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Lecture 1. INTRODUCTION.

1. Connections of the Optimal stopping theory and the Mathemat-
ical analysis (especially PDE-theory) are as well illustrated by the

Dirichlet problem for the Laplace equation: to find a harmonic
function v = u(z) in the class C?2 in the bounded open domain
C C RY j.e. to find a function u € C? that satisfies to the

equation
Au=0, xzeC (*)
and the boundary condition

u(z) = G(z), € 0D, where D=RN\C. (%%)



Let
p = inf{t: B} € D},
where
BY = x + Bx.

with a d-dimensional standard Brownian motion.
Then the probabilistic solution of the Dirichlet problem
Au=0, xzeC
u(z) = G(x), x€9D

IS given by the formula
u(z) = EG(Br,)), =xe€CUdD

<u(:v) = E:,;G(BTD)>



The optimal stopping theory operates with the optimization prob-
lems when we have a set of domains C = {C : C C Rd} and we want
to find the function

U(z) = sup ExG(Brp),
D

where G = G(z) is given for all z € RY, D e D= {D=C:C €} or,
generally, to find the function

T

where 7 is an arbitrary finite stopping time defined by the process
B.



2. The following scheme illustrates the kind of concrete problems of
general interest that will be studied in the courses of lectures:

A. Theory of probability B. Mathematical statistics
sharp inequalities sequential analysis

C. Financial mathematics
stochastic equilibria

The solution method for problems A, B, C consists of reformulation
to an optimal stopping problem and reduction to a free-boundary
problem as stated in the diagram



A, B, C

[CIENO]

Optimal stopping problems

@ ©

Free-boundary problems




3. To get some idea of the character of problems A, B, C that will
be studied, let us begin with the following remarks.

(A) Let B = (B¢)i>0 be a standard Brownian motion. Then (Wald
identities)

EBr =0 and EB,=0 if EV7T < oo,
EB2=T and EB2=Er if Er< co.
From Jensen’s inequality and E|B.|?2 = Er we get
E|B-|P < (Er)P/2 for 0<p<?2
(ET)P/2 < E|B,|P for 2<p< oo.
Davis B., 1976:

E|B-| < 2Ev/T, 2} = 1.30693...



Now our main interest relates with the estimation of the expectations

EmaxB; and Emax|By|.

t<rt t<rt
We have
max B %’ | B|.
So,
Emath:E|BT|:\/gT (<\/;>
t<T T
and

vV ET,

=T ZEVT, 25 = 1.30993. ..



The case of max|B| is more difficult. We know that

42 (-D)n 72(2n + 1)2
i (Tgaqut' = x) = 22,41 <_ 822

n=0

From here it is possible to obtain (but it's not easy!) that

Emax|By =,/-T (=1.25331...)
t<T 2

(Recall that E|Bp| = /2T (= 0.79788...))



Simple proof:

(Bat;t > 0) £ (VaBi; t > 0).

Take o =inf{t > 0:|By =1}. Then
P (supo<i<1 |Bi| < @) = P (supo<i<1|By 2l < 1) =
1
= P (sUPocica 2 1Bl 1) =P (0> ) =

aw

_ [
=P (\/El<x) , i.e.  supg<i<i1 |Bt| =

Sl

The normal distribution property

2 oo _ a2
—/ Ee 2d°dx = a, a > 0.
7™ JO
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So,

1 2 _ 220
E sup |By =E—= —/Ee 2 dx
0<t<1 Vo ™)
We have
Ee N0 — 1 .
COsSh v2 A\
Hence

E sup |By _\[/ =
0<t<1 cosh:c
_2\/7/ e’ dx \/570 dy
2041 ) 1492
_2\[arctan(m)
T
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E sup |By = VT, E sup |By = /~T.
0<t<T 0<t<1 2

In the connection with MAX the following may be interesting. In a

speech delivered in 1856 before a grand meeting at the St.-Petersburg
University the great mathematician

P.L. Chebyshev (1821-1894)

has formulated some statements about the “unity of theory and prac-
tice” . In particular he underlined that

“a large portion of the practical questions can be stated in the
form of problems of MAXIMUM and MINIMUM... Only the
solution of these problems can satisfy the requests of practice
which is always in search of the best and the most efficient” .
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4. Suppose now that instead of rp<aTx|Bt

. Where as already known

Emax |B| = zT,
t<T 2
we give some random time r and we want to find

E max |Bt|
0<t<rt

It is clear that it is virtually impossible to compute this expectation for
every stopping time 7 of B. Thus, as the second best thing, one can
try to bound the expectation with a quantity which is easier computed.
A natural candidate for the latter is E7T at least when finite. In this way
a problem A has appeared.

13



This problem then leads to the following maximal inequality:

E< max |Bt|> < CVET (1)

0<t<t

which is valid for all stopping times = of B with the best constant C
equal to V2.

From our lecture we will see that the problem A just formulated can
be solved in the form (1) by reformulation to the following optimal
stopping problem:

Vi = sup E(JQ% | Bt| — (:7') (2)
where the supremum is taken over all stopping times = of B satisfying

ET < oo, and the constant ¢ > 0 is given and fixed. It constitutes Step 1
in the diagram above.

14



If Vi = Vi(c) can be computed, then from (2) we get

<
E( max [Bi]) < Vi) + cEr (3)
for all stopping times = of B and all ¢ > 0. Hence we find
<
E(OrgtaSXT |Bt|) < (I:QE (V*(C) + CET) (4)

for all stopping times = of B. The right-hand side in (4) defines a
function of Er that, in view of (2), provides a sharp bound of the
left-hand side.

Our lectures demonstrate that the optimal stopping problem (2) can
be reduced to a free-boundary problem. This constitutes Step 2 in
the diagram above. Solving the free-boundary problem one finds that
Vi(c) = 1/2c. Inserting this into (4) yields

inf E(V*(c) + CET) = V2ETr (5)
c>0

15



so that the inequality (4) reads as follows:

E( max |Bt|> <+V2Er (6)

0<t<r

for all stopping times = of B. This is exactly the inequality (1) above
with C = /2. The constant /2 is, indeed, the best possible in (6). In
the lectures we consider similar sharp inequalities for other stochastic
processes using ramifications of the method just exposed. Apart from
being able to derive sharp versions of known inequalities the method
can also be used to derive some new inequalities.

(B) The classic example of a problem in sequential analysis is the

Wald’'s problem (“Sequential analysis’”, 1947) of sequential testing of
two statistical hypotheses

Ho:p=po and Hy:p=pg (7)
about the drift parameter u € R of the observed process
Xt = pt + By (8)

for t > 0 where B = (B¢)>0 is a standard Brownian motion.

16



Another classic example of a problem in sequential analysis is the
problem of sequential testing of two statistical hypotheses
Ho: A=Xg and Hi: A=)\ (9)
about the intensity parameter A > 0 of the observed process
X; = N (10)
for t > 0 where N = (N¢)>0 is a standard Poisson process.

The basic problem in both cases seeks to find the optimal decision
rule (7«,dx) in the class A(«, 8) consisting of decision rules (d, 7), where
T is the time of stopping and accepting Hq if d = dy or accepting Hp
if d = dg, such that the probability errors of the first and second kind
satisfy:

P(accept Hy | true Hp) < « (11)
P(accept Hp | true H1) < (12)

and the mean times of observation Eg7 and Eq{7 are as small as possible.
It is assumed above that a > 0 and 38> 0 with a4+ 8 < 1.

17



It turns out that with this (variational) problem one may associate an
optimal stopping (Bayesian) problem which in turn can be reduced to a
free-boundary problem. This constitutes Steps 1 and 2 in the diagram
above. Solving the free-boundary problem leads to an optimal decision
rule (7«,dx) in the class A(«, 8) satisfying (11) and (12) as well as the
following two identities:

Eor = inf Egr 13
0 (’d)O ( )
Ei7 = inf Eq7 14
1 ) 1 (14)

where the infimum is taken over all decision rules (7,d) in A(a, 3).
This constitutes Steps 3 and 4 in the diagram above.

18



In our lectures we study these as well as closely related problems of
quickest detection. (The story of the creating of the quickest de-
tection problem of randomly appearing signal, it's mathematical for-
mulation and our route of the solving of the problem (1961) will be
given in my lecture at Monday January, 23 on the Symposium after
the school).

Two of the prime findings, which also reflect the historical development
of these ideas, are the principles of smooth and continuous fit,
respectively.
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C) One of the best-known specific problems of mathematical finance,
that has a direct connection with optimal stopping problems, is the
problem of determining the arbitrage-free price of the American put
option.

Consider the Black—Scholes model where the stock price X = (X¢)>0
IS assumed to follow a geometric Brownian motion

X, =z exp (aBt + (r—0%/2) t) (15)

where x > 0, ¢ > 0, » > 0 and B = (By)¢>0 is a standard Brownian
motion. By Itd's formula one finds that the process X solves

dX: = rX¢dt + o Xy dBy (16)
with XO = x.

