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Lecture 1. INTRODUCTION.

1. Connections of the Optimal stopping theory and the Mathemat-

ical analysis (especially PDE-theory) are as well illustrated by the

Dirichlet problem for the Laplace equation: to find a harmonic

function u = u(x) in the class C2 in the bounded open domain

C ⊆ Rd i.e. to find a function u ∈ C2 that satisfies to the

equation

∆u = 0, x ∈ C (∗)

and the boundary condition

u(x) = G(x), x ∈ ∂D, where D = Rd\C. (∗∗)
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Let

τD = inf{t : Bx
t ∈ D},

where

Bx
t = x + Bt.

with a d-dimensional standard Brownian motion.

Then the probabilistic solution of the Dirichlet problem

∆u = 0, x ∈ C

u(x) = G(x), x ∈ ∂D

is given by the formula

u(x) = EG(Bx
τD

), x ∈ C ∪ ∂D(
u(x) = ExG(BτD)

)
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The optimal stopping theory operates with the optimization prob-

lems when we have a set of domains C =
{
C : C ⊆ Rd

}
and we want

to find the function

U(x) = sup
τD

ExG(BτD),

where G = G(x) is given for all x ∈ Rd, D ∈ D =
{
D = C̄ : C ∈ C

}
or,

generally, to find the function

V (x) = sup
τ

ExG(Bτ),

where τ is an arbitrary finite stopping time defined by the process

B.
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2. The following scheme illustrates the kind of concrete problems of

general interest that will be studied in the courses of lectures:

A. Theory of probability

sharp inequalities

B. Mathematical statistics

sequential analysis

C. Financial mathematics

stochastic equilibria

The solution method for problems A, B, C consists of reformulation

to an optimal stopping problem and reduction to a free-boundary

problem as stated in the diagram
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3. To get some idea of the character of problems A, B, C that will

be studied, let us begin with the following remarks.

(A) Let B = (Bt)t≥0 be a standard Brownian motion. Then (Wald

identities)

EBT = 0 and EBτ = 0 if E
√

τ < ∞,

EB2
T = T and EB2

τ = Eτ if Eτ < ∞.

From Jensen’s inequality and E|Bτ |2 = Eτ we get

E|Bτ |p ≤ (Eτ)p/2 for 0 < p ≤ 2

(Eτ)p/2 ≤ E|Bτ |p for 2 ≤ p < ∞.

Davis B., 1976:

E|Bτ | ≤ z∗1E
√

τ, z∗1 = 1.30693 . . .
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Now our main interest relates with the estimation of the expectations

Emax
t≤τ

Bt and Emax
t≤τ

|Bt|.

We have

maxB
law
= |B|.

So,

Emax
t≤T

Bt = E|BT | =
√

2

π
T

(
<
√

τ
)

and

Emax
t≤τ

Bt = E|Bτ | ≤


√

Eτ,

z∗1E
√

τ, z∗1 = 1.30993 . . .
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The case of max |B| is more difficult. We know that

P

(
max
t≤T

|Bt| ≤ x

)
=

4

π

∞∑
n=0

(−1)n

2n + 1
exp

(
−

π2(2n + 1)2

8x2

)

From here it is possible to obtain (but it’s not easy!) that

Emax
t≤T

|Bt| =
√

π

2
T

(
= 1.25331 . . .

)

(Recall that E|BT | =
√

2
πT (= 0.79788 . . .))
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Simple proof:

(Bat; t ≥ 0)
law
= (

√
aBt; t ≥ 0).

Take σ = inf {t > 0 : |Bt| = 1}. Then

P
(
sup0≤t≤1 |Bt| ≤ x

)
= P

(
sup0≤t≤1 |Bt/x2| ≤ 1

)
=

= P
(
sup0≤t≤1/x2 |Bt| ≤ 1

)
= P

(
σ ≥ 1

x2

)
=

= P
(

1√
σ≤x

)
, i.e. sup0≤t≤1 |Bt|

law
= 1√

σ

The normal distribution property√
2

π

∫ ∞

0
Ee
− x2

2a2dx = a, a > 0.
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So,

E sup
0≤t≤1

|Bt| = E
1
√

σ
=

√
2

π

∞∫
0

Ee−
x2σ
2 dx.

We have

Ee−λσ =
1

cosh
√

2λ
.

Hence

E sup
0≤t≤1

|Bt| =
√

2

π

∞∫
0

dx

coshx
=

= 2

√
2

π

∞∫
0

ex dx

e2x + 1
=

√
2

π

∞∫
1

dy

1 + y2
=

= 2

√
2

π
arctan(x)

∣∣∣∣∣
∞

1
= 2

√
2

π
·
π

4
=
√

π

2
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E sup
0≤t≤T

|Bt| =
√

T , E sup
0≤t≤1

|Bt| =
√

π

2
T .

In the connection with MAX the following may be interesting. In a
speech delivered in 1856 before a grand meeting at the St.-Petersburg
University the great mathematician

P.L. Chebyshev (1821-1894)

has formulated some statements about the “unity of theory and prac-
tice”. In particular he underlined that

“a large portion of the practical questions can be stated in the
form of problems of MAXIMUM and MINIMUM... Only the
solution of these problems can satisfy the requests of practice
which is always in search of the best and the most efficient”.
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4. Suppose now that instead of max
t≤T

|Bt|, where as already known

Emax
t≤T

|Bt| =
√

π

2
T ,

we give some random time τ and we want to find

E max
0≤t≤τ

|Bt|.

It is clear that it is virtually impossible to compute this expectation for

every stopping time τ of B. Thus, as the second best thing, one can

try to bound the expectation with a quantity which is easier computed.

A natural candidate for the latter is Eτ at least when finite. In this way

a problem A has appeared.
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This problem then leads to the following maximal inequality:

E
(

max
0≤t≤τ

|Bt|
)
≤ C

√
Eτ (1)

which is valid for all stopping times τ of B with the best constant C

equal to
√

2.

From our lecture we will see that the problem A just formulated can

be solved in the form (1) by reformulation to the following optimal

stopping problem:

V∗ = sup
τ

E
(

max
0≤t≤τ

|Bt| − cτ

)
(2)

where the supremum is taken over all stopping times τ of B satisfying

Eτ < ∞, and the constant c > 0 is given and fixed. It constitutes Step 1

in the diagram above.
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If V∗ = V∗(c) can be computed, then from (2) we get

E
(

max
0≤t≤τ

|Bt|
)
≤ V∗(c) + c Eτ (3)

for all stopping times τ of B and all c > 0. Hence we find

E
(

max
0≤t≤τ

|Bt|
)
≤ inf

c>0

(
V∗(c) + c Eτ

)
(4)

for all stopping times τ of B. The right-hand side in (4) defines a
function of Eτ that, in view of (2), provides a sharp bound of the
left-hand side.

Our lectures demonstrate that the optimal stopping problem (2) can
be reduced to a free-boundary problem. This constitutes Step 2 in
the diagram above. Solving the free-boundary problem one finds that
V∗(c) = 1/2c. Inserting this into (4) yields

inf
c>0

E
(
V∗(c) + c Eτ

)
=
√

2 Eτ (5)
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so that the inequality (4) reads as follows:

E
(

max
0≤t≤τ

|Bt|
)
≤
√

2 Eτ (6)

for all stopping times τ of B. This is exactly the inequality (1) above
with C =

√
2. The constant

√
2 is, indeed, the best possible in (6). In

the lectures we consider similar sharp inequalities for other stochastic
processes using ramifications of the method just exposed. Apart from
being able to derive sharp versions of known inequalities the method
can also be used to derive some new inequalities.
(B) The classic example of a problem in sequential analysis is the
Wald’s problem (“Sequential analysis”, 1947) of sequential testing of
two statistical hypotheses

H0 : µ = µ0 and H1 : µ = µ1 (7)

about the drift parameter µ ∈ R of the observed process

Xt = µt + Bt (8)

for t ≥ 0 where B = (Bt)t≥0 is a standard Brownian motion.
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Another classic example of a problem in sequential analysis is the
problem of sequential testing of two statistical hypotheses

H0 : λ = λ0 and H1 : λ = λ1 (9)

about the intensity parameter λ > 0 of the observed process

Xt = Nλ
t (10)

for t ≥ 0 where N = (Nt)t≥0 is a standard Poisson process.

The basic problem in both cases seeks to find the optimal decision
rule (τ∗, d∗) in the class ∆(α, β) consisting of decision rules (d, τ), where
τ is the time of stopping and accepting H1 if d = d1 or accepting H0
if d = d0, such that the probability errors of the first and second kind
satisfy:

P(accept H1 | true H0) ≤ α (11)

P(accept H0 | true H1) ≤ β (12)

and the mean times of observation E0τ and E1τ are as small as possible.
It is assumed above that α > 0 and β > 0 with α + β < 1.
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It turns out that with this (variational) problem one may associate an

optimal stopping (Bayesian) problem which in turn can be reduced to a

free-boundary problem. This constitutes Steps 1 and 2 in the diagram

above. Solving the free-boundary problem leads to an optimal decision

rule (τ∗, d∗) in the class ∆(α, β) satisfying (11) and (12) as well as the

following two identities:

E0τ = inf
(τ,d)

E0τ (13)

E1τ = inf
(τ,d)

E1τ (14)

where the infimum is taken over all decision rules (τ, d) in ∆(α, β).

This constitutes Steps 3 and 4 in the diagram above.
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In our lectures we study these as well as closely related problems of

quickest detection. (The story of the creating of the quickest de-

tection problem of randomly appearing signal, it’s mathematical for-

mulation and our route of the solving of the problem (1961) will be

given in my lecture at Monday January, 23 on the Symposium after

the school).

Two of the prime findings, which also reflect the historical development

of these ideas, are the principles of smooth and continuous fit,

respectively.
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C) One of the best-known specific problems of mathematical finance,

that has a direct connection with optimal stopping problems, is the

problem of determining the arbitrage-free price of the American put

option.

Consider the Black–Scholes model where the stock price X = (Xt)t≥0

is assumed to follow a geometric Brownian motion

Xt = x exp
(
σBt + (r − σ2/2) t

)
(15)

where x > 0, σ > 0, r > 0 and B = (Bt)t≥0 is a standard Brownian

motion. By Itô’s formula one finds that the process X solves

dXt = rXt dt + σXt dBt (16)

with X0 = x.
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General theory of financial mathematics makes it clear that the initial

problem of determining the arbitrage-free price of the American put

option can be reformulated as the following optimal stopping problem:

V∗ = sup
τ

Ee−rτ(K −Xτ)
+ (17)

where the supremum is taken over all stopping times τ of X. This

constitutes Step 1 in the diagram above. The constant K > 0 is called

the ‘strike price’. It has a certain financial meaning which we set aside

for now.

