
Math. Proc. Cambridge Philos. Soc. Vol. 115, No. 1, 1994, (175-190)

Preprint Ser. No. 33, 1992, Math. Inst. Aarhus

Maximal Inequalities of Kahane-Khintchine’s
Type in Orlicz Spaces

GORAN PESKIR

Several maximal inequalities of Kahane-Khintchine’s type in certain Orlicz spaces

are proved. The method relies upon Lévy’s inequality and the technique established

in [14] which is obtained by Haagerup-Young-Stechkin’s best possible constants

in the classical Khintchine inequalities. Moreover by using Donsker’s invariance

principle it is shown that the numerical constant in the inequality deduced by the

presented method is near to be as optimal as possible: If f "i j i � 1 g is a

Bernoulli sequence, and k � k denotes the Orlicz norm induced by the function

 (x) = ex
2� 1 for x 2 R ; then the following inequality is satisfied:
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for all a1; . . . ; an 2 R and all n � 1 , and the best possible numerical constant

which can take the place of
p

18=5 belongs to the interval ]
p

8=3 ;
p

18=5 ] .

Sharp estimates of that type are also deduced for some other maximal inequalities

in Orlicz spaces which are discovered in this paper.

1. Introduction

Let f "i j i � 1 g be a Bernoulli sequence defined on a probability space (
;F ; P ) , let

 (x) = ex
2� 1 for x 2 R , and let k � k denote the gauge norm on (
;F ; P ) , that is:

kX k = inf f a > 0 j E [ (X=a) ] � 1 g

whenever X is a real valued random variable on (
;F ; P ) , with inf ; = 1 . Then it is

well-known that the following inequality is satisfied:

(1)


 nX
i=1

ai"i



 
� C �

� nX
i=1

j ai j2
�1=2

for all a1; . . . ; an 2 R and all n � 1 , where C is a numerical constant. Moreover, it is recently

shown in [14] that the best possible numerical constant which can take the place of C in (1) is

equal to
p

8=3 . Let us in addition consider real valued random variables �1; . . . ; �n defined on

(
;F ; P ) , and let Sj =
Pj

i=1 �i for j = 1; . . . ; n . Then Lévy’s inequality may be formulated as

follows, see [8]: If for every 1 � j < n the random vector (�1; . . . ; �n) has the same distribution
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as the random vector (�1; . . . ; �j ;��j+1; . . . ;��n) , then we have:

(2) Pf max
1�j�n

jSj j > t g � 2 � Pf jSn j > t g

for all t � 0 . In particular, if �1; . . . ; �n are independent and symmetric, then (2) is valid.

In other words, the maximum of a finite number of partial sums is stochastically controlled by

the last partial sum. This principle is indeed well-known and is established in many different

forms, see [8] for a unifiable general approach and [4] for some close related facts in the operator

theory. Consequently, having (2) in mind one might very naturally guess that the following maximal

inequality corresponding to (1) should be satisfied:

(3)


 max
1�j�n

�� jX
i=1

ai"i
�� 



 
� D�

� nX
i=1

j ai j2
�1=2

for all a1; . . . ; an 2 R and all n � 1 , where D is a numerical constant. Indeed, it is easily

verified by using the integration by parts formula and the fact that
p
2  0(x=

p
2) �  0(x) for

x � 0 , that this inequality follows immediately from (1) and (2) with D =
p
2 C . However,

after a quick look on (3) it is not quite clear what is the best possible value for D . And this paper

is devoted to the study of these questions. In addition, we shall also establish the related maximal

inequalities involving some other Orlicz norms, which correspond to those with a single partial sum

given in [14]. Our main aim is to find the sharp estimates for the best possible constants appearing

in these inequalities and in that way to show that many of the deduced estimates themselves are near

to be as optimal as possible. For instance, we shall prove (3) by establishing the estimate which

will provide to deduce that the best possible numerical constant which can take the place of D in

(3) belongs to the interval ]
p

8=3 ;
p

18=5 ] . The method used in the proofs relies upon Lévy’s

inequality and the technique established in [14] which is obtained by Haagerup-Young-Stechkin’s

best possible constants in the classical Khintchine inequalities. The final conclusions on the best

possible constants are provided by using Donsker’s invariance principle. Moreover by using the

classical symmetrization technique the given inequalities will be extended in an appropriate way

from the Bernoulli case to the case of more general real valued random variables.