20



General theory of financial mathematics makes it clear that the initial
problem of determining the arbitrage-free price of the American put
option can be reformulated as the following optimal stopping problem:

Vi =supEe " (K — X;)T (17)
T

where the supremum is taken over all stopping times = of X. This
constitutes Step 1 in the diagram above. The constant K > 0O is called
the ‘strike price’. It has a certain financial meaning which we set aside
for now.

It turns out that the optimal stopping problem (17):

Vi =supEe "T(K — X;)T
T

can be reduced again to a free-boundary problem which can be solved
explicitly.
21



It yields the existence of a constant b« such that the stopping time

is optimal in (17). This constitutes Steps 2 and 3 in the diagram
above. Both the optimal stopping point b« and the arbitrage-free price
Vi« can be expressed explicitly in terms of the other parameters in the
problem. A financial interpretation of these expressions constitutes
Step 4 in the diagram above.

In the formulation of the problem (17) above no restriction was im-
posed on the class of admissible stopping times, i.e. for certain reasons

of simplicity it was assumed there that  belongs to the class of stop-
ping times

M={7|0<7< 0} (19)
without any restriction on their size.

22



A more realistic requirement on a stopping time in search for the
arbitrage-free price leads to the following optimal stopping problem:

VI = sup Ee7"T(K — X;)T (20)
rem’

where the supremum is taken over all r belonging to the class of

stopping times
m' ={rjo<r<T} (21)

with the horizon T being finite.

The optimal stopping problem (20) can be also reduced to a free-
boundary problem that apparently cannot be solved explicitly.

23



Its study yields that the stopping time
T = INF{O <t <T| Xt <bsl(t) } (22)

is optimal in (20), where b.: [0,T7] — R is an increasing continuous
function. A nonlinear Volterra integral equation can be derived which
characterizes the optimal stopping boundary ¢ — b«(t) and can be
used to compute its values numerically as accurate as desired. The
comments on Steps 1-4 in the diagram above made in the infinite
horizon case carry over to the finite horizon case without any change.

In our lectures we study these and other similar problems that arise
from various financial interpretations of options.

5. So far we have only discussed problems A, B, C and their refor-
mulations as optimal stopping problems. Now we want to address the
methods of solution of optimal stopping problems and their reduction
to free-boundary problems.

24



There are essentially two equivalent approaches to finding a solution
of the optimal stopping problem. The first one deals with the problem

Vi = sup EG~ (23)
TEM
in the case of infinite horizon, or the problem
V*T = sup EG, (24)
remT

in the case of finite horizon, where 91 and ML are the classes of
stopping times defined in (19) and (21), respectively.

In this formulation it is important to realize that G = (G¢)>0 IS
an arbitrary stochastic process defined on a filtered probability space
(2, F,(Ft)t>0,P), where it is assumed that G is adapted to the filtra-
tion (Ft)¢>0 which in turn makes each T from 9 or Mm! a stopping

time.
25



Since the method of solution to the problems (23) and (24) is based
on results from the theory of martingales (Snell’s envelope, 1952),
the method itself is often referred to as the martingale method.

On the other hand, if we are to take a state space (F, B) large enough,
then one obtains the “Markov representation” Gy = G(X;) for some
measurable function G, where X = (X;)>0 is a Markov process with
values in E. Moreover, following the contemporary theory of Markov
processes it is convenient to adopt the definition of a Markov process
X as the family of Markov processes

((Xt)e>0, (Ft)t>0, (Pz)zeE) (25)

where P,(Xg = x) = 1 meaning that the process X starts at z under P,.
Such a point of view is convenient, for example, when dealing with the
Kolmogorov forward or backward equations, which presuppose that the
process can start at any point in the state space.

26



Likewise, it is a profound attempt, developed in stages, to study opti-
mal stopping problems through functions of initial points in the state
space.

In this way we have arrived to the second approach which deals with
the problem

V(z) = Sl;I_D E.G(X7) (26)

where the supremum is taken over 9t or ML as above (DynKkin’s for-
mulation, 1963). Thus, if the Markov representation of the initial
problem is valid, we will refer to the Markovian method of solution.

6. ToO make the exposed facts more transparent, let us consider the
optimal stopping problem

Vi = sup E( max |By| — c7'>
T 0<t<r

in more detail.
27



Denote
Xt = | + By (27)

for x > 0, and enable the maximum process to start at any point by
setting for s > x

St =sV | max X 28

L= <ogr§t T) (28)

The process S = (S¢)>0 is not Markov, but the pair (X, S) = (X¢, St)¢>0
forms a Markov process with the state space E = {(z,s) e R2 |0 <z <
s }. The value Vi from (2) above coincides with the value function

Vi(z,s) = sup Ex,S(ST— CT) (29)
T

when = s = 0. The problem thus needs to be solved in this more
general form.
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The general theory of optimal stopping for Markov processes makes it
clear that the optimal stopping time in (29) can be written in the form

o =inf{t >0 | (X4, S;) € Ds} (30)

where Dy is a stopping set, and Cx = E \ Dy is the continuation set.
In other words, if the observation of X was not stopped before time
t since Xg € Cyx for all 0 < s < t, and we have that X; € D4, then it
is optimal to stop the observation at time ¢t. On the other hand, if
it happens that X; € Cx as well, then the observation of X should be
continued.

Heuristic considerations about the shape of the sets Cx and Dsx makes
it plausible to guess that there exist a point sx > 0 and a continuous
increasing function s — g«(s) with g«(s«x) = 0 such that

D*Z{(az,s)ERz|O§af;§g*(s),828*} (31)

29



Dy Cx

(z¢, s

Note that such a guess about the shape of the set Dy can be made
using the following intuitive arguments. If the process (X,S) starts
from a point (x,s) with small x and large s, then it is reasonable to
stop immediately because to increase the value s one needs a large
time 7 which in the formula (29) appears with a minus sign.



At the same time it is easy to see that if x is close or equal to s then
it is reasonable to continue the observation, at least for small time A,
because s will increase for the value vA while the cost for using this
time will be ¢A, and thus VA —c¢A > 0 if A is small enough.

Such an a priori analysis of the shape of the boundary between the
stopping set C«x and the continuation set Dy is typical to the act of
finding a solution to the optimal stopping problem. The art of guess-
INg in this context very often plays a crucial role in solving the problem.

Having guessed that the stopping set D4« in the optimal stopping prob-
lem

V*(CC, S) = Sup E(L"S (ST_ CT)
T
takes the form
D*:{(ZB,S)ERQ | OSZESQ*(S), 823*}7
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it follows that 7« attains the supremum i.e.
V*(CU, S) == Ex,s (ST*_ CT*) (32)

for all (z,s) € E. Denote by Ly = (1/2) 8%/0z2 the infinitesimal opera-
tor of the process X and consider Vi(z,s) as defined by the right-hand
side of (32) for («x,s) in the continuation set

Cy=Cluc? (33)

where the two subsets are defined as follows:
C’,}z{(az,s)GR2|O§x§S<s*} (34)
C’fz{(w,s)ERQ|g*(s)<x§s,823*}. (35)

By the strong Markov property one finds that Vi solves the following
equation:

LxVi(z,s) =c (36)

for (x,s) in Cx. Note that if the process (X, S) starts at a point (z, s)
with = < s then during a positive time interval the second component
S of the process does not change and remains equal to s.
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This explains why the infinitesimal operator of the process (X, S) re-
duces to the infinitesimal operator of the process X in the interior
of Cx. On the other hand, from the structure of the process (X, S) it
follows that at the diagonal in ]R?I_ the condition of normal reflection
holds
OV
0s

Moreover, it is clear that for (x,s) € D« the condition of instantaneous
stopping holds

(z,s) = 0. (37)

r—S—

Vi(z,s) = s. (38)

Finally, either by guessing or providing rigorous arguments, it is found
that at the optimal boundary g« the condition of smooth fit holds

OV
ox

(z,s) = 0. (39)
r=gx(s)+
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This analysis indicates that the value function Vi and the optimal
stopping boundary g« can be obtained by searching for the pair of
functions (V, g) solving the following free-boundary problem:

LxV(xz,s) =c for (x,s) in Cy (40)
oV

—(x, s) = 0 (normal reflection) (41)
68 rT—8—

V(z,s) =s for (z,s) in Dy (instantaneous stopping) (42)
oV

—(x, s) = 0 (smooth fit) (43)
0r " la=g(s)+

where the two sets are defined as follows:

Cg={(x,s)€R2|O§a?§s<so or g(s)<x<s for s>sg} (44)
Dg={(z,s) €R* | 0<z<g(s), s>s0} (45)
with g(sg) = 0. It turns out that this system does not have a unique

solution so that an additional criterion is needed to make it unique in
general.
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Let us briefly show how to solve the free-boundary problem (40)—(43)
by picking the right solution (more details will be given in the lectures).