It turns out that the optimal stopping problem (17):

V∗ = sup
τ

Ee−rτ(K −Xτ)
+

can be reduced again to a free-boundary problem which can be solved

explicitly.
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It yields the existence of a constant b∗ such that the stopping time

τ∗ = inf { t ≥ 0 | Xt ≤ b∗ } (18)

is optimal in (17). This constitutes Steps 2 and 3 in the diagram

above. Both the optimal stopping point b∗ and the arbitrage-free price

V∗ can be expressed explicitly in terms of the other parameters in the

problem. A financial interpretation of these expressions constitutes

Step 4 in the diagram above.

In the formulation of the problem (17) above no restriction was im-

posed on the class of admissible stopping times, i.e. for certain reasons

of simplicity it was assumed there that τ belongs to the class of stop-

ping times

M = { τ | 0 ≤ τ < ∞} (19)

without any restriction on their size.
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A more realistic requirement on a stopping time in search for the

arbitrage-free price leads to the following optimal stopping problem:

V T
∗ = sup

τ∈MT
Ee−rτ(K −Xτ)

+ (20)

where the supremum is taken over all τ belonging to the class of

stopping times

MT = { τ | 0 ≤ τ ≤ T } (21)

with the horizon T being finite.

The optimal stopping problem (20) can be also reduced to a free-

boundary problem that apparently cannot be solved explicitly.
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Its study yields that the stopping time

τ∗ = inf { 0 ≤ t ≤ T | Xt ≤ b∗(t) } (22)

is optimal in (20), where b∗ : [0, T ] → R is an increasing continuous

function. A nonlinear Volterra integral equation can be derived which

characterizes the optimal stopping boundary t 7→ b∗(t) and can be

used to compute its values numerically as accurate as desired. The

comments on Steps 1–4 in the diagram above made in the infinite

horizon case carry over to the finite horizon case without any change.

In our lectures we study these and other similar problems that arise

from various financial interpretations of options.

5. So far we have only discussed problems A, B, C and their refor-

mulations as optimal stopping problems. Now we want to address the

methods of solution of optimal stopping problems and their reduction

to free-boundary problems.
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There are essentially two equivalent approaches to finding a solution

of the optimal stopping problem. The first one deals with the problem

V∗ = sup
τ∈M

EGτ (23)

in the case of infinite horizon, or the problem

V T
∗ = sup

τ∈MT
EGτ (24)

in the case of finite horizon, where M and MT are the classes of

stopping times defined in (19) and (21), respectively.

In this formulation it is important to realize that G = (Gt)t≥0 is

an arbitrary stochastic process defined on a filtered probability space

(Ω,F , (Ft)t≥0, P), where it is assumed that G is adapted to the filtra-

tion (Ft)t≥0 which in turn makes each τ from M or MT a stopping

time.
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Since the method of solution to the problems (23) and (24) is based

on results from the theory of martingales (Snell’s envelope, 1952),

the method itself is often referred to as the martingale method.

On the other hand, if we are to take a state space (E,B) large enough,

then one obtains the “Markov representation” Gt = G(Xt) for some

measurable function G, where X = (Xt)t≥0 is a Markov process with

values in E. Moreover, following the contemporary theory of Markov

processes it is convenient to adopt the definition of a Markov process

X as the family of Markov processes

((Xt)t≥0, (Ft)t≥0, (Px)x∈E) (25)

where Px(X0 = x) = 1 meaning that the process X starts at x under Px.

Such a point of view is convenient, for example, when dealing with the

Kolmogorov forward or backward equations, which presuppose that the

process can start at any point in the state space.
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Likewise, it is a profound attempt, developed in stages, to study opti-
mal stopping problems through functions of initial points in the state
space.

In this way we have arrived to the second approach which deals with
the problem

V (x) = sup
τ

ExG(Xτ) (26)

where the supremum is taken over M or MT as above (Dynkin’s for-
mulation, 1963). Thus, if the Markov representation of the initial
problem is valid, we will refer to the Markovian method of solution.

6. To make the exposed facts more transparent, let us consider the
optimal stopping problem

V∗ = sup
τ

E
(

max
0≤t≤τ

|Bt| − cτ

)
in more detail.
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Denote

Xt = |x + Bt| (27)

for x ≥ 0, and enable the maximum process to start at any point by

setting for s ≥ x

St = s ∨
(

max
0≤r≤t

Xr

)
(28)

The process S = (St)t≥0 is not Markov, but the pair (X, S) = (Xt, St)t≥0

forms a Markov process with the state space E = {(x, s) ∈ R2 | 0 ≤ x ≤
s }. The value V∗ from (2) above coincides with the value function

V∗(x, s) = sup
τ

Ex,s

(
Sτ− cτ

)
(29)

when x = s = 0. The problem thus needs to be solved in this more

general form.
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The general theory of optimal stopping for Markov processes makes it

clear that the optimal stopping time in (29) can be written in the form

τ∗ = inf { t ≥ 0 | (Xt, St) ∈ D∗} (30)

where D∗ is a stopping set, and C∗ = E \D∗ is the continuation set.

In other words, if the observation of X was not stopped before time

t since Xs ∈ C∗ for all 0 ≤ s < t, and we have that Xt ∈ D∗, then it

is optimal to stop the observation at time t. On the other hand, if

it happens that Xt ∈ C∗ as well, then the observation of X should be

continued.

Heuristic considerations about the shape of the sets C∗ and D∗ makes

it plausible to guess that there exist a point s∗ ≥ 0 and a continuous

increasing function s 7→ g∗(s) with g∗(s∗) = 0 such that

D∗ = { (x, s) ∈ R2 | 0 ≤ x ≤ g∗(s) , s ≥ s∗ } (31)
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Note that such a guess about the shape of the set D∗ can be made

using the following intuitive arguments. If the process (X, S) starts

from a point (x, s) with small x and large s, then it is reasonable to

stop immediately because to increase the value s one needs a large

time τ which in the formula (29) appears with a minus sign.



At the same time it is easy to see that if x is close or equal to s then

it is reasonable to continue the observation, at least for small time ∆,

because s will increase for the value
√

∆ while the cost for using this

time will be c∆, and thus
√

∆− c∆ > 0 if ∆ is small enough.

Such an a priori analysis of the shape of the boundary between the

stopping set C∗ and the continuation set D∗ is typical to the act of

finding a solution to the optimal stopping problem. The art of guess-

ing in this context very often plays a crucial role in solving the problem.

Having guessed that the stopping set D∗ in the optimal stopping prob-

lem

V∗(x, s) = sup
τ

Ex,s

(
Sτ− cτ

)
takes the form

D∗ = { (x, s) ∈ R2 | 0 ≤ x ≤ g∗(s) , s ≥ s∗ },
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it follows that τ∗ attains the supremum i.e.

V∗(x, s) = Ex,s

(
Sτ∗− cτ∗

)
(32)

for all (x, s) ∈ E. Denote by LX = (1/2) ∂2/∂x2 the infinitesimal opera-
tor of the process X and consider V∗(x, s) as defined by the right-hand
side of (32) for (x, s) in the continuation set

C∗ = C1
∗ ∪ C2

∗ (33)

where the two subsets are defined as follows:

C1
∗ = { (x, s) ∈ R2 | 0 ≤ x ≤ s < s∗ } (34)

C2
∗ = { (x, s) ∈ R2 | g∗(s) < x ≤ s , s ≥ s∗ }. (35)

By the strong Markov property one finds that V∗ solves the following
equation:

LXV∗(x, s) = c (36)

for (x, s) in C∗. Note that if the process (X, S) starts at a point (x, s)
with x < s then during a positive time interval the second component
S of the process does not change and remains equal to s.
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This explains why the infinitesimal operator of the process (X, S) re-

duces to the infinitesimal operator of the process X in the interior

of C∗. On the other hand, from the structure of the process (X, S) it

follows that at the diagonal in R2
+ the condition of normal reflection

holds

∂V∗
∂s

(x, s)

∣∣∣∣∣
x=s−

= 0. (37)

Moreover, it is clear that for (x, s) ∈ D∗ the condition of instantaneous

stopping holds

V∗(x, s) = s. (38)

Finally, either by guessing or providing rigorous arguments, it is found

that at the optimal boundary g∗ the condition of smooth fit holds

∂V∗
∂x

(x, s)

∣∣∣∣∣
x=g∗(s)+

= 0. (39)
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This analysis indicates that the value function V∗ and the optimal

stopping boundary g∗ can be obtained by searching for the pair of

functions (V, g) solving the following free-boundary problem:

LXV (x, s) = c for (x, s) in Cg (40)
∂V

∂s
(x, s)

∣∣∣∣
x=s−

= 0 (normal reflection) (41)

V (x, s) = s for (x, s) in Dg (instantaneous stopping) (42)
∂V

∂x
(x, s)

∣∣∣∣
x=g(s)+

= 0 (smooth fit) (43)

where the two sets are defined as follows:

Cg = { (x, s) ∈ R2 | 0 ≤ x ≤ s < s0 or g(s) < x ≤ s for s ≥ s0 } (44)

Dg = { (x, s) ∈ R2 | 0 ≤ x ≤ g(s) , s ≥ s0 } (45)

with g(s0) = 0. It turns out that this system does not have a unique

solution so that an additional criterion is needed to make it unique in

general.
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Let us briefly show how to solve the free-boundary problem (40)–(43)
by picking the right solution (more details will be given in the lectures).

From (40) one finds that for (x, s) in Cg we have

V (x, s) = cx2 + A(s) x + B(s) (46)

where A and B are some functions of s. To determine A and B as well
as g we can use the three conditions

∂V

∂s
(x, s)

∣∣∣∣
x=s−

= 0 (normal reflection)

V (x, s) = s for (x, s) in Dg (instantaneous stopping)
∂V

∂x
(x, s)

∣∣∣∣
x=g(s)+

= 0 (smooth fit)

which yield

g′(s) =
1

2(s− g(s))
, for s ≥ s0. (47)
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It is easily verified that the linear function

g(s) = s−
1

2c
(48)

solves (47). In this way a candidate for the optimal stopping boundary

g∗ is obtained.

For all (x, s) ∈ E with s ≥ 1/2c one can determine V (x, s) explicitly

using

V (x, s) = cx2 + A(s) x + B(s)

and

g(s) = s−
1

2c
.

