�
max

0�u��(�)
jBujp
1+u

�
�
p
2� E

�
H
�
��1

�
�(�)

�
; �
��

.

Observe that
p
2� H(x; �) =

p
2
p
log (1+�x) and ��1(u) = (1=2�) log(1+u) . Thus

(2.38)
p
2� H

�
��1

�e��; �� = p
2

r
log
�
1+

1

2
log
�
1+e���

where e� = �(� ) is a stopping time of B . However, since clearly

(2.39) log
�
1+

1

2
log
�
1+x

�� � log
�
1+log

�
1+x

��
when x tends to 0 or 1 , we see from (2.37) and (2.38) that (2.33) holds. The proof is complete.

Corollary 2.8

Let M = (Mt)t�0 be a continuous local martingale with the quadratic variation process�

M
�
t

�
t�0 . Then there exist universal constants D1> 0 and D2> 0 such that

(2.40) D1E
q

log
�
1+log (1+



M
�
�
)
��E max

0�t��

jMtjq
1+


M
�
t

!
�D2E

q
log
�
1+log (1+



M
�
�
)
�

for all stopping times � of M .

Proof. It follows from Corollary 2.7 by a standard time-change argument (see [5]).
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