2. Preliminary facts

In this paper we work within the following Orlicz norms and spaces:

kX k = inf f a > 0 j E [ (X=a) ] � 1 g
L (P ) = f X2M(P ) j lim

"#0
k"X k = 0 g

kX kT = inf f a > 0 j E [ (X=a) ] � a g
LT (P ) = f X2M(P ) j lim

"#0
k"X kT = 0 g

kX k� = E [ (X) ]

L� (P ) = f X2M(P ) j lim
"#0

k"X k� = 0 g
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where M(P ) denotes the set of all real valued random variables defined on a probability space

(
;F ; P ) , and  (x) = ex
2� 1 for x 2 R . Recall that the Orlicz space (L (P ) ; k � k ) is

called the gauge space, and the Orlicz norm k � k is called the gauge norm. We remark that

the quantity kX kT has been emerged in the study [6]. Its interest relies upon the fact that for

more general functions  , the map k � k need not to be an Frechet norm, but k � kT is so.

For more details see [6] (p.17,18). For more informations in this direction in general we shall refer

the reader to [6], [14] and [16]. Let us in addition remind that a real valued random variable X
defined on a probability space (
;F ; P ) is said to be subnormal, if its Laplace transform LX is

dominated on the real line by the Laplace transform of some normally distributed random variable.

In other words X is subnormal, if there exist � 2 R and �2> 0 such that:

(1) LX(t) � exp (�t+
1

2
�2t2 )

for all t 2 R . If (1) is fulfilled with � = 0 and �2 = 1 , then X is said to be a standard

subnormal random variable. A sequence of ( standard ) subnormal random variables will be called

a ( standard ) subnormal sequence. If X is a subnormal random variable satisfying (1), then using

Markov’s inequality one can easily obtain, see [14]:

(2) Pf X � t g � exp
�
� (t��)2

2�2

�
for all t � 0 . In particular, if X is subnormal and symmetric satisfying (1), then we get:

(3) Pf jXj � t g � 2 � exp
�
� (t��)2

2�2

�
for all t � 0 . Inequalities (2) and (3) form a part of so-called classical Kahane-Khintchine

inequalities for subnormal random variables, see [10] (p.62). A finite or infinite sequence of

independent and identically distributed random variables "1; "2; . . . taking values �1 with the

same probability 1=2 is called a Bernoulli sequence. Let f "i j i � 1 g be a Bernoulli

sequence, and let f ai j i � 1 g be a sequence of real numbers. Put Sn =
Pn

i=1 ai"i and

An =
Pn

i=1 j ai j2 for n � 1 , then we have, see [14]:

(4) f Snp
An

j n � 1 g is a standard subnormal sequence.

Let f �i j i � 1 g be a sequence of independent and identically distributed random variables

defined on a probability space (
;F ; P ) with mean 0 and variance �2 > 0 . Let us put

Sj =
Pj

i=1 �i for j � 1 , and let us define a random function Xn : 
 ! (C[0; 1] ; k � k1) by:

Xn (t; !) =
1

�
p
n
S [nt](!) + (nt� [nt]) � 1

�
p
n
� [nt]+1(!)

for t 2 [0; 1] ; ! 2 
 and n � 1 , where [nt] denotes the integer part of nt . Then Donsker’s

invariance principle states, see [1] (p.68):

(5) Xn �! W
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as n!1 , where W = f Wt j t 2 [0; 1] g is the Wiener process. Since x 7! supt2[0;1] jx(t) j
is continuous on C[0; 1] , then we have:

(6) sup
t2[0;1]

jXn(t) j �! sup
t2[0;1]

jWt j

as n ! 1 . Hence we easily get:

(7)
1

�
p
n
j max
1�j�n

Sj j �! sup
t2[0;1]

jWt j

as n ! 1 . Moreover we have:

(8) Pf sup
t2[0;1]

Wt � x g = 2p
2�

Z x

0
e�t2=2 dt

for all x � 0 , or in other words:

(9) Pf sup
t2[0;1]

Wt � x g = 2 � Pf N � x g = Pf jN j � x g

for all x � 0 , where N � N(0; 1) is a standard normal random variable. By the symmetry of

W under reflection through zero hence we easily find:

(10) Pf sup
t2[0;1]

jWt j � x g < 2 � Pf jN j � x g

for all x � 0 . These facts are well-known, see [1] (p.70-72), and their use will be essential in

the final conclusions on the best possible constants in the sequel.

3. Maximal inequalities in the gauge space L (P )

In this section we prove a maximal inequality of Kahane-Khintchine’s type in the gauge space

(L (P ); k � k ) , see (1) in theorem 3.1. The method relies upon Lévy’s inequality and Haagerup-

Young-Stechkin’s best possible constants in the classical Khintchine inequalities, see [14]. By using

Donsker’s invariance principle we show that the constant appearing in the deduced inequality is

near to be as optimal as possible, see corollary 3.4. Using the classical symmetrization technique

we extend the given results from the Bernoulli case to more general cases, see theorem 3.6.

Theorem 3.1. ( A maximal inequality in the gauge space )

Let f "i j i � 1 g be a Bernoulli sequence defined on a probability space (
;F ; P ) , and let

k � k denote the gauge norm on (
;F ; P ) . Then the following maximal inequality is satisfied:

(1)


 max

1�j�n
�� jX
i=1

ai"i
�� 



 
�
r

18

5
�
� nX
i=1

j ai j2
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for all a1; . . . ; an 2 R and all n � 1 .
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Proof. Given a1; . . . ; an 2 R for some n � 1 , we denote An =
Pn

i=1 jaij2 and

Mn = max1�j�n j Sj j with Sj =
Pj

i=1 ai"i for 1 � j � n . Then by the definition of the

gauge norm k � k it is enough to establish the following inequality:

(2)

Z


exp

� 1

C2An
� (Mn)

2
�
dP � 2

with C =
p
18=5 . In order to obtain an appropriate estimate for the left side in (2) we shall expand

the integrand into Taylor’s series, and then we shall apply the classical Khintchine inequalities (2.11)

with (2.17) in [14]. First note that by Lévy’s inequality (1.2) we have:

(3) E(Mn)
2k =

Z 1
0

Pf (Mn)
2k> t g dt =

Z 1
0

Pf Mn > t1=2k g dt

� 2

Z 1
0

Pf jSn j > t1=2k g dt = 2

Z 1
0

Pf (Sn)
2k> t g dt = 2 � E(Sn)

2k

for all k � 1 . By the classical Khintchine inequalities (2.11) with (2.17) in [14] we have:

(4) E(Sn)
2k � K(2k; 2) � (An)

k

with K(2k; 2) = 2k � �(k + 1=2)=
p
� for k � 1 . Since �(k + 1=2) = (2k � 1) !! � p�=2k

where (2k � 1) !! = (2k � 1) � (2k � 3) � . . . � 3 � 1 for k � 1 and j 2=C2j< 1 , then by (3)

and (4) we may conclude:

(5)

Z


exp

� 1

C2An
� (Mn)

2
�
dP = E

h
exp

� 1

C2An
� (Mn)

2
�i

=

=

1X
k=0

1

k!
� 1

(C2An)k
�E (Mn)

2k � 1 + 2 �
1X
k=1

1

k!
� 1

(C2An)k
� E (Sn)

2k

� 1 + 2 �
1X
k=1

1

k!
� 1

(C2An)k
� 2

k � �(k + 1=2)p
�

� (An)
k

= 1 +
2p
�
�
1X
k=1

1

k!
�
� 2

C2

�k
� �(k + 1=2)

= 1 + 2 �
1X
k=1

(2k � 1) !!