From (40) one finds that for (z,s) in Cy we have

V(z,s) = cx® + A(s) x + B(s) (46)

where A and B are some functions of s. To determine A and B as well
as g we can use the three conditions

oV
—(x, s) = 0 (normal reflection)
68 rT—8—
V(xz,s) =s for (z,s) in Dy (instantaneous stopping)
oV
—(x, s) = 0 (smooth fit)
0 la=g(s)+
which vyield
1
/
g(s) = , for s> sq. (47)
2(s—g(s))
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It is easily verified that the linear function

1
9(3) — 5 — 2— (48)
C
solves (47). In this way a candidate for the optimal stopping boundary

gx IS obtained.

For all (z,s) € E with s > 1/2c¢ one can determine V(x,s) explicitly
using

V(z,s) = cz® + A(s) z + B(s)

and

1

g(s) = 3—2—6.

This in particular gives that V(1/2¢,1/2¢c) = 3/4c.

35



For other points (x,s) € E when s < 1/2c¢ one can determine V (x,s)
using that the observation must be continued. In particular for x =
s = O this yields that

V(0,0) =V(1/2¢,1/2¢c) — cEg (o) (49)

where o is the first hitting time of the process (X,S) to the point
(1/2¢,1/2¢).

Because Eg (o) = Ego(X2) = (1/2¢)? and V(1/2¢,1/2¢c) = 3/4c, we
find that
V(0,0) = — (50)
2c
as already indicated prior to (5) above. In this way a candidate for the
value function V4 is obtained.
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The key role in the proof of the fact that V = V4 and g = g« is played
by Itd6’s formula (stochastic calculus) and the optional sampling
theorem (martingale theory). This step forms a verification theorem
that makes it clear that the solution of the free-boundary problem
coincides with the solution of the optimal stopping problem.

7. The important point to be made in this context is that the veri-
fication theorem is usually not difficult to prove in the cases when a
candidate solution to the free-boundary problem is obtained explic-
itly. This is quite typical for one-dimensional problems with infinite
horizon, or some simpler two-dimensional problems, as the one just
discussed. In the case of problems with finite horizon, however, or
other multidimensional problems, the situation can be radically dif-
ferent. In these cases, in a manner quite opposite to the previous
ones, the general results of optimal stopping can be used to prove the
existence of a solution to the free-boundary problem, thus providing
an alternative to analytic methods. Studies of this type will be also
presented in the lectures of three courses on the School.
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8. From the material exposed above it is clear that our basic interest
concerns the case of continuous time. The theory of optimal stopping
in the case of continuous time is considerably more complicated than
in the case of discrete time. However, since the former theory uses
many basic ideas from the latter, we have chosen to present the case
of discrete time first, both in the martingale and Markovian setting,
which is then likewise followed by the case of continuous time. The
two theories form several my lectures.
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[Lecture 2-3. Theory of optimal stopping for dis-

crete time.
A. Martingale approach.

1. Definitions
(Q,f,(fn)nzo,P>, ]:nglggfnggf, G:<Gn)n20

Gain Gy, is Fp-measurable
Stopping (Markov) time ™ = 7(w):
7:Q—{0,1,...,00}, {r<n}eF, foralln>0.

M is the family of all finite stopping times

M is the family of all stopping times

MY ={reM|n<r<N}

For simplicity we will set MY =mY and M, =M.
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The optimal stopping problem to be studied seeks to solve

T
For the existence of EG, suppose (for simplicity) that
E sup |Gi| < o0 (52)
0<k<oo

then EG, is well defined for all 7 € MY, n < N < oo.

In the class MY we consider

VN = sup EG- 0<n<AN\. (53)
TeMN

Sometimes it is also of interest to admit that 7 in (51) takes the value
oo (P(r = o0) > 0), so that 7 € M. We put G- =0 on {r = oo}.

Sometimes it is useful to set Goo = limsup Gy,.
n—o
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2. The method of backward induction.

VnN: sup EG-
n<tT<N

To solve this problem we introduce (by backward induction) a special
stochastic sequence S¥,SN_,...,S)":
N __ N
SN —GN, S —maX{Gn,E(S _I_]_lfn)}
n=N-1,...,0.

If n = N we have to stop and our stochastic gain S]]\\/(, equals Gy

Stop in time N

i i \i | >
O 1 2 || N 2 N—l N
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For n = N — 1 we can either stop or continue. If we stop, our gain

Sﬁ_l, equals Gyn_1, and if we continue our gain Sﬁ_l will be equal to
E(SN | Fn—1)-

either stop in time N — 1
| |

| }
| | | I
||/\j. :
|| |
/\/continue and stop in time N

2 r N—-2 N-1 N

>
>

So,
S]]\\[f_l = max{GN_l, E(SJJX | le)}

and optimal stopping time is
N =min{N-1<k<N: S,iszk}.

TN—-1—
42



Define now a sequence (Svjv,v)OSnSN recursively as follows:

SN =@y, n=N,
S& = max{Gn,E(Syy 1| Fn)}, n=N-1,...,0.

The described method suggests to consider the following stopping
time:

TN =inf{n <k < N:SY =G}
for 0 <n<N.

The first part of the following theorem shows that SY and 7YV solve
the problem in a stochastic sense.

The second part of the theorem shows that this leads also to a solution
of the initial problem

VN = sup EG, foreach n=0,1,...,N.
n<tT<N
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Theorem 1. (Finite horizon)
I. For all 0 <n < N we have:

(2)
(b)

SN > E(Gr | Fn), Vreml;
S = E(G_ v | Fn).

II. Moreover, if 0 <n < N is given and fixed, then we have:

(©)

(d)
(e)

()

N is optimal in VN = sup EG:;

n<t<N
if 7« is also optimal then 7Y < 74;
the sequence (Sév)ngng is the smallest super-

martingale which dominates (Gp)p<k<N
(Snell’s envelope)

the stopped sequence (SliV/wN)nékSN is a mar-
tingale.
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Proof of Theorem 1.

I. Induction over n=N,N—-1,...,0.

Conditions
(@) SY >E(Gr|Fn), Vremy;
and

(b) SN =E(C,n|Fn).

are trivially satisfied for n = NN.

Suppose that (a) and (b) are satisfied for n = N,N—1,...,k where
k> 1, and let us show that they must then also hold for n = k—1.
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(a) (S,,Q\f > E(Gr | Fn), V1€ 9:n,,-’;f) : Take 7 € MY | and set 7 = 7V k;
then 7 € My’ and since {r>k} € F;,_1 it follows that

E(Gr|Fi—1) =E[I(r=k—1)Gp_1 | F—1]
+ E[I(r>k)G5 | F_1]
= I(r=k—1)Gj_1
+ I(7 > k) E[E(GF | FR) | Fr—1l- (54)

By the induction hypothesis, (a) holds for n = k. Since 7T € SJT{CV this
implies that

E(G=|Fi) < S - (55)
From S = max(Gn, E(S;, 1 | Fn)) for n =k —1 we have

Gk—l S S]iv—la (56)
E(SY | Fee1) < Spy. (57)
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Using (55)—(57) in (54) we get
E(Gr | Fr_1) < I(r=k-1) S} ,
N
+ I(r>k) E(SY | Fioo1)
+I(r>k) Sy { =S 4. (58)
T his shows that
SN > E(Gr | Fn), VYreml

holds for n = k — 1 as claimed.

(b) (SN = E(G len)) To prove (b) for n = kK — 1 it is enough
to check that all"inequalities in (54) and (58) remain equalities when
=7} ;. For this, note that

Té\[_l:TéV on {Té\f_lzk};
Gr_1=Si 1 on {rly=k—1};
E(SY | Fr_1) =S 1 on {1 >k}
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Then we get
E[GTéV_l |]—“k_1} =I(1) 1 =k—-1)G}_1
+ (7 2 k) E[E(G v | Fi) | Fioi]

=I( {1 =k—1)Gp_1
+ I( > k) E(SY | Fiee1)

+ (L1 >k) Sply = Sily.

Thus
Sy = E(G x| Fn)

holds for n = kK — 1. (We supposed by induction that (b) holds for
n=0N,...,k.)
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(c) (T,;QV is optimal in VN = sup EGT):
n<t<N

Take expectation E in

SN > E(G | Fn), Teml
Then we find that

ESY > EG, forall e MmY

and by taking the supremum over all 7 € sm,,fy we see that
ESf,LV > VnN (= sup EGT>.
TEMY
On the other hand, taking the expectation in
Sp =E(G,x|Fn) weget ES) =EG y
which shows that

ESN < v N (: sup EGT).
TEMY
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So,

ESY =vN
and since ESY = EG_y, we see that

V' =EG_y

implying the claim (c): “The stopping time 7 is optimal”.

(d) ( if 7« is also optimal then 7V < T>|<> :

If 7« is also optimal then ’7'7:]LV < 7«. We claim that the optimality of 7«
implies that SY = G-, (P-a.s.)".

Indeed, for all n < k< N,
Sy > ay, thus,  SY > Gn.
If SN # G, (P-a.s.) then
P(sY > Gr) > 0.
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It thus follows that

(a)
EGr, <ESN < EsN Py,

where

the second inequality («) follows by the
supermartingale property of (S,]{V)nngN
(see (e)) and the optional sampling the-
orem, and

the equality (3) was obtained in (c).