This in particular gives that V (1/2c,1/2c) = 3/4c.
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For other points (x, s) ∈ E when s < 1/2c one can determine V (x, s)

using that the observation must be continued. In particular for x =

s = 0 this yields that

V (0,0) = V (1/2c,1/2c)− c E0,0(σ) (49)

where σ is the first hitting time of the process (X, S) to the point

(1/2c,1/2c).

Because E0,0(σ) = E0,0(X
2
σ) = (1/2c)2 and V (1/2c,1/2c) = 3/4c, we

find that

V (0,0) =
1

2c
(50)

as already indicated prior to (5) above. In this way a candidate for the

value function V∗ is obtained.
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The key role in the proof of the fact that V = V∗ and g = g∗ is played
by Itô’s formula (stochastic calculus) and the optional sampling
theorem (martingale theory). This step forms a verification theorem
that makes it clear that the solution of the free-boundary problem
coincides with the solution of the optimal stopping problem.

7. The important point to be made in this context is that the veri-
fication theorem is usually not difficult to prove in the cases when a
candidate solution to the free-boundary problem is obtained explic-
itly. This is quite typical for one-dimensional problems with infinite
horizon, or some simpler two-dimensional problems, as the one just
discussed. In the case of problems with finite horizon, however, or
other multidimensional problems, the situation can be radically dif-
ferent. In these cases, in a manner quite opposite to the previous
ones, the general results of optimal stopping can be used to prove the
existence of a solution to the free-boundary problem, thus providing
an alternative to analytic methods. Studies of this type will be also
presented in the lectures of three courses on the School.
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8. From the material exposed above it is clear that our basic interest

concerns the case of continuous time. The theory of optimal stopping

in the case of continuous time is considerably more complicated than

in the case of discrete time. However, since the former theory uses

many basic ideas from the latter, we have chosen to present the case

of discrete time first, both in the martingale and Markovian setting,

which is then likewise followed by the case of continuous time. The

two theories form several my lectures.
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Lecture 2-3. Theory of optimal stopping for dis-
crete time.
A. Martingale approach.

1. Definitions

(Ω,F , (Fn)n≥0, P), F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F , G = (Gn)n≥0.

Gain Gn is Fn-measurable

Stopping (Markov) time τ = τ(ω):

τ : Ω → {0,1, . . . ,∞}, {τ ≤ n} ∈ Fn for all n ≥ 0.

M is the family of all finite stopping times

M is the family of all stopping times

MN
n = {τ ∈ M |n ≤ τ ≤ N}

For simplicity we will set MN = MN
0 and Mn = M∞

n .
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The optimal stopping problem to be studied seeks to solve

V∗ = sup
τ

EGτ (51)

For the existence of EGτ suppose (for simplicity) that

E sup
0≤k<∞

|Gk| < ∞ (52)

then EGτ is well defined for all τ ∈ MN
n , n ≤ N < ∞.

In the class MN
n we consider

V N
n = sup

τ∈MN
n

EGτ 0 ≤ n ≤ N. (53)

Sometimes it is also of interest to admit that τ in (51) takes the value
∞ (P(τ = ∞) > 0), so that τ ∈ M. We put Gτ = 0 on {τ = ∞}.

Sometimes it is useful to set G∞ = limsup
n→∞

Gn.
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2. The method of backward induction.

V N
n = sup

n≤τ≤N
EGτ

To solve this problem we introduce (by backward induction) a special

stochastic sequence SN
N , SN

N−1, . . . , SN
0 :

SN
N = GN , SN

n = max{Gn, E(SN
n+1 | Fn)},

n = N − 1, . . . ,0.

If n = N we have to stop and our stochastic gain SN
N , equals GN .
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For n = N − 1 we can either stop or continue. If we stop, our gain

SN
N−1, equals GN−1, and if we continue our gain SN

N−1 will be equal to

E(SN
N | FN−1).

-

���������1 PPPPPPPPPq ��
����
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0 1 2 N − 2 N − 1 N

?

either stop in time N − 1

or continue and stop in time N

u

u
6

So,
SN

N−1 = max{GN−1, E(SN
N | FN1

)}

and optimal stopping time is

τN
N−1 = min{N − 1 ≤ k ≤ N : SN

k = Gk}.
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Define now a sequence (SN
n )0≤n≤N recursively as follows:

SN
n = GN , n = N,

SN
n = max{Gn, E(SN

n+1 | Fn)}, n = N−1, . . . ,0.

The described method suggests to consider the following stopping
time:

τN
n = inf{n ≤ k ≤ N : SN

k = Gk}

for 0 ≤ n ≤ N .

The first part of the following theorem shows that SN
n and τN

n solve
the problem in a stochastic sense.

The second part of the theorem shows that this leads also to a solution
of the initial problem

V N
n = sup

n≤τ≤N
EGτ for each n = 0,1, . . . , N.
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Theorem 1. (Finite horizon)

I. For all 0 ≤ n ≤ N we have:

(a) SN
n ≥ E(Gτ | Fn), ∀τ ∈ MN

n ;

(b) SN
n = E(GτN

n
| Fn).

II. Moreover, if 0 ≤ n ≤ N is given and fixed, then we have:

(c) τN
n is optimal in V N

n = sup
n≤τ≤N

EGτ ;

(d) if τ∗ is also optimal then τN
n ≤ τ∗;

(e) the sequence (SN
k )n≤k≤N is the smallest super-

martingale which dominates (Gk)n≤k≤N

(Snell’s envelope)

(f) the stopped sequence (SN
k∧τN

n
)n≤k≤N is a mar-

tingale.

44



Proof of Theorem 1.

I. Induction over n = N, N−1, . . . ,0.

Conditions

(a) SN
n ≥ E(Gτ | Fn), ∀τ ∈ MN

n ;

and

(b) SN
n = E(GτN

n
| Fn).

are trivially satisfied for n = N .

Suppose that (a) and (b) are satisfied for n = N, N−1, . . . , k where

k ≥ 1, and let us show that they must then also hold for n = k−1.
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(a)
(
SN

n ≥ E(Gτ | Fn), ∀τ ∈ MN
n

)
: Take τ ∈ MN

k−1 and set τ̄ = τ ∨ k;

then τ̄ ∈ MN
k and since {τ≥k} ∈ Fk−1 it follows that

E(Gτ | Fk−1) = E[I(τ =k−1)Gk−1 | Fk−1]

+ E[I(τ≥k)Gτ̄ | Fk−1]

= I(τ =k−1)Gk−1

+ I(τ≥k) E[E(Gτ̄ | Fk) | Fk−1]. (54)

By the induction hypothesis, (a) holds for n = k. Since τ̄ ∈ MN
k this

implies that

E(Gτ̄ | Fk) ≤ SN
k . (55)

From SN
n = max(Gn, E(SN

n+1 | Fn)) for n = k − 1 we have

Gk−1 ≤ SN
k−1, (56)

E(SN
k | Fk−1) ≤ SN

k−1. (57)
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Using (55)–(57) in (54) we get

E(Gτ | Fk−1) ≤ I(τ =k−1)SN
k−1

+ I(τ≥k) E(SN
k | Fk−1)

≤ I(τ =k−1) SN
k−1

+ I(τ≥k) SN
k−1 = SN

k−1. (58)

This shows that

SN
n ≥ E(Gτ | Fn), ∀τ ∈ MN

n

holds for n = k − 1 as claimed.

(b)
(
SN

n = E(GτN
n
| Fn)

)
: To prove (b) for n = k − 1 it is enough

to check that all inequalities in (54) and (58) remain equalities when
τ = τN

k−1. For this, note that

τN
k−1 = τN

k on {τN
k−1 ≥ k};

Gk−1 = SN
k−1 on {τN

k−1 = k − 1};
E(SN

k | Fk−1) = SN
k−1 on {τN

k−1 ≥ k}.
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Then we get

E
[
G

τN
k−1

| Fk−1

]
= I(τN

k−1 = k − 1)Gk−1

+ I(τN
k−1≥k) E

[
E(G

τN
k
| Fk) | Fk−1

]
= I(τN

k−1 = k − 1)Gk−1

+ I(τN
k−1≥k) E(SN

k | Fk−1)

= I(τN
k−1 = k − 1)SN

k−1

+ I(τN
k−1≥k)SN

k−1 = SN
k−1.

Thus

SN
n = E(GτN

n
| Fn)

holds for n = k − 1. (We supposed by induction that (b) holds for

n = N, . . . , k.)
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(c)
(
τN
n is optimal in V N

n = sup
n≤τ≤N

EGτ

)
:

Take expectation E in

SN
n ≥ E(Gτ | Fn), τ ∈ Mn

n.

Then we find that

ESN
n ≥ EGτ for all τ ∈ MN

n

and by taking the supremum over all τ ∈ MN
n we see that

ESN
n ≥ V N

n

(
= sup

τ∈MN
n

EGτ

)
.

On the other hand, taking the expectation in

SN
n = E(GτN

n
| Fn) we get ESN

n = EGτN
n

which shows that

ESN
n ≤ V N

n

(
= sup

τ∈MN
n

EGτ

)
.
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So,

ESN
n = V N

n

and since ESN
n = EGτN

n
, we see that

V N
n = EGτN

n

implying the claim (c): “The stopping time τN
n is optimal”.

(d)
(

if τ∗ is also optimal then τN
n ≤ τ∗

)
:

If τ∗ is also optimal then τN
n ≤ τ∗. We claim that the optimality of τ∗

implies that SN
τ∗ = Gτ∗ (P-a.s.)”.

Indeed, for all n ≤ k ≤ N ,

SN
k ≥ Gk thus, SN

τ∗ ≥ Gτ∗.

If SN
τ∗ 6= Gτ∗ (P-a.s.) then

P(SN
τ∗ > Gτ∗) > 0.
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It thus follows that

EGτ∗ < ESN
τ∗

(α)
≤ ESN

n
(β)
= V N

n

where

the second inequality (α) follows by the

supermartingale property of (SN
k )n≤k≤N

(see (e)) and the optional sampling the-

orem, and

the equality (β) was obtained in (c).

The strict inequality EGτ∗ < V N
n , however, contradicts the fact that τ∗

is optimal.

Hence SN
τ∗ = Gτ∗ (P-a.s.) and the fact that τN

n ≤ τ∗ (P-a.s.) follows
from the definition

τN
n = inf{n ≤ k ≤ N : SN

k = Gk}.
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(e)
(
the sequence (SN

k )n≤k≤N is the smallest supermartingale which

dominates (Gk)n≤k≤N

)
:

The sequence (SN
k )n≤k≤N is the smallest supermartingale which dom-

inates (Gk)n≤k≤N”.