2k � k! �
� 2

C2

�k
= 2 �

�
1� 2

C2

��1=2
� 1 = 2

Thus (2) is satisfied and the proof is complete.

In order to show that the upper bound appearing in (1) in theorem 3.1 is sharp, we shall first turn

out two preliminary results which are also of interest in themselves.

Lemma 3.2.

Let f Xi j i � 1 g be a sequence of independent identically distributed random variables
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defined on a probability space (
;F ; P ) with finite variance �2 > 0 , let Sn =
Pn

i=1Xi and

Zn = (1=�
p
n) (Sn�ESn) , and let Mn = (1=�

p
n) max 1�j�n jSj �ESj j for n � 1 . Suppose

that f Zn j n � 1 g is symmetric standard subnormal sequence, that is, Zn is symmetric and we

have LZn(t) � exp (t2=2) for all t 2 R and all n � 1 . Then for every C >
p
2 the sequence

of random variables f exp (Mn=C)
2 j n � 1 g is uniformly integrable.

Proof. It might be proved in the same way as lemma 3.2 in [14] by using Lévy’s inequality

(1.2) and Kahane-Khintchine’s inequality for subnormal random variables (2.3). We shall leave

the details to the reader.

Proposition 3.3.

Let f Xi j i � 1 g be a sequence of independent identically distributed random variables

defined on a probability space (
;F ; P ) with finite variance �2 > 0 , let Sn =
Pn

i=1Xi and

Zn = (1=�
p
n) (Sn�ESn) for n � 1 , let W = f Wt j t 2 [0; 1] g be the Wiener process, and

let k � k denote the gauge norm on (
;F ; P ) . If f Zn j n � 1 g is a symmetric standard

subnormal sequence, then we have:

(1)


 max
1�j�n

1

�
p
n
j Sj�ESj j




 
�! 

 sup

t2[0;1]
j Wt j




 

as n ! 1 , where
p
8=3 < k supt2[0;1] jWt j k <

p
18=5 .

Proof. Statement (1) might be proved in exactly the same way as statement (1) in proposition

3.3 in [14] by using (2.7) and lemma 3.2. We shall leave the details to the reader. Let us in addition

denote Z = supt2[0;1] jWt j , and put C= kZ k . We must show that
p

8=3 < C <
p

18=5 ,

see [1] (p.79-80). The first inequality follows easily by (2.9) and the fact that for a standard

normal random variable N � N(0; 1) we have kN k =
p

8=3 . For the second inequality put

D =
p

18=5 , then by (2.10) we have:

(2)

Z


exp

�Z
D

�2
dP =

Z 1

0
P f exp (Z=D)2> t g dt

= 1 +

Z 1

1
P f Z > D �

p
log t g dt

< 1 + 2

Z 1

1
P f jN j > D �

p
log t g dt

= 1 + 2

Z 1

1
P f exp (N=D)2> t g dt

= 2

Z


exp

�Z
D

�2
dP � 1 = 2 �

�
1� 2

D2

��1=2
� 1 = 2 .

Hence C < D follows easily by the definition of the gauge norm k � k , and the proof is complete.

For results and problems related to those presented in lemma 3.2 and proposition 3.3 we shall refer

the reader to [14], see problem 3.5.
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Corollary 3.4.

The best possible numerical constant which can take the place of
p

18=5 in inequality (1) in

theorem 3.1 belongs to the interval ]
p

8=3 ;
p

18=5] . Moreover the given constant is not less than

k supt2[0;1] jWt j k , where W = f Wt j t 2 [0; 1] g is the Wiener process. ( According to

the referee’s remark, computer calculations, considering a simple random walk with n steps, show

that we have kM60 k > 1:807 with Mn as in the proof of theorem 3.1 for n � 1 . This gives

a better lower bound than
p

8=3 = 1:633 ) .