The strict inequality EG., < VnN, however, contradicts the fact that 7«
is optimal.

Hence SYY = G, (P-a.s.) and the fact that 7Y < 7 (P-a.s.) follows
from the definition

N =infin <k<N:SY =aG).
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(e) (the sequence (Sl]cv)nngN is the smallest supermartingale which

dominates (Gk)n§k§N> ;

The sequence (S,]{V)nngN is the smallest supermartingale which dom-
inates (Gk:)nngN”

From
N _ N _
S/{: —maX{Gk,E(Sk+1|fk)}, k—N—l,...,n,
we see that (SIY),<r<n iS a supermartingale:

Sp > E(Silq | Fr)-

Also we have S,]{V > (.. It means that (S,év)nngN is a supermartingale
which dominates (Gg)n<k<N-
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Suppose that (gk)ngng is another supermartingale which dominates
(Gr)n<k<n. then the claim that Sy > S{CV (P-a.s.) can be verified by
induction over k= N,N —1,...,1[.

Indeed, if kK = N then the claim follows by S = Gy for n = N.

Assuming that Sy > Si¥ for k= N,N —1,...,1 with I > n+ 1 it follows
that
SNy = max(Gi_1, E(S | 1))
< max(Gi_1,E(S | F-1)) < 51 (P-as.)

using the supermartingale property of (Sk)p<k<n. SO, (S{j)nngN is
the smallest supermartingale which dominates (Gy),<k<N
(Snell’'s envelop).
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() ( the stopped sequence (S]i\;\TN)nngN iS a martingale) ;

To verify the martingale property
N N
E[S(k—l—l)/\T?ZLV | fk} — Sk/\T
with n < k < N — 1 given and fixed, note that
N _ N
E[s(kH)Mmfk} E[1(r2 < k) 8P lek]
= I(7 < K)Sppon + 10 2 b+ DE(Sy 1 | Fp)

= I(t)V < K)SY  + It > k+1)8) = S{XAT

where we used that
SP = E(SP 1| Fr) on {rh >k+1}
and {7V > k+ 1} € F, since 1) is a stopping time.
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Summary

1) The optimal stopping problem
Ve = sup EG-
TE?).TI{)V
IS solved inductively by solving the problems
TeMN
forn=N,N-1,...,0.
2) The optimal stopping rule =¥ for VNV satisfies

N = Tév on {rl¥ >k}

for 0 < n <k < N when ¥ is the optimal stopping rule for V. In
other words, this means that if it was not optimal to stop within the
timeset {n,n+1,...,k—1} then the same optimality rule for VnN applies
in the time set {k,k+1,...,N}.
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3) In particular, when specialized to the problem V , the following
general principle (of dynamic programming) is obtained:

if the stopping rule 7§ is optimal for V4V and it was not optimal

to stop within the time set {0,1,...,n — 1}, then starting the
observation at time n and being based on the information F,,
the same stopping rule is still optimal for the problem VnN.

D

777 sz
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3. The method of essential supremum

The method of backward induction by its nature requires that the
horizon N be FINITE so that the case of infinite horizon remains
uncovered.

It turns out, however, that the random variables szv defined by the
recurrent relations

SN =@y, n=N,
S = max{Gn,E(S)\1 | F)}, n=N-1,...,0,

admit a different characterization which can be directly extended to
the case of infinite horizon N.

This characterization forms the base of the SECOND method that will
now be presented.
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Note that
(@) Sy >E(Gr|Fn) Vremy;
(b) Sy =E(G x| Fn)
from Theorem 1 suggest that the following identity should hold:

SN = sup E(Gr|Fn).
TeMY

Difficulty: sup_cgnnv E(Gr|Fn) need not de-
fine a measurable function.

To overcome this difficulty it turns out that the concept of
essential supremum

proves useful.
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Lemma (about Essential Supremum).

Let {Zn,a € A} be a family of random variables defined on (£2,F,P)
where the index set 21 can be arbitrary.

Then there exists a countable subset J of 2 such that the random
variable Z*: Q — R defined by

7 = sup Z,
acJ

satisfies the following two properties:

(a) P(Za<Z*) =1, Va e,

(b) If Z: Q — R is another random vari-
able satisfying P(Zo<Z*) =1, Va € 4,
then P(Z* < Z) = 1.
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Moreover, if the family {Z,,a € 2} is upwards directed in the sense
that

for any o and 3 in 2 there exists v in 2l
such that max(Za, Zg) < Zy (P-a.s.),

then the countable set J = {an,n > 1} can be chosen so that
Z*= lim Z,, (P-a.s.)
n—oo

where Zoy < Za, < --- (P-a.s.).
Proof. (1) Since x — %arctan(ac) is a strictly increasing function from

R to [—1,1], it is no restriction to assume that |Zy| < 1.

(2) Let C denote the family of all countable subsets C of . Choose
an increasing sequence {Cyp,n > 1} in C such that

d
a éf sup E(sup Za) = sup E( sup Za>.
ceC acC n>1 acCh
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d
Then J ] UsZ{ Crn is a countable subset of 2l and we claim that Z*
defined by
Z* = sup Z,
acJ
satisfies the properties (a) and (b).

(3) To verify these claims take o € & arbitrarily and note the following.
If « € J then Z, < Z* so that (a) holds. If a ¢ J and we assume that
P(Zo > Z*) > 0, then

a < E(Z*V Zy) <a

since a = EZ* € [—1,1] (by the monotone convergence theorem) and
J U {a} belongs to C. As the strict inequality is clearly impossible, we
see that P(Z, < Z*) = 1 holds for all o € U as claimed. Moreover, it is
obvious that (b) follows from Z* = sup,cj Za and (a): P(Zo<Z*) =1,
Va € 4, since J is countable.
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Finally, assume that the condition in (c) is satisfied. Then the initial
countable set
J={a1,as,...}

can be replaced by a new countable set J° = {a7,a5,...} if we initially
set a7 = a3, and then inductively choose a1 > ap V oy 4q for n > 1,
where v > a Vv 3 corresponds to Zg,, Zﬁ and Z- such that Zy > Zo V Zﬁ
(P-a.s.). The concluding claim Z* = limp—oo Za,, in (C) is then obvious,
and the proof of the lemma is complete. [ ]

With the concept of essential supremum we may now rewrite
SN > E(Gr | Fn) Vrem:
in Theorem 51 above as follows:

Sf,y = esssup E(G+ | Fn)
n<T<N
forall 0 <n < N.
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This esssup identity provides an additional characterization of the se-

quence of r.v.'s (S,,JLV)OSnSN introduced initially by means of the recur-
rent relations

sV =Gy, n=N,
S = max{Gn,E(S);1|Fn)}, n=N-1,...,0.

Its advantage in comparison with these recurrent relations lies in the

fact that the identity

s,,{,Y = esssup E(G+ | Fn)
n<t<N

can naturally be extended to the case of INFINITE horizon N. This
programme will now be described.

Consider (instead of VY = sup__gnv EG7)

Vn = sup EG-.
TEMSP
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To solve this problem we will consider the sequence of r.v.'s (Sn),>0
defined as follows:

Spn = esssup E(G+ | Fn)

T>N
as well as the following stopping time:
Tn = iﬂf{k Z ’rL|Sk = Gk}
for n > 0 where inf @ = oo by definition.

The first part (I) of the following theorem shows that (Sn), >0 satisfies
the same recurrent relations as (S?]v,V)OSnSN-

The second part (II) of the theorem shows that S,, and 7, solve the
problem in a stochastic sense.

The third part (III) shows that this leads to a solution of the initial
problem Vi, = sup,>, EG~.

The fourth part (IV) provides a supermartingale characterization of
the solution.
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Theorem 2 (Infinite horizon).

Consider the optimal stopping problems Vi, = supEG,, 7 € M>°, n > 0

>N
assuming that the condition E sup |G| < oo holds.
0<k<0
I. The following recurrent relations hold:

Sn = max{Gn,E(S,+1|Fn)}, Vn>0.

II. Assume moreover if required below that
Then for all n > 0 we have:
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III. Moreover, if n > 0 is given and fixed, then we have:
The stopping time 1, Is optimal in Vp = sup,>p EG .

If T is an optimal stopping time for Vp, = sup.>, EG~
then m, < 7« (P-a.s.).

IV. The sequence (Sy)i>n IS the smallest supermartingale
which dominates (Gy)y>y, (Snell’s envelop).

The stopped sequence (Siar,)ik>n IS @ martingale.

Finally, if the condition P(m, < oo) = 1 fails so that
P(m, = o0) > 0, then there is NO optimal stopping time
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Proof. I. We need prove the recurrent relations

Sn = Max{Gn, E(Sp+1|F)}, n>0.