From

SN
k = max{Gk, E(SN

k+1 | Fk)}, k = N − 1, . . . , n,

we see that (SN
k )n≤k≤N is a supermartingale:

SN
k ≥ E(SN

k+1 | Fk).

Also we have SN
k ≥ Gk. It means that (SN

k )n≤k≤N is a supermartingale

which dominates (Gk)n≤k≤N .
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Suppose that (S̃k)n≤k≤N is another supermartingale which dominates

(Gk)n≤k≤N , then the claim that S̃k ≥ SN
k (P-a.s.) can be verified by

induction over k = N, N − 1, . . . , l.

Indeed, if k = N then the claim follows by SN
n = GN for n = N .

Assuming that S̃k ≥ SN
k for k = N, N − 1, . . . , l with l ≥ n + 1 it follows

that

SN
l−1 = max(Gl−1, E(SN

l | Fl−1))

≤ max(Gl−1, E(S̃l | Fl−1)) ≤ S̃l−1 (P-a.s.)

using the supermartingale property of (S̃k)n≤k≤N . So, (SN
k )n≤k≤N is

the smallest supermartingale which dominates (Gk)n≤k≤N

(Snell’s envelop).
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(f)
(

the stopped sequence (SN
k∧τN

n
)n≤k≤N is a martingale

)
:

To verify the martingale property

E
[
SN
(k+1)∧τN

n
| Fk

]
= SN

k∧τN
n

with n ≤ k ≤ N − 1 given and fixed, note that

E
[
SN
(k+1)∧τN

n
| Fk

]
= E

[
I(τN

n ≤ k)SN
k∧τN

n
| Fk

]
+ E

[
I(τN

n ≥ k + 1)SN
k+1 | Fk

]
= I(τN

n ≤ k)SN
k∧τN

n
+ I(τN

n ≥ k + 1)E(SN
k+1 | Fk)

= I(τN
n ≤ k)SN

k∧τN
n

+ I(τN
n ≥ k + 1)SN

k = SN
k∧τN

n

where we used that

SN
k = E(SN

k+1 | Fk) on { τN
n ≥ k + 1 }

and { τN
n ≥ k + 1 } ∈ Fk since τN

n is a stopping time.
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Summary

1) The optimal stopping problem

V N
0 = sup

τ∈MN
0

EGτ

is solved inductively by solving the problems

V N
n = sup

τ∈MN
n

EGτ

for n = N, N − 1, . . . ,0.

2) The optimal stopping rule τN
n for V N

n satisfies

τN
n = τN

k on {τN
n ≥ k}

for 0 ≤ n ≤ k ≤ N when τN
k is the optimal stopping rule for V N

k . In

other words, this means that if it was not optimal to stop within the

time set {n, n+1, . . . , k−1} then the same optimality rule for V N
n applies

in the time set {k, k + 1, . . . , N}.
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3) In particular, when specialized to the problem V N
0 , the following

general principle (of dynamic programming) is obtained:

if the stopping rule τN
0 is optimal for V N

0 and it was not optimal

to stop within the time set {0,1, . . . , n − 1}, then starting the

observation at time n and being based on the information Fn,

the same stopping rule is still optimal for the problem V N
n .

-
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3. The method of essential supremum

The method of backward induction by its nature requires that the

horizon N be FINITE so that the case of infinite horizon remains

uncovered.

It turns out, however, that the random variables SN
n defined by the

recurrent relations

SN
n = GN , n = N,

SN
n = max{Gn, E(SN

n+1 | Fn)}, n = N−1, . . . ,0,

admit a different characterization which can be directly extended to

the case of infinite horizon N .

This characterization forms the base of the SECOND method that will

now be presented.
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Note that

(a) SN
n ≥ E(Gτ | Fn) ∀τ ∈ MN

n ;

(b) SN
n = E(GτN

n
| Fn)

from Theorem 1 suggest that the following identity should hold:

SN
n = sup

τ∈MN
n

E(Gτ | Fn).

Difficulty: supτ∈MN
n

E(Gτ | Fn) need not de-

fine a measurable function.

To overcome this difficulty it turns out that the concept of

essential supremum

proves useful.
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Lemma (about Essential Supremum).

Let {Zα, α ∈ A} be a family of random variables defined on (Ω,F , P)

where the index set A can be arbitrary.

Then there exists a countable subset J of A such that the random

variable Z∗ : Ω → R defined by

Z∗ = sup
α∈J

Zα

satisfies the following two properties:

(a) P(Zα≤Z∗) = 1, ∀α ∈ A;

(b) If Z̃ : Ω → R is another random vari-

able satisfying P(Zα≤Z∗) = 1, ∀α ∈ A,

then P(Z∗ ≤ Z̃) = 1.
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Moreover, if the family {Zα, α ∈ A} is upwards directed in the sense
that

for any α and β in A there exists γ in A

such that max(Zα, Zβ) ≤ Zγ (P-a.s.),

then the countable set J = {αn, n ≥ 1} can be chosen so that

Z∗ = lim
n→∞Zαn (P-a.s.)

where Zα1 ≤ Zα2 ≤ · · · (P-a.s.).

Proof. (1) Since x 7→ 2
π arctan(x) is a strictly increasing function from

R to [−1,1], it is no restriction to assume that |Zα| ≤ 1.

(2) Let C denote the family of all countable subsets C of A. Choose
an increasing sequence {Cn, n ≥ 1} in C such that

a
def
= sup

C∈C
E
(

sup
α∈C

Zα

)
= sup

n≥1
E
(

sup
α∈Cn

Zα

)
.
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Then J
def
=

⋃∞
n=1 Cn is a countable subset of A and we claim that Z∗

defined by

Z∗ = sup
α∈J

Zα

satisfies the properties (a) and (b).

(3) To verify these claims take α ∈ A arbitrarily and note the following.

If α ∈ J then Zα ≤ Z∗ so that (a) holds. If α /∈ J and we assume that

P(Zα > Z∗) > 0, then

a < E(Z∗ ∨ Zα) ≤ a

since a = EZ∗ ∈ [−1,1] (by the monotone convergence theorem) and

J ∪ {α} belongs to C. As the strict inequality is clearly impossible, we

see that P(Zα ≤ Z∗) = 1 holds for all α ∈ A as claimed. Moreover, it is

obvious that (b) follows from Z∗ = supα∈J Zα and (a): P(Zα≤Z∗) = 1,

∀α ∈ A, since J is countable.
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Finally, assume that the condition in (c) is satisfied. Then the initial
countable set

J = {α1, α2, . . .}

can be replaced by a new countable set J◦ = {α◦1, α◦2, . . .} if we initially
set α◦1 = α1, and then inductively choose α◦n+1 ≥ α◦n ∨ αn+1 for n ≥ 1,
where γ ≥ α ∨ β corresponds to Zα, Zβ and Zγ such that Zγ ≥ Zα ∨ Zβ
(P-a.s.). The concluding claim Z∗ = limn→∞Zαn in (c) is then obvious,
and the proof of the lemma is complete.

With the concept of essential supremum we may now rewrite

SN
n ≥ E(Gτ | Fn) ∀τ ∈ MN

n ;

SN
n = E(GτN

n
| Fn)

in Theorem 51 above as follows:

SN
n = esssup

n≤τ≤N
E(Gτ | Fn)

for all 0 ≤ n ≤ N .
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This ess sup identity provides an additional characterization of the se-
quence of r.v.’s (SN

n )0≤n≤N introduced initially by means of the recur-
rent relations

SN
n = GN , n = N,

SN
n = max{Gn, E(SN

n+1 | Fn)}, n = N−1, . . . ,0.

Its advantage in comparison with these recurrent relations lies in the
fact that the identity

SN
n = esssup

n≤τ≤N
E(Gτ | Fn)

can naturally be extended to the case of INFINITE horizon N . This
programme will now be described.

Consider (instead of V N
n = supτ∈MN

n
EGτ)

Vn = sup
τ∈M∞

n

EGτ .
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To solve this problem we will consider the sequence of r.v.’s (Sn)n≥0
defined as follows:

Sn = esssup
τ≥n

E(Gτ | Fn)

as well as the following stopping time:

τn = inf{k ≥ n |Sk = Gk}
for n ≥ 0 where inf ∅ = ∞ by definition.

The first part (I) of the following theorem shows that (Sn)n≥0 satisfies
the same recurrent relations as (SN

n )0≤n≤N .

The second part (II) of the theorem shows that Sn and τn solve the
problem in a stochastic sense.

The third part (III) shows that this leads to a solution of the initial
problem Vn = supτ≥n EGτ .

The fourth part (IV) provides a supermartingale characterization of
the solution.

64



Theorem 2 (Infinite horizon).

Consider the optimal stopping problems Vn = sup
τ≥n

EGτ , τ ∈ M∞
n , n ≥ 0

assuming that the condition E sup
0≤k<∞

|Gk| < ∞ holds.

I. The following recurrent relations hold:

Sn = max{Gn, E(Sn+1 | Fn)}, ∀n ≥ 0.

II. Assume moreover if required below that

P(τn<∞) = 1.

Then for all n ≥ 0 we have:

Sn ≥ E(Gτ | Fn) ∀τ ∈ Mn,

Sn = E(Gτn | Fn).
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III. Moreover, if n ≥ 0 is given and fixed, then we have:

The stopping time τn is optimal in Vn = supτ≥n EGτ .

If τ∗ is an optimal stopping time for Vn = supτ≥n EGτ

then τn ≤ τ∗ (P-a.s.).

IV. The sequence (Sk)k≥n is the smallest supermartingale

which dominates (Gk)k≥n (Snell’s envelop).

The stopped sequence (Sk∧τn)k≥n is a martingale.

Finally, if the condition P(τn < ∞) = 1 fails so that

P(τn = ∞) > 0, then there is NO optimal stopping time

in Vn = supτ≥n EGτ .
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Proof. I. We need prove the recurrent relations

Sn = max{Gn, E(Sn+1 | Fk)}, n ≥ 0.

Let us first show that

Sn ≤ max{Gn, E(Sn+1 | Fk)}.

For this, take τ ∈ Mn and set τ̄ = τ ∨ (n + 1).