Proof. Let C be such a constant, then obviously C � p18=5 . Taking a1 = . . . = an =

1=
p
n in inequality (1) in theorem 3.1 with

p
18=5 replaced by C we get:

(1)


 max
1�j�n

1p
n
j
jX
i=1

"i j



 
� C

being valid for all n � 1 . According to (2.4) the sequence f (1=
p
n)
Pn

i=1 "i j n � 1 g is

a symmetric standard subnormal sequence. Thus letting n ! 1 in (1) we may easily complete

the proof by using the result of proposition 3.3.

Conjecture 3.5.

The best possible numerical constant which can take the place of
p
18=5 in inequality (1) in

theorem 3.1 is equal to k supt2[0;1] jWt j k , where W = fWt j t 2 [0; 1] g is the Wiener process.

Using the classical symmetrization technique we shall extend the result of theorem 3.1 from

the Bernoulli case to the case of more general real valued random variables. This procedure has

several steps and the final result may be stated as follows.

Theorem 3.6.

Let f Xi j i � 1 g be a sequence of independent a.s. bounded real valued random variables

defined on a probability space (
;F ; P ) , let k � k denote the gauge norm, and let k � k1 denote

the usual sup-norm on (
;F ; P ) . Then for every � > 0 and every n � 1 we have:

(1)


 max

1�j�n
j

jX
i=1

(Xi�EXi) j



 
� Cn(�) �

� nX
i=1

k Xi�EXi k�1
�1=�

where Cn(�) is given by:

Cn(�) =

8<:
p
72=5 ; if 0 < � � 2p

72=5 � n 1
2
� 1
� ; if 2 < � <1 :

Moreover, if X1; X2; . . . are symmetric, then for every � > 0 and every n � 1 we have:

(2)


 max
1�j�n

j
jX
i=1

Xi j



 
� Dn(�) �

� nX
i=1

k Xi k�1
�1=�

where Dn(�) is given by:
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Dn(�) =

8<:
p
18=5 ; if 0 < � � 2p

18=5 � n 1
2
� 1
� ; if 2 < � <1 :

Finally, if f Yi j i � 1 g is a sequence of independent and symmetric real valued random variables

defined on (
;F ; P ) , then we have:

(3)



 1� nX

i=1

j Yi j2
�1=2 � max

1�j�n
j
jX
i=1

Yi j




 
�
r

18

5

for all n � 1 .

Proof. Inequality (2) for � = 2 might be proved in exactly the same way as inequality (1)

in theorem 3.6 in [14] by using theorem 3.1 and working with the function f from Rn � Rn

into R defined by:

f(x1; . . . ; xn; �1; . . . ; �n) = exp
� 1

C0 �
Pn

i=1 jxi j2
� max
1�j�n

j
jX
i=1

xi�i j2
�

for (x1; . . . ; xn; �1; . . . ; �n) 2 Rn �Rn with C0 = 18=5 . Moreover in the course of this proof

inequality (3) could be also established in the same manner as in the proof of theorem 3.6 in [14].

We shall leave the details to the reader. Inequality (2) for � 6= 2 follows easily from inequality

(2) with � = 2 by using inequalities (2.20) and (2.21) in [14]. Similarly, inequality (1) for � 6= 2
follows easily from inequality (1) with � = 2 by using exactly the same argument. Therefore

to complete the proof it is enough to deduce inequality (1) with � = 2 . Let n � 1 be given

and fixed, put X = (X1; . . . ; Xn) , and let Y = (Y1; . . . ; Yn) be a random vector such that X
and Y are independent and identically distributed. There is no restriction to assume that both

X and Y are defined on (
;F ; P ) , and that we have EXi = 0 for i = 1; . . . ; n . Put

Sj =
Pj

i=1Xi and Tj =
Pj

i=1 Yi for j = 1; . . . ; n , and define Mn = max1�j�n jSj j and

M̂n = max1�j�n jSj�Tj j . We shall begin the proof by verifying the following inequality:

(4) kMn k �k M̂n k .

Put C(n) = k M̂n k , then (4) will be satisfied as far as we have the following inequality:

(5) E
�
exp

� Mn

C(n)

�2 �
� 2 .