Let us first show that

Sn < Max{Gn, E(Sp+1 | Fr)}-

For this, take T e My andset =7V (n+1).
Then 7€ M,41, and since {r > n—+ 1} € 7, we have

E(Gr | Fn) = E[I(7 =n)Gn|Fn] + E[I(T > n+ 1)Gz | Fi]
= I(1 =n)Gn + I(1 2 n+ 1)E(G7 | Fn)
= I(r =n)Gn + I(r 2 n+ DE[E(G7 | Frq-1) | Fl
<I(tr=n)Gn+I(t >n+ 1)ES, 41 ]|Fn)
< max{Gn, E(Sp41|Fn)}.
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From this inequality it follows that
Sn = esssup E(Gr | Fn) < max{Gn,E(S,+1|Fn)}
>N

which is the desired inequality.

For the reverse inequality, let us first note that
Sn > Gn  (P-a.s.)

by the definition of S, so that it is enough to show that
Sn > E(Sp+41|Fn)

which is the supermartingale property of (Sp),>0. (It is the most
difficult part of the proof.)

To verify this inequality, let us first show that the family {E(G+ | F,4-1); T ¢
M, 41} is upwards directed in the sense that

for any a and 3 in 2 there exists v in

? such that Za Vv Zg < Z,. (%)
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For this, note that if o7 and oo are from M, 4, and we set o3 =
o1l + o217 where
A= {E(G01 |fn—|—1) > E(GUQ |fn—|—1)}a

then o3 € M, 41 and we have

E(Gos | Frnt1) = E(Goyla+ Gopl 1| Frt1)
= I4E(Goy | Fra1) + 11 E(Goy | Frpg1)
= E(Goy [ Fr1) VE(Goy | Frig 1)
implying (x) as claimed. Hence by Lemma there exists a sequence

{og, k> 1} in M, 41 such that

ess sui) E(Gr | Fry1) = klimoo E(Gop, | Fri+1)

T>n+

where
E(Goy | Fria1) SE(Goy | Frpg1) < -+ (P-ass.).
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Since

Sn4+1 = esssu? E(Gr| Fr41),

T>n—+

by the conditional monotone convergence theorem we get

E(Snt1|Fn) =E| lim E(Goy | Foger) |
= lim E|E(Goy, | Frut1) | Fn]

k— 00

= 1im E(Go, | Fn) < Sn.
k— o0

So, Sp = max{Gn,E(S,4+1|Fn)} and the proof if I is complete.

II. The inequality Sy > E(G+ | Fn), Y7 € My, follows from the definition
Spn = esssup E(G+ | Fn).

>N
For the proof of the equality S, = E(G+, | Fn) we use the fact stated
below in IV that the stopped sequence (Siar,)k>rn IS @ Martingale.
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Setting G}, = supy>, |G| we have
Skl < esssupE(|Gr| | Fi,) < E(Gy | i) (%)
>k

for all k > n. Since Gj, is integrable due to Esupg>, |G| < oo, it follows
from (x) that (Sg)i>y is uniformly integrable.

Thus the optional sampling theorem can be applied to the martingale
(M) k>n = (Skar,)k>n @and we get

Since M, = S, and M,;, = S;, we see that (xx) is the same as S, =
E(Gr, | Fn).

III: ““The stopping time 7, is optimal in Vi, = sup,>, EG:.”

The proof uses II and is similar to the corresponding proof in Theorem
1 (N < 00).
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IV. “The sequence (Si)k>y is the smallest supermartingale which dom-
inates (Gg)r>n " (Snell's envelop).

We proved in I that (Sk)an is a supermartingale. Moreover, from the
definition

Sn = esssup E(Gr | Fn)
>N

it follows that Sy > Gy, k > n, meaning that (Sg)i>, dominates
(Gp)k>n- Finally, if (Sg)g>n is another supermartingale which domi-
nates (Gg)i>n, then from S, = E(G+, | Frn) (Part II) we find

Sk = E(Gry | Fio) < E(Sry | Fi) < S, Vk >n.

(The final inequality follows by the optional sampling theorem being
applicable since S, < G, < G, (= supg>, |Gg|) with G; integrable.)

The statement
The stopped sequence (Sgar,)k>n IS @ Martingale
IS proved in exactly the same way as for case N < oco.
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Finally, note that the final claim

If the condition P(m, < o©) = 1 fails so that P(m, = o0) > 0,
then there is NO optimal stopping time in the problem V,, =
SUpTZn EGT

follows directly from III (“If 7, is optimal stopping tome then 7, < 7
(P-a.s.) for the problem V;, = sup,>, EG;").

Remark. From the definition
Spn = esssup E(G+ | Fn)
n<t<N
it follows that

N|—>ST]LV and N|—>T,,‘ZLV

are increasing. So,

S® = |im SY and = |lim 7
N—0 N—0
exist P-a.s. for each n > 0.
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Note also that from

VnN: sup EG-
n<tT<N

it follows that N — V.V is increasing, so that V> = limy_,, V!V exists
for each n > 0.

From SY = esssup,<,<, E(G7|Fn) and S, = esssup,>, E(Gr|Fn) we
see that

Similarly,
V.2 < Vn ( = sup EGT). ()
>N

If condition Esup,<i< |Gk| < co does not hold then the inequalities in

(x) and (x*) can be strict.
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Theorem 3 (From finite to infinite horizon).

If Esupp<i<oo |Gkl < 0o then in S5° < Sp, 77° < ™ and Vi© <V, we
have equalities for all n > 0.

Proof. From

Sp = max{Gn,E(S3% 1| Fn)}, 120,
we get

Sp. = max{Gn,E(Sp3 1| Fn)}, n=>0.

So, (5p°)n>0 is @ supermartingale.

Since S,;,° > G we see that

(S;°) <G, <supG,, n>0.
n>0

So, ((S5°) 7 )n>o0 is uniformly integrable.
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Then by the optional sampling theorem we get

Sn. > E(SZ7 | Fn) (*)
for all = € I,,.

Moreover, since Sp° > G, k > n, it follows that S2° > G for all = € My,
and hence

E(S$O | Fn) > E(Gr | Fn) (*x)
for all 7 € M,. From (x), (x*x) and
Sn = esssup E(G+ | Fn)

T>N

we see that S;° > S),.

Since the reverse inequality holds in general as shown above, this es-
tablishes that Sg° = S, (P-a.s.) for all n > 0. From this it also follows
that 7°° = 7, (P-a.s.), n > 0. Finally, the third identity V¢ = V,,
follows by the monotone convergence theorem.
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B. Markovian approach.

We will present basic results of optimal stopping when the time is
discrete and the process is Markovian.

1. We consider a time-homogeneous Markov chain X = (Xn),>0

e defined on a filtered probability space (2, F, (Fn)n>0, Pz)
e taking values in a measurable space (F, B)

where for simplicity we will assume that

(a) E=R? for somed>1
(b) B = B(R%) is the Borel o-algebra on RY.
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It is assumed that the chain X starts at x under P, for z € FE.

It is also assumed that the mapping =z — P, (F') is measurable for each
F e F.

It follows that the mapping x — E;(Z) is measurable for each random
variable Z.

Finally, without loss of generality we will assume that (€2, F) equals
the canonical space (ENo, BNo) so that the shift operator 6,,: Q2 — Q is
well defined by

On(w)(k) = w(n+k) for w= (w(k))r>0€ R and n,k>0.
(Recall that Ng stands for Nu {0}.)
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Given a measurable function GG: E — R satisfying the following condi-
tion (with G(Xy) =0 if N = c0):

Ex< sup |G(Xn)\> < 00

0<n<N

for all x € E, we consider the optimal stopping problem

VN(z) = sup EzG(X7)

0<7<N

where x € E and the supremum is taken over all stopping times + of X.

The latter means that 7 is a stopping time w.r.t. the natural filtration
of X given by

FX =6(X,:0<k<n) for n>O0.
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Since the same results remain valid if we take the supremum in
VN(z) = sup EzG(X7) (%)
O0<t<N

over stopping times 7 w.r.t. (Fn)p>0, and this assumption makes final
conclusions more powerful (at least formally), we will assume in the
sequel that the supremum in (%) is taken over this larger class of
stopping times.

Note also that in (x) we admit that N can be +oco as well.

In this case, however, we still assume that the supremum is taken over
stopping times 7, i.e. over Markov times r satisfying 0 < 7 < co. In this
way any specification of G(X) becomes irrelevant for the problem

().
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To solve

VN(CU): sup E.G(Xr) (*)
O<t<N

when N < oo, we may note that by setting G, = G(Xy) for n > 0 the
problem reduces to the problem

n<t<N

Having identified (%) as (xx), we can apply the method of back-
ward induction which leads to a sequence of r.v.'s (Svjvy)OgnSN and
a stopping time ¥ = inf{n <k < N : S = G}

The key identity is

Sév = VvV ="(X,)| for 0<n<N. (k%)

Once (x*x) is known to hold, the results of the Theorem 1 (finite
horizon) from the Martingale theory translate immediately into the
present setting and get a more transparent form.
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To get formulation, let us define

CN={zeE: VN (2)>Gx)}
D?];[:{:I:EE:VN_TL(@ = G(x)}

for 0 <n < N. We also define stopping time
p=inf{0<n<N:X,eDN}
and the transition operator T' of X
TF(x) =E;F(X71)

for x € E whenever F: E — R is a measurable function so that F(Xq)
is integrable w.r.t. P, for all x € E.