Then τ̄ ∈ Mn+1, and since {τ ≥ n + 1} ∈ Fn we have

E(Gτ | Fn) = E[I(τ = n)Gn | Fn] + E[I(τ ≥ n + 1)Gτ̄ | Fn]

= I(τ = n)Gn + I(τ ≥ n + 1)E(Gτ̄ | Fn)

= I(τ = n)Gn + I(τ ≥ n + 1)E[E(Gτ̄ | Fn+1) | Fn]

≤ I(τ = n)Gn + I(τ ≥ n + 1)ESn+1 | Fn)

≤ max{Gn, E(Sn+1 | Fn)}.
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From this inequality it follows that

Sn = esssup
τ≥n

E(Gτ | Fn) ≤ max{Gn, E(Sn+1 | Fn)}

which is the desired inequality.

For the reverse inequality, let us first note that

Sn ≥ Gn (P-a.s.)

by the definition of Sn, so that it is enough to show that

Sn ≥ E(Sn+1 | Fn)

which is the supermartingale property of (Sn)n≥0. (It is the most
difficult part of the proof.)

To verify this inequality, let us first show that the family {E(Gτ | Fn+1); τ ∈
Mn+1} is upwards directed in the sense that

for any α and β in A there exists γ in

A such that Zα ∨ Zβ ≤ Zγ.
(∗)
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For this, note that if σ1 and σ2 are from Mn+1 and we set σ3 =

σ1IA + σ2IĀ where

A = {E(Gσ1 | Fn+1) ≥ E(Gσ2 | Fn+1)},

then σ3 ∈ Mn+1 and we have

E(Gσ3 | Fn+1) = E(Gσ1IA+ Gσ2IĀ | Fn+1)

= IA E(Gσ1 | Fn+1) + IĀ E(Gσ2 | Fn+1)

= E(Gσ1 | Fn+1) ∨ E(Gσ2 | Fn+1)

implying (∗) as claimed. Hence by Lemma there exists a sequence

{σk, k ≥ 1} in Mn+1 such that

ess sup
τ≥n+1

E(Gτ | Fn+1) = lim
k→∞

E(Gσk | Fn+1)

where

E(Gσ1 | Fn+1) ≤ E(Gσ2 | Fn+1) ≤ · · · (P-a.s.).
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Since

Sn+1 = esssup
τ≥n+1

E(Gτ | Fn+1),

by the conditional monotone convergence theorem we get

E(Sn+1 | Fn) = E
[

lim
k→∞

E(Gσk | Fn+1) | Fn

]
= lim

k→∞
E
[
E(Gσk | Fn+1) | Fn

]
= lim

k→∞
E(Gσk | Fn) ≤ Sn.

So, Sn = max{Gn, E(Sn+1 | Fn)} and the proof if I is complete.

II. The inequality Sn ≥ E(Gτ | Fn), ∀τ ∈ Mn, follows from the definition

Sn = esssup
τ≥n

E(Gτ | Fn).

For the proof of the equality Sn = E(Gτn | Fn) we use the fact stated

below in IV that the stopped sequence (Sk∧τn)k≥n is a martingale.
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Setting G∗
n = supk≥n |Gk| we have

|Sk| ≤ ess sup
τ≥k

E
(
|Gτ | | Fk

)
≤ E(G∗

n | Fk) (∗)

for all k ≥ n. Since G∗
n is integrable due to E supk≥n |Gk| < ∞, it follows

from (∗) that (Sk)k≥n is uniformly integrable.

Thus the optional sampling theorem can be applied to the martingale

(Mk)k≥n = (Sk∧τn)k≥n and we get

Mn = E(Mτn | Fn). (∗∗)

Since Mn = Sn and Mτn = Sτn we see that (∗∗) is the same as Sn =

E(Gτn | Fn).

III: “The stopping time τn is optimal in Vn = supτ≥n EGτ .”

The proof uses II and is similar to the corresponding proof in Theorem

1 (N < ∞).
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IV. “The sequence (Sk)k≥n is the smallest supermartingale which dom-
inates (Gk)k≥n ”(Snell’s envelop).

We proved in I that (Sk)k≥n is a supermartingale. Moreover, from the
definition

Sn = esssup
τ≥n

E(Gτ | Fn)

it follows that Sk ≥ Gk, k ≥ n, meaning that (Sk)k≥n dominates
(Gk)k≥n. Finally, if (S̃k)k≥n is another supermartingale which domi-
nates (Gk)k≥n, then from Sn = E(Gτn | Fn) (Part II) we find

Sk = E(Gτk | Fk) ≤ E(S̃τk | Fk) ≤ S̃k, ∀k ≥ n.

(The final inequality follows by the optional sampling theorem being
applicable since S̃−k ≤ G−

k ≤ G∗
n (= supk≥n |Gk|) with G∗

n integrable.)

The statement

The stopped sequence (Sk∧τn)k≥n is a martingale

is proved in exactly the same way as for case N < ∞.
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Finally, note that the final claim

If the condition P(τn < ∞) = 1 fails so that P(τn = ∞) > 0,
then there is NO optimal stopping time in the problem Vn =
supτ≥n EGτ

follows directly from III (“If τn is optimal stopping tome then τn ≤ τ∗
(P-a.s.) for the problem Vn = supτ≥n EGτ”).

Remark. From the definition

Sn = esssup
n≤τ≤N

E(Gτ | Fn)

it follows that

N 7→ SN
n and N 7→ τN

n

are increasing. So,

S∞n = lim
N→∞

SN
n and τ∞n = lim

N→∞
τN
n

exist P-a.s. for each n ≥ 0.
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Note also that from

V N
n = sup

n≤τ≤N
EGτ

it follows that N 7→ V N
n is increasing, so that V ∞

n = limN→∞ V N
n exists

for each n ≥ 0.

From SN
n = esssupn≤τ≤n E(Gτ | Fn) and Sn = esssupτ≥n E(Gτ | Fn) we

see that

S∞n ≤ Sn and τ∞n ≤ τn. (∗)

Similarly,

V ∞
n ≤ Vn

(
= sup

τ≥n
EGτ

)
. (∗∗)

If condition E supn≤k<∞ |Gk| < ∞ does not hold then the inequalities in

(∗) and (∗∗) can be strict.
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Theorem 3 (From finite to infinite horizon).

If E sup0≤k<∞ |Gk| < ∞ then in S∞n ≤ Sn, τ∞n ≤ τn and V ∞
n ≤ Vn we

have equalities for all n ≥ 0.

Proof. From

SN
n = max{Gn, E(S∞n+1 | Fn)}, n ≥ 0,

we get

S∞n = max{Gn, E(S∞n+1 | Fn)}, n ≥ 0.

So, (S∞n )n≥0 is a supermartingale.

Since S∞n ≥ Gn we see that

(S∞n )− ≤ G−
n ≤ sup

n≥0
G−

n , n ≥ 0.

So, ((S∞n )−)n≥0 is uniformly integrable.
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Then by the optional sampling theorem we get

S∞n ≥ E(S∞τ | Fn) (∗)
for all τ ∈ Mn.

Moreover, since S∞k ≥ Gk, k ≥ n, it follows that S∞τ ≥ Gτ for all τ ∈ Mn,
and hence

E(S∞τ | Fn) ≥ E(Gτ | Fn) (∗∗)

for all τ ∈ Mn. From (∗), (∗∗) and

Sn = esssup
τ≥n

E(Gτ | Fn)

we see that S∞n ≥ Sn.

Since the reverse inequality holds in general as shown above, this es-
tablishes that S∞n = Sn (P-a.s.) for all n ≥ 0. From this it also follows
that τ∞n = τn (P-a.s.), n ≥ 0. Finally, the third identity V ∞

n = Vn

follows by the monotone convergence theorem.
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B. Markovian approach.

We will present basic results of optimal stopping when the time is

discrete and the process is Markovian.

1. We consider a time-homogeneous Markov chain X = (Xn)n≥0

• defined on a filtered probability space (Ω,F , (Fn)n≥0, Px)

• taking values in a measurable space (E,B)

where for simplicity we will assume that

(a) E = Rd for some d ≥ 1

(b) B = B(Rd) is the Borel σ-algebra on Rd.
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It is assumed that the chain X starts at x under Px for x ∈ E.

It is also assumed that the mapping x 7→ Px(F ) is measurable for each

F ∈ F.

It follows that the mapping x 7→ Ex(Z) is measurable for each random

variable Z.

Finally, without loss of generality we will assume that (Ω,F) equals

the canonical space (EN0,BN0) so that the shift operator θn : Ω → Ω is

well defined by

θn(ω)(k) = ω(n+k) for ω = (ω(k))k≥0 ∈ Ω and n, k ≥ 0.

(Recall that N0 stands for N ∪ {0}.)
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Given a measurable function G : E → R satisfying the following condi-

tion (with G(XN) = 0 if N = ∞):

Ex

(
sup

0≤n≤N
|G(Xn)|

)
< ∞

for all x ∈ E, we consider the optimal stopping problem

V N(x) = sup
0≤τ≤N

ExG(Xτ)

where x ∈ E and the supremum is taken over all stopping times τ of X.

The latter means that τ is a stopping time w.r.t. the natural filtration

of X given by

FX
n = σ(Xk; 0 ≤ k ≤ n) for n ≥ 0.
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Since the same results remain valid if we take the supremum in

V N(x) = sup
0≤τ≤N

ExG(Xτ) (∗)

over stopping times τ w.r.t. (Fn)n≥0, and this assumption makes final

conclusions more powerful (at least formally), we will assume in the

sequel that the supremum in (∗) is taken over this larger class of

stopping times.

Note also that in (∗) we admit that N can be +∞ as well.

In this case, however, we still assume that the supremum is taken over

stopping times τ , i.e. over Markov times τ satisfying 0 ≤ τ < ∞. In this

way any specification of G(X∞) becomes irrelevant for the problem

(∗).
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To solve

V N(x) = sup
0≤τ≤N

ExG(Xτ) (∗)

when N < ∞, we may note that by setting Gn = G(Xn) for n ≥ 0 the
problem reduces to the problem

V N
n = sup

n≤τ≤N
ExGτ . (∗∗)

Having identified (∗) as (∗∗), we can apply the method of back-
ward induction which leads to a sequence of r.v.’s (SN

n )0≤n≤N and
a stopping time τN

n = inf{n ≤ k ≤ N : SN
k = Gk}.

The key identity is

SN
n = V N−n(Xn) for 0 ≤ n ≤ N . (∗∗∗)

Once (∗∗∗) is known to hold, the results of the Theorem 1 (finite
horizon) from the Martingale theory translate immediately into the
present setting and get a more transparent form.