In order to establish (5) we shall define a function g from Rn �Rn into R by:

g(s1; . . . ; sn; t1; . . . ; tn) = exp
� 1

C(n)
� max
1�j�n

jsj�tj j
�2

for (s1; . . . ; sn; t1; . . . ; tn) 2 Rn � Rn . Then for any fixed (s1; . . . ; sn) 2 Rn the function

(t1; . . . ; tn) 7! g(s1; . . . ; sn; t1; . . . ; tn) is obviously convex from Rn into R . Furthermore by

our assumptions we have Tj 2 L1(P ) with ETj = 0 for j = 1; . . . ; n . Therefore by Fubini’s

theorem and Jensen’s inequality we may obtain:
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Eg(S1; . . . ; Sn; ET1; . . . ; ETn) �Eg(S1; . . . ; Sn; T1; . . . ; Tn) .

Since ETj = 0 for j = 1; . . . ; n , then by the definition of the Orlicz norm k � k we get:

E
�
exp
� Mn

C(n)

�2 �
= Eg(S1; . . . ; Sn; ET1; . . . ; ETn)

� Eg(S1; . . . ; Sn; T1; . . . ; Tn) = E
�
exp
� M̂n

C(n)

�2 �
� 2 .

This fact proves (5), and thus (4) follows. Since X and Y are independent and identically

distributed, and X1; . . . ; Xn are by assumption independent, then X�Y = (X1�Y1; . . . ; Xn�Yn)
is sign-symmetric. Therefore by (4) and inequality (2) with � = 2 we may conclude:

k Mn k � k M̂n k =


 max
1�j�n

j
jX
i=1

(Xi�Yi) j



 
�

�
p
18=5 �

� nX
i=1

k Xi�Yi k21
�1=2

�
p
18=5 �

� nX
i=1

2 � ( k Xi k21+ k Yi k21)
�1=2

�
p
72=5 �

� nX
i=1

k Xi k21
�1=2

These facts complete the proof.

4. Maximal inequalities in the Orlicz space LT (P )

In this section we prove several maximal inequalities of Kahane-Khintchine’s type correspond-

ing to those from the previous section but this time involving the Orlicz norm k � kT as defined

in section 2, see (1) in theorem 4.1, (1) in theorem 4.6, (1) in theorem 4.7, and (1)+(2) in theorem

4.9. The method relies upon the facts obtained in the previous section and the procedure that is es-

tablished in [14] for similar questions concerned with single partial sums. The estimates appearing

through the whole section are sharp and near to be as optimal as possible. Despite the fact that the

Orlicz norm k � kT is not homogeneous, see [14], we may begin by establishing the following

analogue of inequality (1) in theorem 3.1 for this norm.

Theorem 4.1.

Let f "i j i � 1 g be a Bernoulli sequence defined on a probability space (
;F ; P ) , and

let k � kT denote the Orlicz norm on (
;F ; P ) as defined in section 2. Then the following

maximal inequality is satisfied:

(1)



 1� nX

i=1

j ai j2
�1=2 � max

1�j�n
j

jX
i=1

ai"i j




T 

� C

for all a1; . . . ; an 2 R and all n � 1 , where C is the unique root of the algebraic equation
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x4 + 4x3 � 2x2 � 8x � 8 = 0 for x >
p
2 .

Proof. Given a1; . . . ; an 2 R for some n � 1 , we denote An =
Pn

i=1 jaij2 and

Mn = max1�j�n j Sj j with Sj =
Pj

i=1 ai"i for 1 � j � n . Then by the definition of the

Orlicz norm k � kT it is enough to establish the following inequality:

(2)

Z


exp

� 1

C2An
� (Mn)

2
�
dP � 1 + C .