82



Theorem 4 (Finite horizon: The time-homogeneous case)

Consider the optimal stopping problems

V*(x) = sup E:G(X;)
0<t<n

assuming that E; sup |G(X:)| < oco. Then
0<k<N

I. Value functions V" satisfy the “Wald—Bellman equation”
V' (z) = max(G(z), TV 1(x)) (z € E)

forn=1,...,N where VO = @G.

II. The stopping time p = inf {0 < n < N: X, € DVl is
optimal in (x) for n = N.

III. Ifr« is an optimal stopping time in (x) then p < 7« (Pz-a.s.)
for every x € E.

83



IV. The sequence (VN_”(Xn))ogngN is the smallest super-
martingale which dominates (G(Xn))o<n<n under Py for

x € E given and fixed.
V. The stopped sequence (VN""(Xnarp))o<n<n iS @ martin-

gale under P, for every x € E.

Proof. To verify the equality SY = VN—"(X,,) recall that

Sy = Ea(G(X n) | Fn) (i
for 0 <n < N. Since S,]CV_” 0 Oy = S?%_k we get that 7V satisfies
N =inf{ln <E<N:SYN =G(Xp)}=n+71 "o (ii)

for 0 <n < N.
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Inserting (ii) into (i) and using the Markov property we obtain

S = Ea[G(X, 4 Nonyy )| Fn] = Ez[G(X v-n) 0 bn| Fl

(iii)
= Ex, GO p-) V()
where (a) follows by (i): Si = Ex(G(X_n) | Fn), which imply
xS0 " =E:G(X yn) = sup EG(X7)=VVT"(z) o (iv)
0 0<7<N-—n
forO<n<N and z € E.

Thus S = VN—"(X},) holds as claimed.
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To verify the “Wald—Bellman equation’”, note that the equality
Sy = max{Gn, E(Sp11 | Fn)},
using the Markov property, reads as follows:
V(X)) = max {G(Xn), B [VV T H(X 1) | Fal )
= max{G(Xn), B[V "1 (X1) 0 00| Fn }
= max{G(Xn),Ex, VN "1 (Xx1)}
max {G(Xn), Ty N-n-1 (Xn)}

()

for all 0 < n < N. Letting n = 0 and using that Xg = x under P, we
see that (%) vields V"(z) = max{G(z), TV 1(z)}.

The remaining statements of the theorem follow directly from the
Martingale Theorem (1). The proof is complete. [ ]
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The “Wald—Bellman equation’” can be written in a more compact form
as follows. Introduce the operator ) by setting

QF(x) = max(G(x), TF(x))

for x € E where F: E — R is a measurable function for which F(X7) €
L1(P;) for x € E. Then the “Wald—Bellman equation” reads as follows:

Vi(z) = Q"G(x)

for 1 <n < N where Q" denotes the n-th power of (). These recursive
relations form a constructive method for finding VY when Law(X7 | P.)
iIs known for x € E.
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Time-inhomogeneous Markov chains X = (Xn)nZO

Z = (Zn)p>0 is @ time-homogeneous Markov chain.

Optimal stopping problem:

(*) VN(’]’L’Q;‘) — sup En,xG(n—l—T, Xn_|_7.) , 0<n<N.
0<t<N—n

We assume

(**) En,a:( sup |G(’n —+ kaXn—l—kN) < 00, 0<n<N.
0<k<N-—n
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Theorem 5 (Finite horizon: The time-inhomogeneous case)

Consider the optimal stopping problem (x) upon assuming that the
condition (xx) holds. Then:

I. The function V™ satisfies the “Wald—Bellman equation”

VN(n,z) = max(G(n,z), TV" (n, z))
forn=N-1,...,0 where
TVN(n,z) = EneVY¥(n+1,X,41), n=N-1,...,0,
and

TVN(N-1,2) =En_1 ,G(N, Xp);
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II. The stopping time
Dy =inf{n<k<N:(n+k X,1,) €D}
with
D= {(n,x) €{0,1,...,N}xE :V(n,z) = G(n,x)}

is optimal in the problem (x):

VVN(n,2) = sup  EnoG(n+7, Xpiyr);
0<t<N—
. If 7 is an optimal stopping time in (x) then 75 < 7

(Pn-a.s.) for every (n,x) € {0,1,...,N} xE;
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IV. The value function V¥ is the smallest superharmonic func-
tion which dominates the gain function G on {0,..., N}xFE,

TVN(n,2) <VN(n,z), VV(n,z) > G(n,2);

V. The stopped sequence

N N
(V ((n+k) A7p, X(n+k)mg))ogk§1\f—n

is a martingale under Py, 5 for every (n,xz) € {0,1,..., N}xE,

The proof is carried out in exactly the same way as the proof of The-
orem 4.
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Optimal stopping for infinite horizon (N = co):

V(z) = Sl7,l_p E.G(X7)

Theorem 6
Assume Egzsup,>o|G(Xn)| < oo, z € E.

I. The value function V satisfies the “Wald—Bellman equation”

V(z) = max(G(x), TV (x)), x¢€FE.

II. Assume moreover when required below that Py(tp < o0) = 1
for all x € E, where

p = inf{t >0: X; € D}

with D ={x € E : V(x) = G(x)}. Then the stopping time T
iIs optimal.
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I1I.

IV.

VI

If 7« is an optimal stopping time then tp < 7« (Py-a.s. for
every x € F).

T he value function V is the smallest superharmonic func-
tion (Dynkin's characterization) (T'V < V') which dominates
the gain function G on E, or, equivalently, (V(Xn))n>0 IS
the smallest supermartingale (under Py, x € E) which dom-
inates (G(Xn))p>o0-

The stopped sequence (V(Xnarp))n>0 iS @ martingale under
P, for every x € E.

If the condition Py(tp < oo) = 1 fails so that Py(mp = o0) >
O for some x € E, then there is no optimal stopping time in
the problem V(z) = sup,E,G(X;) for all x € E.
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Corollary (Iterative method). We have
—_ H n
Vx) = Jim Q G(x)

(a constructive method for finding the value function V).

Uniqueness in the Wald—Bellman equation

F(x) = max(G(x), TF(x))

Suppose Esupy,>o F(Xn) < co.

Then F equals the value function V if and only if the following “boundary
holds:

limsup F'(X,) = limsup G(X,) Pga.s. Vxe FE.

n—aoeo n—aoeo
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2. Given a € (0,1] and bounded g: E — R and c¢: E — R4, consider
the optimal stopping problem

V() = supEx(a7g(X0) = 3 aFle(X1)):
k=1

Let X = (Xn),>0 denote the Markov chain X killed at rate a. It means
that

TF(z) = aTF(z).
Then

_
V(x) = sup Ex<g(XT) -y c(Xk_l))
T k=1
The “Wald—Bellman equation” takes the following form:
V(z) = max {g(:c),aTV(:c) - c(az)}.
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[ ectures 4—5. Theory of optimal stopping for
continuous time
A. Martingale approach

Let (€2, F, (Ft)+>0,P) be a stochastic basis (a filtered probability space
with right-continuous family (F;)¢>0 where each F; contains all P-null
sets from F.

Let G = (G¢)¢>0 be a gain process. (We interpret G; as the gain if the
observation of G is stopped at time t.)

Definition. A random variable 7: 2 — [0, c0] is called a Markov time
if {7 <t} e F forallt > 0. A Markov time is called a stopping time if

T < oo P-a.s.
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We assume that G = (G¢)>0 is right-continuous and left-continuous
over stopping times (if 7, T 7 then G, — G+ P-a.s.).

We also assume that

E( sup [Gi|) <oo  (Gr=0 if T=o0).
o<t<T

Basic optimal stopping problem:

VtT = sup EG-
t<r<T

We shall admit that T' = oo. In this case the supremum is still taken
over stopping times 1, i.e. over Markov times 7 satisfying t < 7 < 0.
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Two ways to tackle the problem VtT = SUP{<7<T EG:

(1) Discrete time approximation

[0, 7] — T = {tg”),tgn),...,tqg”)} T T is a dense
subset of [0, T]

—, qgn) =
G — G ()

with applying previous discrete-time results and then
passing to the limit n — oo;

(2) Straightforward extension of the method of essential
supremum. This programme will now be addressed.

We denote for simplicity of the notation

Vi =V, (T <oo or T=00).
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Consider the process S = (S¢)¢>0 defined as follows:

St = esssup E(G+|F).
T>t
The process S is the Snell’'s envelope of G.

Introduce

v = inf{u>1t|Sy = Gy} WwWhere infg = oco by definition.

We shall see below that

St > max{Gy, E(Sy | ft)} for u >t.

T he reverse inequality is not true generally.

However,
S = max{Gt, E(SO'/\Tt | ft)}

for every stopping time o >t and 7 given above.
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Theorem 1. Consider the optimal stopping problem

Vi =supkEGr, t2>0,
T>1

upon assuming Esupt20|Gt| < o00. Assume moreover when required
below that

Pln<o)=1, t>0.