81



To get formulation, let us define

CN
n = {x ∈ E : V N−n(x) > G(x) }

DN
n = {x ∈ E : V N−n(x) = G(x) }

for 0 ≤ n ≤ N . We also define stopping time

τD = inf {0 ≤ n ≤ N : Xn ∈ DN
n }.

and the transition operator T of X

TF (x) = ExF (X1)

for x ∈ E whenever F : E → R is a measurable function so that F (X1)

is integrable w.r.t. Px for all x ∈ E.
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Theorem 4 (Finite horizon: The time-homogeneous case)

Consider the optimal stopping problems

V n(x) = sup
0≤τ≤n

ExG(Xτ) (∗)

assuming that Ex sup
0≤k≤N

|G(Xk)| < ∞. Then

I. Value functions V n satisfy the “Wald–Bellman equation”

V n(x) = max(G(x), TV n−1(x)) (x ∈ E)

for n = 1, . . . , N where V 0 = G.

II. The stopping time τD = inf {0 ≤ n ≤ N : Xn ∈ DN
n } is

optimal in (∗) for n = N .

III. If τ∗ is an optimal stopping time in (∗) then τD ≤ τ∗ (Px-a.s.)

for every x ∈ E.
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IV. The sequence (V N−n(Xn))0≤n≤N is the smallest super-

martingale which dominates (G(Xn))0≤n≤N under Px for

x ∈ E given and fixed.

V. The stopped sequence (V N−n(Xn∧τD))0≤n≤N is a martin-

gale under Px for every x ∈ E.

Proof. To verify the equality SN
n = V N−n(Xn) recall that

SN
n = Ex(G(XτN

n
) | Fn) (i)

for 0 ≤ n ≤ N . Since SN−n
k ◦ θn = SN

n+k we get that τN
n satisfies

τN
n = inf{n ≤ k ≤ N : SN

k = G(Xk)} = n + τN−n
0 ◦ θn (ii)

for 0 ≤ n ≤ N .
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Inserting (ii) into (i) and using the Markov property we obtain

SN
n = Ex

[
G(X

n+τN−n
0 ◦θn

) | Fn

]
= Ex

[
G(X

τN−n
0

) ◦ θn | Fn

]
= EXn G(X

τN−n
0

)
(α)
= V N−n(Xn)

(iii)

where (α) follows by (i): SN
n = Ex(G(XτN

n
) | Fn), which imply

ExSN−n
0 = ExG(X

τN−n
0

) = sup
0≤τ≤N−n

ExG(Xτ) = V N−n(x) (iv)

for 0 ≤ n ≤ N and x ∈ E.

Thus SN
n = V N−n(Xn) holds as claimed.
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To verify the “Wald–Bellman equation”, note that the equality

SN
n = max{Gn, E(SN

n+1 | Fn)},

using the Markov property, reads as follows:

V N−n(Xn) = max
{
G(Xn), Ex

[
V N−n−1(Xn+1) | Fn

]}
= max

{
G(Xn), Ex

[
V N−n−1(X1) ◦ θn | Fn

]}
= max

{
G(Xn), EXnV N−n−1(X1)

}
= max

{
G(Xn), TV N−n−1(Xn)

}
(∗)

for all 0 ≤ n ≤ N . Letting n = 0 and using that X0 = x under Px we

see that (∗) yields V n(x) = max{G(x), TV n−1(x)}.

The remaining statements of the theorem follow directly from the

Martingale Theorem (1). The proof is complete.
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The “Wald–Bellman equation” can be written in a more compact form

as follows. Introduce the operator Q by setting

QF (x) = max(G(x), TF (x))

for x ∈ E where F : E → R is a measurable function for which F (X1) ∈
L1(Px) for x ∈ E. Then the “Wald–Bellman equation” reads as follows:

V n(x) = QnG(x)

for 1 ≤ n ≤ N where Qn denotes the n-th power of Q. These recursive

relations form a constructive method for finding V N when Law(X1 |Px)

is known for x ∈ E.
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Time-inhomogeneous Markov chains X = (Xn)n≥0

Put Zn = (n, Xn).

Z = (Zn)n≥0 is a time-homogeneous Markov chain.

Optimal stopping problem:

(∗) V N(n, x) = sup
0≤τ≤N−n

En,xG(n+τ, Xn+τ) , 0 ≤ n ≤ N.

We assume

(∗∗) En,x

(
sup

0≤k≤N−n
|G(n + k, Xn+k)|

)
< ∞, 0 ≤ n ≤ N.
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Theorem 5 (Finite horizon: The time-inhomogeneous case)

Consider the optimal stopping problem (∗) upon assuming that the

condition (∗∗) holds. Then:

I. The function V n satisfies the “Wald–Bellman equation”

V N(n, x) = max(G(n, x), TV N(n, x))

for n = N−1, . . . ,0 where

TV N(n, x) = En,xV N(n + 1, Xn+1), n = N − 1, . . . ,0,

and

TV N(N−1, x) = EN−1,xG(N, XN);
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II. The stopping time

τN
D = inf{n ≤ k ≤ N : (n + k, Xn+k) ∈ D}

with

D =
{
(n, x) ∈ {0,1, . . . , N}×E : V (n, x) = G(n, x)

}
is optimal in the problem (∗):

V N(n, x) = sup
0≤τ≤N−n

En,xG(n+τ, Xn+τ);

III. If τN
∗ is an optimal stopping time in (∗) then τN

D ≤ τN
∗

(Pn,x-a.s.) for every (n, x) ∈ {0,1, . . . , N}×E;
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IV. The value function V N is the smallest superharmonic func-

tion which dominates the gain function G on {0, . . . , N}×E,

TV N(n, x) ≤ V N(n, x), V N(n, x) ≥ G(n, x);

V. The stopped sequence(
V N((n+k) ∧ τN

D , X(n+k)∧τN
D
)
)
0≤k≤N−n

is a martingale under Pn,x for every (n, x) ∈ {0,1, . . . , N}×E;

The proof is carried out in exactly the same way as the proof of The-

orem 4.
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Optimal stopping for infinite horizon (N = ∞):

V (x) = sup
τ

ExG(Xτ)

Theorem 6

Assume Ex supn≥0 |G(Xn)| < ∞, x ∈ E.

I. The value function V satisfies the “Wald–Bellman equation”

V (x) = max(G(x), TV (x)), x ∈ E.

II. Assume moreover when required below that Px(τD < ∞) = 1

for all x ∈ E, where

τD = inf{t ≥ 0 : Xt ∈ D}

with D = {x ∈ E : V (x) = G(x)}. Then the stopping time τD

is optimal.
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III. If τ∗ is an optimal stopping time then τD ≤ τ∗ (Px-a.s. for

every x ∈ E).

IV. The value function V is the smallest superharmonic func-

tion (Dynkin’s characterization) (TV ≤ V ) which dominates

the gain function G on E, or, equivalently, (V (Xn))n≥0 is

the smallest supermartingale (under Px, x ∈ E) which dom-

inates (G(Xn))n≥0.

V. The stopped sequence (V (Xn∧τD))n≥0 is a martingale under

Px for every x ∈ E.

VI. If the condition Px(τD < ∞) = 1 fails so that Px(τD = ∞) >

0 for some x ∈ E, then there is no optimal stopping time in

the problem V (x) = supτ ExG(Xτ) for all x ∈ E.

93



Corollary (Iterative method). We have

V (x) = lim
n→∞QnG(x)

(a constructive method for finding the value function V ).

Uniqueness in the Wald–Bellman equation

F (x) = max(G(x), TF (x))

Suppose E supn≥0 F (Xn) < ∞.

Then F equals the value function V if and only if the following “boundary condition at infinity”
holds:

lim sup
n→∞

F (Xn) = lim sup
n→∞

G(Xn) Px-a.s. ∀x ∈ E.
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2. Given α ∈ (0,1] and bounded g : E → R and c : E → R+, consider
the optimal stopping problem

V (x) = sup
τ

Ex

(
ατg(Xτ)−

τ∑
k=1

αk−1c(Xk−1)
)
.

Let X̃ = (X̃n)n≥0 denote the Markov chain X killed at rate α. It means
that

T̃F (x) = α TF (x).

Then

V (x) = sup
τ

Ex

(
g(X̃τ)−

τ∑
k=1

c(X̃k−1)
)
.

The “Wald–Bellman equation” takes the following form:

V (x) = max
{
g(x), αTV (x)− c(x)

}
.
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Lectures 4–5. Theory of optimal stopping for
continuous time
A. Martingale approach

Let (Ω,F , (Ft)t≥0, P) be a stochastic basis (a filtered probability space

with right-continuous family (Ft)t≥0 where each Ft contains all P-null

sets from F.

Let G = (Gt)t≥0 be a gain process. (We interpret Gt as the gain if the

observation of G is stopped at time t.)

Definition. A random variable τ : Ω → [0,∞] is called a Markov time

if {τ ≤ t} ∈ Ft for all t ≥ 0. A Markov time is called a stopping time if

τ < ∞ P-a.s.
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We assume that G = (Gt)t≥0 is right-continuous and left-continuous

over stopping times (if τn ↑ τ then Gτn → Gτ P-a.s.).

We also assume that

E
(

sup
0≤t≤T

|Gt|
)

< ∞ (GT = 0 if T = ∞).

Basic optimal stopping problem:

V T
t = sup

t≤τ≤T
EGτ .

We shall admit that T = ∞. In this case the supremum is still taken

over stopping times τ , i.e. over Markov times τ satisfying t ≤ τ < ∞.
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Two ways to tackle the problem V T
t = supt≤τ≤T EGτ :

(1) Discrete time approximation

[0, T ] −→ T(n) =
{
t
(n)
0 , t

(n)
1 , . . . , t

(n)
n

}
↑ T is a dense

subset of [0, T ]

G −→ G(n) = (G
t
(n)
i

)

with applying previous discrete-time results and then

passing to the limit n →∞;

(2) Straightforward extension of the method of essential

supremum. This programme will now be addressed.

We denote for simplicity of the notation

Vt = V T
t (T < ∞ or T = ∞).
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Consider the process S = (St)t≥0 defined as follows:

St = esssup
τ≥t

E(Gτ |Ft).

The process S is the Snell’s envelope of G.

Introduce

τt = inf {u ≥ t |Su = Gu} where inf ∅ = ∞ by definition.

We shall see below that

St ≥ max{Gt, E(Su | Ft)} for u ≥ t.

The reverse inequality is not true generally.

However,

St = max{Gt, E(Sσ∧τt | Ft)}

for every stopping time σ ≥ t and τt given above.
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Theorem 1. Consider the optimal stopping problem

Vt = sup
τ≥t

EGτ , t ≥ 0,

upon assuming E supt≥0 |Gt| < ∞. Assume moreover when required

below that

P(τt < ∞) = 1, t ≥ 0.

(Note that this condition is automatically satisfied when the horizon T

is finite.) Then:

I. For all t ≥ 0 we have

St ≥ E(Gτ | Ft) for each τ ∈ Mt

St = E(Gτt| Ft)

where Mt = {τ : τ ≤ T} if T < ∞,

Mt = {τ : τ < ∞} if T = ∞.
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II. The stopping time τt = inf{u ≥ t : Su = Gu} is

optimal (for the problem Vt = supτ≥t EGτ).

III. If τ∗t is an optimal stopping time as well then

τt ≤ τ∗t P-a.s.

IV. The process (Su)u≥t is the smallest right-

continuous supermartingale which dominates

(Gs)s≥t.

V. The stopped process (Su∧τt)u≥t is a right-

continuous martingale.

VI. If the condition P(τt < ∞) = 1 fails so that

P(τt = ∞) > 0, then there is no optimal stopping

time.
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Proof. 1◦. Let us first prove that S = (St)t≥0 defined by

St = esssup
τ≥t

E(Gτ | Ft)

is a supermartingale.

Show that the family {E(Gτ | Ft) : τ ∈ Mt} is upwards directed in the

sense that if σ1 and σ2 are from Mt then there exists σ3 ∈ Mt such

that

E(Gσ1| Ft) ∨ E(Gσ2| Ft) ≤ E(Gσ3| Ft).

Put σ3 = σ1IA + σ2IĀ where

A = {E(Gσ1|Ft) ≥ E(Gσ2| Ft)}.

Then σ3 ∈ Mt and

E(Gσ3| Ft) = E(Gσ1IA + Gσ2IĀ | Ft) = IAE(Gσ1| Ft) + IĀ E(Gσ2| Ft)

= E(Gσ1| Ft) ∨ E(Gσ2| Ft).
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Hence there exists a sequence {σk; k ≥ 1} in Mt such that

(∗) ess sup
τ∈Mt

E(Gτ | Ft) = lim
k→∞

E(Gσk | Ft)

where

E(Gσ1| Ft) ≤ E(Gσ2| Ft) ≤ · · · P-a.s.

From (∗) and the conditional monotone convergence theorem (using

E supt≥0 |Gt| < ∞) we find that for 0 ≤ s < t

E(St | Fs) = E
(

lim
k→∞

E(Gσk| Ft) | Fs

)
= lim

k→∞
E[E(Gσk| Ft) | Fs]

= lim
k→∞

E(Gσk| Fs) ≤ Ss

(
= esssup

τ≥s
E(Gτ | Fs)

)
.

Thus (St)t≥0 is a supermartingale as claimed.
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Note that from E supt≥0 |Gt| < ∞ and

St = esssup
τ≥t

E(Gτ | Ft),

ess sup
τ≥t

E(Gτ | Ft) = lim
k→∞

E(Gσk| Ft)

it follows that

ESt = sup
τ≥t

EGτ .

2◦. Let us next show that the supermartingale S admits a right-

continuous modification S̃ = (S̃t)t≥0.

From the general martingale theory it follows that it suffices to check

that

t ESt is right-continuous on R+.
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By the supermartingale property of S

ESt ≥ · · · ≥ ESt2 ≥ ESt1, tn ↑ t.

So, L := limn→∞ EStn exists and

ESt ≥ L.

To prove the reverse inequality, fix ε > 0 and by means of ESt =

supτ≥t EGτ choose σ ∈ Mt such that

EGσ ≥ ESt − ε.

Fix δ > 0 and note that there is no restriction to assume that tn ∈
[t, t + δ] for all n ≥ 1. Define

σn =

 σ if σ > tn,

t + σ if σ ≤ tn.
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Then for all n ≥ 1 we have

(∗) EGσn = EGσI(σ > tn) + EGt+δI(σ ≤ tn) ≤ EStn

since σn ∈ Mtn and ESt = supτ≥t EGτ . Letting n → ∞ in (∗) and

assuming that E sup0≤t≤T |Gt| < ∞ we get

EGσI(σ > t) + EGt+δI(σ = t) ≤ L (= lim
n

EStn).

Letting now δ ↓ 0 and using that G is right-continuous we obtain

EGσI(σ > t) + EGtI(σ = t) = EGσ ≤ L.

From here and EGσ ≥ ESt − ε we see that L ≥ ESt − ε for all ε > 0.

Hence L ≥ ESt and thus

lim
n→∞ EStn = L = ESt, tn ↑ t,

showing that S admits a right-continuous modification S̃ = (S̃t)t≥0

which we also denote by S throughout.
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Let us prove property IV:

The process (Su)u≥t is the smallest right-continuous

supermartingale which dominates (Gs)s≥t.

For this, let Ŝ = (Ŝu)u≥t be another right-continuous supermartingale

which dominates G = (Gu)u≥t. Then by the optional sampling theorem

(using E supt≥0 |Gt| < ∞) we have

Ŝu ≥ E(Ŝτ | Fu) ≥ E(Gτ | Fu)

for all τ ∈ Mu when u ≥ t. Hence by the definition Su = esssupτ≥u E(Gτ | Fu)

we find that Su ≤ Ŝu (P-a.s.) for all u ≥ t. By the right-continuity of S

and Ŝ this further implies that

P(Su ≤ Ŝu for all u ≥ t) = 1

as claimed.
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Property I: for all t ≥ 0

(∗) St ≥ E(Gτ | Ft) for each τ ∈ Mt,

(∗∗) St = E(Gτt| Ft).

The inequality (∗) follows from the definition St = esssup
τ≥t

E(Gτ | Ft).

The proof of (∗∗) is the most difficult part of the proof of the Theorem.

The sketch of the proof is as follows.
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Assume that Gt ≥ 0 for all t ≥ 0.

(α) Introduce, for λ ∈ (0,1), the stopping time

τλ
t = inf{s ≥ t : λSs ≤ Gs}

(Then λS
τλ
t
≤ G

τλ
t
, τλ

t+ = τt.)

(β) We show that

St = E(S
τλ
t
| Ft) for all λ ∈ (0,1).

So St ≤ (1/λ)E(G
τλ
t
| Ft) and letting λ ↑ 1 we get

St ≤ E(Gτ1
t
| Ft)

where τ1
t = limλ↑1 τλ

t (τλ
t ↑ when λ ↑).

(γ) Verify that τ1
t = τt. Then St ≤ E(Gτt| Ft) and evidently

St ≥ E(Gτt| Ft). Thus St = E(Gτt| Ft).
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For the proof of property V:

The stopped process (Su∧τt)u≥t is a right-

continuous martingale

it is enough to prove that

ESσ∧τt = ESt

for all bounded stopping times σ ≥ t.

The optional sampling theorem implies

ESσ∧τt ≤ ESt. (59)

On the other hand, from St = E(Gτt | Ft) and Sτt = Gτt we see that

ESt = EGτt = ESτt ≤ ESσ∧τt.

Thus, ESσ∧τt = ESt and (Su∧τt)u≥t is a martingale.
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B. Markovian approach

Let X = (Xt)t≥0 be a strong Markov process defined on a filtered

probability space

(Ω,F , (Ft)t≥0, Px)

where x ∈ E (= Rd), Px(X0 = x) = 1,

x → Px(A) is measurable for each A ∈ F.

Without loss of generality we will assume that

(Ω,F) = (E[0,∞),B[0,∞)) (canonical space)

Shift operator θt = θt(ω): Ω → Ω is well defined by

θt(ω)(s) = ω(t + s) for ω = (ω(s))s≥0 ∈ Ω and t, s ≥ 0.
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We consider the optimal stopping problem

V (x) = sup
0≤τ≤T

ExG(Xτ)

G(XT ) = 0 if T < ∞; Ex sup
0≤t≤T

|G(Xt)| < ∞.

Here τ = τ(ω) is a stopping time w.r.t.

(Ft)t≥0 (FX
t ⊆ Ft, FX

t = σ(Xs; 0 ≤ s ≤ t)).

G is called the gain function,

V is called the value function.
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Case T = ∞:
V (x) = sup

τ
ExG(Xτ)

Px(X0 = x) = 1

Introduce

the continuation set C = {x ∈ E : V (x) > G(x)} and

the stopping set D = {x ∈ E : V (x) = G(x)}

NOTICE! If

V is lsc (lower semicontinuous)

gw
&

G is usc (upper semicontinuous)

w
ee

then

C is open and D is closed
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The first entry time

τD = inf{t ≥ 0 : Xt ∈ D}

for closed D is a stopping time since both X and (Ft)t≥0 are right-

continuous.

Definition. A measurable function F = F (x) is said to be superhar-

monic (for X) if

ExF (Xσ) ≤ F (x)

for all stopping times σ and all x ∈ E. (It is assumed that F (Xσ) ∈
L1(Px) for all x ∈ E whenever σ is a stopping time.)

We have:

F is superharmonic if and only if (F (Xt))t≥0 is

a supermartingale under Px for every x ∈ E.
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The following theorem presents

necessary conditions

for the existence of an optimal stopping time.

Theorem. Let us assume that there exists an optimal stopping time

τ∗ in the problem

V (x) = sup
τ

ExG(Xτ)

i.e. V (x) = ExF (Xτ∗). Then

(I) The value function V is the smallest superharmonic func-

tion (Dynkin’s characterization) which dominates the

gain function G on E.
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Let us in addition to “V (x) = ExF (Xτ∗)” assume that

V is lsc and G is usc.

Then

(II) The stopping time τD = inf{t ≥ 0 : Xt ∈ D} satisfies

τD ≤ τ∗ (Px-a.s., x ∈ E)

and is optimal;

(III) The stopped process (V (Xt∧τD
))t≥0 is a right-continuous

martingale under Px for every x ∈ E.
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Now we formulate
sufficient conditions

for the existence of an optimal stopping time.

Theorem. Consider the optimal stopping problem

V (x) = sup
τ

ExG(Xτ)

upon assuming that the condition

Ex sup
t≥0

|G(Xt)| < ∞, x ∈ E,

is satisfied.
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Let us assume that there exists the smallest superharmonic function

V̂ which dominates the gain function G on E.

Let us in addition assume that

V̂ is lsc and G is usc.

Set D = {x ∈ E : V̂ (x) = G(x)} and let τD = inf{t : Xt ∈ D}.