(Note that this condition is automatically satisfied when the horizon T
is finite.) Then:

I. For allt>0 we have

St > E(G7-| ft) for each ™ € My

where My ={r:7<T} if T < oo,
M ={7:7 < o0} if T = 0.
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II.

I1I.

IV.

VI

The stopping time 7 = inf{u >t : S, = Gu} is
optimal (for the problem V; = sup,>EG7).

If 7 is an optimal stopping time as well then
m < 17 P-a.s.

The process (Su)y>t IS the smallest right-
continuous supermartingale which dominates

(GS)szt-

The stopped process (Suar)y>t IS a right-
continuous martingale.

If the condition P(ry < oo) = 1 fails so that
P(+ = o) > 0, then there is no optimal stopping
time.
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Proof. 1°. Let us first prove that S = (S5;);>0 defined by

Sy = esssup E(G+| Fy)
T>t
IS @ supermartingale.

Show that the family {E(G+|F) : 7 € 9} is upwards directed in the
sense that if o1 and oo are from IM; then there exists o3 € M such

that
E(Goqi| Ft) VE(Goy| Ft) < E(Gos| Ft).
Put o3 = 0114 + O'QIA where
A ={E(Gos,|F) = E(Goyp| Ft)}-
Then o3 € M and
E(G03| ft) — E(GallA + G021A|}—t) — IAE(G01’ }_t) + I[l E(Gazlj_—t)
— E(Go‘llft)\/E(Go'Qlft)
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Hence there exists a sequence {o;; k > 1} in 9 such that

(%) esssup E(Gr| Ft) = lim E(Gq, | Ft)
TEMy k— o0
where
E(G01|ft) < E(G02|ft) < - P-a.s.

From (%) and the conditional monotone convergence theorem (using
Esups>o |G| < o0) we find that for 0 < s <t

E(S¢| Fs) = E( lim E(Goy| F1) | Fs)
k— 00
= lim E[E(Goy| F2) | Fs]
k—o00
k— 00 T>S

Thus (St)+>0 is a supermartingale as claimed.
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Note that from Esup;>q |G| < oo and
Sy = esssup E(Gr| F),
T>t
esssup E(Gr| F) = lim E(Go,| Ft)
T>1 k— o0

it follows that

ES; =supEGr
T>t

2°. Let us next show that the supermartingale S admits a right-
continuous modification S = (S);>0-

From the general martingale theory it follows that it suffices to check
that

t ~ ES; is right-continuous on R,.
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By the supermartingale property of S
ES; >--- > ES:, > ESy;, tn Tt
So, L 1= limp—co ESt, exists and

ES: > L.

To prove the reverse inequality, fix ¢ > 0 and by means of ES; =
sup,>¢ EGr choose o € M; such that

EGO' 2 ESt — &.

Fix 4 > 0 and note that there is no restriction to assume that ¢, €
[t,t + 6] for all n > 1. Define

o if o> tn,
On — .
t+o0 if o<ty
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Then for all n > 1 we have

(*) EGy, = EGsI(0 > tn) + EGH—(SI(U <tn) <ES,

since on, € M, and ES; = sup,>EG;. Letting n — oo in (*) and
assuming that Esupg<i<7 |G| < co we get
EGoI(oc >1t) +EGiy5I(c =t) <L (= lim ES,. ).

Letting now ¢ | O and using that G is right-continuous we obtain

EGol(oc >t) + EGI(c =t) =EGs < L.

From here and EGs > ES; — ¢ we see that L > ES; — ¢ for all e > O.
Hence L > ES; and thus

lim ES;, = L=ES;, tnlt,

n—oo

showing that S admits a right-continuous modification S = (S.);>0
which we also denote by S throughout.
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LLet us prove property IV:

The process (Su),>¢ is the smallest right-continuous
supermartingale which dominates (Gs)s>¢.

For this, let S = (§u)u2t be another right-continuous supermartingale
which dominates G = (Gu),>¢- Then by the optional sampling theorem
(using Esupy>o |G| < o0) we have

Su > E(S7| Fu) > E(G+| Fu)

for all 7 € My when u > t. Hence by the definition Sy = esssup,>, E(G+| 7
we find that S, < Sy, (P-a.s.) for all w > ¢. By the right-continuity of S
and S this further implies that

P(Sy < Sy forallu>t)=1
as claimed.
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Property I: for all ¢t > 0O

(%) St > E(Gr| F¢) for each 7 € 9,
() St = E(Gr| Ft)-

The inequality (%) follows from the definition S; = esssup E(G+| F¢).
T>

The proof of (xx*) is the most difficult part of the proof of the Theorem.

The sketch of the proof is as follows.
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Assume that Gy > 0 for all t > 0.
(o) Introduce, for A € (0,1), the stopping time
7 =inf{s >t : ASs < Gs}
(Then )\STt)\ < GT{\, Tt>\—|— = T¢.)
(3) We show that
Sy = E(STN]—}) for all X e (0,1).
So S < (1/>\)E(GT{\|}}) and letting A T 1 we get
St <EB(G 1| F)
where 71 = limy;1 7t (7' T when X 1).

(v) Verify that 7} = 7. Then S; < E(Gr| F:) and evidently
St > E(GTt| Ft)- Thus S = E(GTt| ft).
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For the proof of property V:

The stopped process (Suar)u>t iS a right-
continuous martingale

it is enough to prove that

E SO'/\Tt =E St

for all bounded stopping times o > t.

The optional sampling theorem implies
ESonr, < ESt. (59)
On the other hand, from S; = E(Gr | F:) and S, = G, we see that
ES: = EGr =ES; < ESonar.

Thus, ESyar, = ES; and (Suar)u>¢ is @ martingale. [ ]
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B. Markovian approach

Let X = (X;);>0 be a strong Markov process defined on a filtered
probability space
(Qafa (ft)t207 Px)

where reE (=R%, Pz(Xg=2z)=1,
x — Pz(A) is measurable for each A € F.

Without loss of generality we will assume that
(QF) = (E[O’OO),B[O’OO)) (canonical space)
Shift operator 0; = 0;(w): 2 — Q is well defined by

01 (w)(s) =w(t+s) for w=(w(s))s>0€ 2 and t,s>0.
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We consider the optimal stopping problem

Vi(z) =

sup E;G(X;)

0<r<T

G(Xp)=0 if T < oo;
Here 7 = 7(w) is a stopping time w.r.t.
(Fizo (Fir CFi, Fi =0(Xs;0< s < 1)),

GG is called the gain function,
V is called the value function.

Ex sup |G(X:)| < oo

0<t<T
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V(z) = Slip E.G(X+)
P.(Xp=2z)=1

Case T = oc:

Introduce

the continuation set C ={x e E:V(x) > G(x)} and
the stopping set D={x e EF:V(x) = G(x)}

NOTICE! If
V is Isc (lower semicontinuous) (G IS usc (upper semicontinuous)
[ & *
[ — 0
then

C isopen and D is closed
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The first entry time

rp=inf{t>0:X; € D}

for closed D is a stopping time since both X and (F;);>o are right-
continuous.

Definition. A measurable function F = F(x) is said to be superhar-
monic (for X) if

E:F(Xs) < F(x)

for all stopping times o and all z € E. (It is assumed that F(X,) €
L1(P;) for all x € E whenever o is a stopping time.)

We have:

F'is superharmonic if and only if (F'(X;));>0 IS
a supermartingale under P, for every = € FE.
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The following theorem presents

necessary conditions

for the existence of an optimal stopping time.

Theorem. Let us assume that there exists an optimal stopping time
T+« IN the problem

V(z) =supE,G(X;)
T
i.e. V(x) =ExF(X+). Then

(I) The value functionV is the smallest superharmonic func-
tion (Dynkin's characterization) which dominates the
gain function G on E.
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Let us in addition to “V(x) = Ex F(X+,)” assume that

Vis Isc and G is usc.

Then
(II) The stopping time tp = inf{t > 0 : Xy € D} satisfies
T <7« (Pgz-a.s., x€F)

and is optimal;

(IIT) The stopped process (V(Xiarp))e>0 iS a right-continuous
martingale under P, for every x € E.
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Now we formulate
sufficient conditions

for the existence of an optimal stopping time.

Theorem. Consider the optimal stopping problem
V(2) = sup Es G(X7)
upon assuming that the condition
E. ?gg IG(Xt)| < 0, x€FE,

IS satisfied.
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et us assume that there exists the smallest superharmonic function

AN

V' which dominates the gain function G on E.

Let us in addition assume that

AN

V is Isc and G is usc.

Set D={zc E:V(z) =G()} and let rp = inf{t : X; € D}.
We then have:

(a) IfPy(rp <oo) =1 forall z € E, thenV =V and 1p is
optimal in V(x) = sup, Ex G(X+);

(b) If Px(tp < ©) < 1 for some x € E, then there is no
optimal stopping time in V(x) = sup, E;G(X7).
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Corollary (The existence of an optimal stopping time).