We then have:

(a) If Px(τD < ∞) = 1 for all x ∈ E, then V̂ = V and τD is

optimal in V (x) = supτ ExG(Xτ);

(b) If Px(τD < ∞) < 1 for some x ∈ E, then there is no

optimal stopping time in V (x) = supτ ExG(Xτ).
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Corollary (The existence of an optimal stopping time).

Infinite horizon (T = ∞). Suppose that V is lsc and G is usc. If

Px(τD < ∞) = 1 for all x ∈ E, then τD is optimal. If Px(τD < ∞) < 1

for some x ∈ E, then there is no optimal stopping time.

Finite horizon (T < ∞). Suppose that V is lsc and G is usc. Then

τD is optimal.

Proof for T = ∞. (The case T < ∞ can be proved in exactly the same

way as the case T = ∞ if the process (Xt) is replaced by the process

(t, Xt).)

The key is to show that

V is superharmonic.
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If so, then evidently V is the smallest superharmonic function which

dominates G on E. Then the claims of the corollary follow directly

from the Theorem (on sufficient conditions) above.

For this, note that V is measurable (since it is lsc) and thus so is the

mapping

(∗) V (Xσ) = sup
τ

EXσG(Xτ)

for any stopping time σ which is given and fixed.

On the other hand, by the strong Markov property we have

(∗∗) EXσG(Xτ) = Ex [G(Xσ+τ◦θσ) | Fσ]

for every stopping time τ and x ∈ E. From (∗) and (∗∗) we see that

V (xσ) = ess sup
τ

Ex [G(Xσ+τ◦θσ) | Fσ]

under Px where x ∈ E is given and fixed.
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We can show that the family{
E[Xσ+τ◦θσ | Fσ] : τ is a stopping time

}
is upwards directed: if ρ1 = σ + τ1 ◦ θσ and ρ2 = σ + τ2 ◦ θσ then there

is ρ = σ + τ ◦ θσ such that

E[G(Xρ) | Fσ] = E[G(Xρ1) | Fσ] ∨ E[G(Xρ2) | Fσ].

From here we can conclude that there exists a sequence of stopping

times {τn;n ≥ 1} such that

V (Xσ) = lim
n

Ex [G(Xσ+τn◦θσ) | Fn]

where the sequence {Ex [G(Xσ+τn◦θσ) | Fn]} is increasing Px-a.s.
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By the monotone convergence theorem using E supt≥0 |Gt| < ∞ we can

conclude

ExV (Xσ) = lim
n

ExG(Xσ+τn◦θσ) ≤ V (x)

for all stopping times σ and all x ∈ E. This proves that V is superhar-

monic.

Remark 1. If the function

x 7→ ExG(Xτ)

is continuous (or lsc) for every stopping time τ , then x 7→ V (x) is lsc

and the results of the Corollary are applicable. This yields a powerful

existence result by simple means.
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Remark 2. The above results have shown that the optimal stopping

problem

V (x) = sup
τ

ExG(Xτ)

is equivalent to the problem of finding the smallest superharmonic

function V̂ which dominates G on E. Once V̂ is found it follows that

V = V̂ and τD = inf{t : G(Xt) = V̂ (Xt)} is optimal.

There are two traditional ways for finding V̂ :

(i) Iterative procedure (constructive but non-explicit)

(ii) Free-boundary problem (explicit or non-explicit).
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For (i), e.g., it is known that if G is lsc and

Ex inf
t≥0

G(Xt) > −∞ for all x ∈ E,

then V̂ can be computed as follows:

V̂ (x) = lim
n→∞ lim

N→∞
QN

n G(x)

where

QnG(x) := G(x) ∨ ExG(X1/2n)

and QN
n is the N-th power of Qn.
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The basic idea (ii) is that

V̂ and C (or D)

should solve the free-boundary problem:

(∗) LXV̂ ≤ 0

(∗∗) V̂ ≥ G (V̂ > G on C & V̂ = G on D)

where LX is the characteristic (infinitesimal) operator of X.

Assuming that G is smooth in a neighborhood of ∂C the following “rule

of thumb” is valid.
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If X after starting at ∂C enters immediately into int (D) (e.g. when

X is a diffusion process and ∂C is sufficiently nice) then the condition

LXV̂ ≤ 0 under (∗∗) splits into the two conditions:

LXV̂ = 0 in C

∂V̂

∂x

∣∣∣∣
∂C

=
∂G

∂x

∣∣∣∣
∂C

(smooth fit).

On the other hand, if X after starting at ∂C does not enter immediately

into int (D) (e.g. when X has jumps and no diffusion component while

∂C may still be sufficiently nice) then the condition LXV̂ ≤ 0 (i.e. (∗))
under (∗∗) splits into the two conditions:

LXV̂ = 0 in C

V̂
∣∣∣
∂C

= G
∣∣∣
∂C

(continuous fit).
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Proof of the Theorem on necessary conditions

Basic lines

(I) The value function V is the smallest superharmonic

function which dominated the gain function G on E.

We have by the strong Markov property:

ExV (Xσ) = ExEXσG(Xτ∗) = ExEx[G(Xτ∗) ◦ θσ | Fσ]

= ExG(Xσ+τ∗◦θσ) ≤ sup
τ

ExG(Xτ) = V (x)

for each stopping time σ and all x ∈ E.

Thus V is superharmonic.
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Let F be a superharmonic function which dominates G on E. Then

ExG(Xτ) ≤ ExF (Xτ) ≤ F (x)

for each stopping time τ and all x ∈ E. Taking the supremum over all

τ we find that V (x) ≤ F (x) for all x ∈ E. Since V is superharmonic

itself, this proves that V is the smallest superharmonic function which

dominated G.

(II) Let us show that the stopping time

τD = inf{t : V (Xt) = G(Xt)}

is optimal (if V is lsc and G is usc).

We assume that there exists an optimal stopping time τ∗:

V (x) = ExG(Xτ∗), x ∈ E.
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We claim that V (Xτ∗) = G(Xτ∗) Px-a.s. for all x ∈ E.

Indeed, if Px{V (Xτ∗) > G(Xτ∗)} > 0 for some x ∈ E, then

ExG(Xτ∗) < ExV (Xτ∗) ≤ V (x)

since V is superharmonic, leading to a contradiction with the fact that

τ∗ is optimal. From the identity just verified it follows that

τD ≤ τ∗ Px-a.s. for all x ∈ E.
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By (I) the value function V is the superharmonic (ExV (Xσ) ≤ V (X) for

all stopping time σ and x ∈ E). Setting σ ≡ s and using the Markov

property we get for all t, s ≥ 0 and all x ∈ E

V (Xt) ≥ EXt
V (Xs) = Ex [V (Xt+s) | Ft].

This shows that

The process (V (Xt))t≥0 is a supermartingale under Px

for each x ∈ E.

Suppose for the moment that V is continuous. Then obviously it

follows that (V (Xt))t≥0 is right-continuous. Thus, by the optional

sampling theorem (using E supt≥0 |G(Xt)| < ∞), we see that

ExV (Xτ) ≤ ExV (Xσ) for σ ≤ τ .
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In particular, since τD ≤ τ∗ we get

V (x) = ExG(Xτ∗) = ExV (Xτ∗) ≤ ExV (XτD) = ExG(XτD) ≤ V (x)

where we used that

V (XτD) = G(XτD)

If Yt = V (Xt)−G(Xt) (≥ 0), then

This shows that τD is optimal if V is continuous.
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If V is only lsc, then again (see the lemma below) the process (V (Xt))t≥0

is right-continuous (Px-a.s. for each x ∈ E), and the proof can be com-

pleted as above.

This shows that τD is optimal if V is lsc as claimed.

Lemma. If a superharmonic function F : E → R is lsc, then the super-

martingale (F (Xt))t≥0 is right-continuous (Px-a.s. for each x ∈ E).

We omit the proof.
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(III) The stopped process (V (Xt∧τD
))t≥0 is a right-continuous

martingale under Px for every x ∈ E.

Proof. By the strong Markov property we have

Ex [V (Xt∧τD
) | Fs∧τD] = Ex

[
EXt∧τD

G(XτD) | Fs∧τD

]
= Ex

(
Ex [G(XτD) ◦ θt∧τD

| Ft∧τD
] | Fs∧τD

)
= Ex

(
Ex [G(XτD) | Ft∧τD

] | Fs∧τD

)
= Ex [G(XτD) | Fs∧τD]

= EXs∧τD
G(XτD) = V (Xs∧τD)

for all 0 ≤ s ≤ t and all x ∈ E proving the martingale property. The

right-continuity of
(
V (Xt∧τD

)
)
t≥0

follows from the right-continuity of

(V (Xt))t≥0 that we proved above.

The proof of the theorem on necessary conditions is complete.
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Remark. The result and proof of the Theorem extend in exactly the

same form (by slightly changing the notation only) to the finite horizon

problem

VT (X) = sup
0≤τ≤T

ExG(Xτ).

Now we formulate the theorem which provides

sufficient condition

for the existence of an optimal stopping time.
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Theorem. Consider the optimal stopping problem

V (x) = sup
τ

ExG(Xτ)

upon assuming that Ex supt≥0 |G(Xt)| < ∞, x ∈ E. Let us assume that

(a) there exists the smallest superharmonic function V̂ which

dominates the gain function G on E;

(b) V̂ is lsc and G is usc.

Set D = {x ∈ E : V̂ (x) = G(x)} and τD = inf{t : Xt ∈ D}.

We then have:

(I) If Px(τD < ∞) = 1 for all x ∈ E, then V̂ = V and τD is

optimal;
(II) If Px(τD < ∞) < 1 for some x ∈ E, then there is no

optimal stopping time.
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Sketch of the proof.

(I) Since V̂ is superharmonic majorant for G, we have

ExG(Xτ) ≤ Ex V̂ (Xτ) ≤ V (x)

for all stopping times τ and all x ∈ E. So

G(x) ≤ V (x) = sup
τ

ExG(Xτ) ≤ V̂ (x)

for all x ∈ E.

Next step (difficult!): assuming that Px(τD < ∞) = 1 for all x ∈ E, we

prove the inequality

V̂ (x) ≤ V (x)

and optimality of time τD.
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(II) If Px(τD < ∞) < 1 for some x ∈ E then there is no optimal stopping

time.

Indeed, by “necessary-condition theorem” if there exists optimal opti-

mal τ∗ then τD ≤ τ∗.

But τD takes value ∞ with positive probability for some x ∈ E.

So, for this state x we have Px(τ∗ = ∞) > 0 and τ∗ cannot be optimal

(in the class M = {τ : τ < ∞}).
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