Infinite horizon (T = o0). Suppose that V is Isc and G is usc. If
P.(tp < >0) = 1 for all x € E, then tp is optimal. If Py(7p < o0) < 1
for some x € E, then there is no optimal stopping time.

Finite horizon (T < o©). Suppose that V is Isc and G is usc. Then
Tp IS optimal.

Proof for T = . (The case T' < co can be proved in exactly the same
way as the case T = o if the process (X;) is replaced by the process

(ta Xt))

The key is to show that

V' is superharmonic.
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If so, then evidently V is the smallest superharmonic function which
dominates G on E. Then the claims of the corollary follow directly
from the Theorem (on sufficient conditions) above.

For this, note that V is measurable (since it is Isc) and thus so is the
mapping

(%) V(Xs) = supEx, G(X7)

for any stopping time o which is given and fixed.

On the other hand, by the strong Markov property we have

() Ex,G(Xr) = Ex[G(Xo4-709,) | Fol
for every stopping time 7 and x € E. From (%) and (xx) we see that
V(ze) = eSSTSUD ECU[G(XJ+TOOJ) |f0]

under P, where x € E is given and fixed.
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We can show that the family

{E[XJ_HOQU | Fo] : T is a stopping time}

is upwards directed: if py =0+ 170605 and p> = o + 7 0 05 then there
is p =0 + 706s such that

E[G(Xp> |~7:0] — E[G(Xpl) |F0] \% E[G(sz) |fa]-

From here we can conclude that there exists a sequence of stopping
times {my;n > 1} such that

V(XU) — ”J;n Ex [G(XJ—I—TnOGJ) |Fn]

where the sequence {Ez[G(X,4; 00,) | Fnl} is increasing Px-a.s.
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By the monotone convergence theorem using Esuptzo |G¢| < co we can
conclude

ExV(Xs) = ”g] ExG(XU+Tn090-) < V(z)

for all stopping times o and all x € E. This proves that V is superhar-
monic.

Remark 1. If the function

x — E; G(X7)

is continuous (or Isc) for every stopping time 7, then x — V(x) is Isc
and the results of the Corollary are applicable. This vields a powerful
existence result by simple means.
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Remark 2. The above results have shown that the optimal stopping
problem

V(x) = Sl#p E.G(X;)

IS equivalent to the problem of finding the smallest superharmonic
function V which dominates G on E. Once V is found it follows that
V =V and rp = inf{t: G(X;) = V(Xy)} is optimal.

AN

There are two traditional ways for finding V:

(i) Iterative procedure (constructive but non-explicit)

(ii) Free-boundary problem (explicit or non-explicit).
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For (i), e.qg., it is known that if G is Isc and

Erinf G(X — f 1 E
xggoG( t) > —oco forall zekFE,

then V can be computed as follows:

V(iz) = lim lim QYNG(x)

n—00 N —o0

where
QnG(x) ;== G(x) V ExG(Xl/Qn)
and QY is the N-th power of Qn.
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The basic idea (ii) is that
V and C (or D)
should solve the free-boundary problem:

(+) LyV <0
(xx) V>G (V>GonC & V=G on D)

where Ly is the characteristic (infinitesimal) operator of X.

Assuming that G is smooth in a neighborhood of 9C the following ‘“rule
of thumb" is valid.
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If X after starting at 90C enters immediately into int (D) (e.g. when
X is a diffusion process and 0C' is sufficiently nice) then the condition
LV < 0 under (xx) splits into the two conditions:

LyV =0 inC

ov|  9G

— = — (smooth fit).
ox lpc Oz loC

On the other hand, if X after starting at 0C does not enter immediately
into int (D) (e.g. when X has jumps and no diffusion component while
dC may still be sufficiently nice) then the condition Ly V < 0 (i.e. (%))
under (xx) splits into the two conditions:

LxyV =0 inC

V‘ao = G‘ao (continuous fit).
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Proof of the Theorem on necessary conditions
Basic lines

(I) The value function V is the smallest superharmonic
function which dominated the gain function G on FE.
We have by the strong Markov property:

E.V(Xs) = Ez EXJG(XT*) = ExEx[G(X+,) 005 | Fol
— ECUG(XJ—I—T*OHJ) < SL7]_D ExG(Xr) = V()

for each stopping time o and all x € E.

Thus V is superharmonic.
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Let F' be a superharmonic function which dominates G on E. Then

F.G(X,) < Ex F(X;) < F(x)

for each stopping time 7 and all x € E. Taking the supremum over all
7 we find that V(z) < F(x) for all x € E. Since V is superharmonic
itself, this proves that V is the smallest superharmonic function which
dominated G.

(IT) Let us show that the stopping time
D = iﬂf{t : V(Xt) = G(Xt)}

is optimal (if V is Isc and G is usc).

We assume that there exists an optimal stopping time 7«:
V(z) =E;G(Xr), z€E.
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We claim that V(X)) = G(X+,) Pgz-a.s. for all x € E.

Indeed, if Px{V(X+) > G(X+.)} > 0 for some z € E, then

E:G(X:) <ExV(X7) <V(x)

since V is superharmonic, leading to a contradiction with the fact that
T+ 1S optimal. From the identity just verified it follows that

™ < T« Pg-a.s. for all x e FE.
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By (I) the value function V is the superharmonic (E;V(Xs) < V(X)) for
all stopping time o and =z € F). Setting ¢ = s and using the Markov
property we get for all t,s >0 and all x € £

V(Xt) > Ex, V(Xs) = Eo [V (Xiqs) | Fil.
This shows that

The process (V(X¢))>0 is a supermartingale under Py
for each z € E.

Suppose for the moment that V is continuous. Then obviously it
follows that (V(X:))i>o0 is right-continuous. Thus, by the optional
sampling theorem (using Esup;>q |G(X})| < o0), we see that

E.V(X;) <E;V(Xs) for o<r.
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In particular, since 7p < 7« we get

V(z) = B2 G(Xr) = B2V(X7) S E:V(Xrp) = B2 G(X7p) < V()
where we used that
V(Xrp) = G(Xrp)
If i} = V(X)) — G(X:) (> 0), then

This shows that 7p is optimal if V' is continuous.
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If Vis only Isc, then again (see the lemma below) the process (V (X;))+>0

is right-continuous (Pz-a.s. for each x € E), and the proof can be com-
pleted as above.

This shows that 7p is optimal if V is Isc as claimed.

Lemma. If a superharmonic function F: E — R is Isc, then the super-
martingale (F'(Xt));>o0 is right-continuous (Pgz-a.s. for each z ¢ E).

We omit the proof.
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(IIT) The stopped process (V (Xiarp))e>o0 IS a right-continuous
martingale under P, for every x € FE.

Proof. By the strong Markov property we have

Es [V(Xt/\TD) |'7:3/\7'D] — Eﬂ?[EXt/\TDG(XTD) |‘7:5/\TD}
= Ex (B2 [G(X7p) © Otnrp | Fonrp) | Fsnrp)
= E; (Ex [G(Xrp) | Finrp) | Fsnrp) = Ex[G(Xrp) | Fsnrp]
= Ex, ., G(Xrp) = V(Xsarp)
for all 0 < s <t and all x € E proving the martingale property. The

right-continuity of (V(Xt/\TD))t>O follows from the right-continuity of

(V(Xt))e>0 that we proved above.
The proof of the theorem on necessary conditions is complete.
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Remark. The result and proof of the Theorem extend in exactly the
same form (by slightly changing the notation only) to the finite horizon
problem

V(X)) = sup E;G(X7).
0<7<T

Now we formulate the theorem which provides

sufficient condition

for the existence of an optimal stopping time.
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Theorem. Consider the optimal stopping problem
V(z) = supE,G(X7)
T
upon assuming that Exsup;>o |G(X¢)| < oo, x € E. Let us assume that

(a) there exists the smallest superharmonic function V- which
dominates the gain function G on E;

(b) V islIsc and G is usc.

Set D={zc E:V(z) =G(z)} and rp = inf{t : X; € D}.
We then have:

() IfPu(rp <o) =1 forallz € E, thenV =V and p is
optimal;

(II) If Py(tp < o©0) < 1 for some x € E, then there is no
optimal stopping time.
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Sketch of the proof.

(I) Since V is superharmonic majorant for G, we have
E,G(Xr) < ExV(X7) < V(x)
for all stopping times 7 and all x € E. So
G(z) < V(z) = supE. G(Xr) < V(2)

for all x € F.

Next step (difficult!): assuming that Py(7p < ) =1 for all z € E, we
prove the inequality

V(z) < V(x)

and optimality of time 7p.
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(Il) If Pz (mp < o0) < 1 for some z € E then there is no optimal stopping
time.

Indeed, by “necessary-condition theorem’ if there exists optimal opti-
mal 7« then 7p < 7.

But 7p takes value co with positive probability for some x € E.

So, for this state z we have Py(7« = o0) > 0 and 7« cannot be optimal
(in the class M = {7 : 7 < c0}). ]
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