In order to deduce (2) we shall use the estimate for its left side that is established in the proof of

theorem 3.1. Namely, by (5) in the proof of theorem 3.1 we have:

(3)

Z


exp

� 1

x2An
� (Mn)

2
�
dP � 2 �

�
1� 2

x2

��1=2
� 1

for all x >
p
2 . Put �(x) = 2 (1�2=x2)�1=2 � 1 and �(x) = 1 + x for x >

p
2 , then one

can easily verify that there exists a unique number C >
p
2 such that � > � on ]

p
2; C [ ,

� < � on ]C;1[ , and �(C) = �(C) . The given C satisfies the following algebraic equation

C4+4C3� 2C2� 8C� 8 = 0 . Hence (2) follows directly by (3). These facts complete the proof.

Remark 4.2.

We have seen in the last proof that the numerical constant C appearing in (1) in theorem 4.1

is the unique solution of the algebraic equation x4 + 4x3 � 2x2 � 8x � 8 = 0 for x >
p
2 .

By the well-known criterion for rational solutions for algebraic equations with rational coefficients,

see [21], each rational solution of the above equation belongs to the set f �1;�2;�4;�8 g .

Hence one can easily verify that the above equation has no rational solutions at all. Therefore the

numerical constant C appearing in (1) in theorem 4.1 is not a rational number. However one can

easily verify that we have C = 1:683981945 . . . � 357=212 with 357=212�C = 0:000196809 . . . .

Thus inequality (1) in theorem 4.1 is satisfied with C = 357=212 .

Proposition 4.3.

Let f Xi j i � 1 g be a sequence of independent identically distributed random variables

defined on a probability space (
;F ; P ) with finite variance �2 > 0 , let Sn =
Pn

i=1Xi and

Zn = (1=�
p
n) (Sn�ESn) for n � 1 , let W = f Wt j t 2 [0; 1] g be the Wiener process, and

let k � kT denote the Orlicz norm on (
;F ; P ) as defined in section 2. If f Zn j n � 1 g is

a symmetric standard subnormal sequence, then we have:

(1)


 max
1�j�n

1

�
p
n
j Sj�ESj j




T 

�! 

 sup
t2[0;1]

j Wt j



T 

as n!1 . Moreover, let Cs denote the numerical constant given by (2) in theorem 4.1 in [14],

and let Cm denote the numerical constant appearing in (1) in theorem 4.1 above. Then we have:

(2) Cs < k sup
t2[0;1]

jWt j kT < Cm

where Cs = 1:538615763 . . . , and Cm = 1:683981945 . . . .
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Proof. Statement (1) might be proved in exactly the same way as statement (1) in proposition

4.3 in [14] by using (2.7) and lemma 3.2. We shall leave the details to the reader. Let us in addition

denote Z = supt2[0;1] jWt j , and put C = k Z kT . We must show that Cs < C < Cm , see

[1] (p.79-80). The first inequality follows easily by (2.9) and the fact that Cs = kN kT , where

N � N(0; 1) is a standard normal random variable, see proposition 4.3 in [14]. For the second

inequality note that by (2) in the proof of proposition 3.3 and the definition of Cm we have:Z


exp

� Z

Cm

�2
dP < 2 �

�
1� 2

C2
m

��1=2
� 1 = 1 + Cm .

Hence C < Cm follows easily by the definition of the Orlicz norm k � kT , and the proof

is complete.

Corollary 4.4.

The best possible numerical constant which can take the place of C in inequality (1) in theorem

4.1 belongs to the interval ]Cs ; Cm ] with Cs and Cm as in proposition 4.3. Moreover the given

constant is not less than k supt2[0;1] jWt j kT , where W = f Wt j t 2 [0; 1] g is the Wiener

process. ( Again, according to the referee’s remark, computer calculations show that the lower

bound can be replaced by 1:625 ) .

Proof. It might be proved in exactly the same way as statement (1) in corollary 3.4 by using

(2.4) and the result of proposition 4.3. We shall leave the details to the reader.

Conjecture 4.5.

The best possible numerical constant which can take the place of C in inequality (1) in theorem

4.1 is equal to k supt2[0;1] jWt j kT , where W = f Wt j t 2 [0; 1] g is the Wiener process.

Using the classical symmetrization technique we shall extend the result of theorem 4.1 from

the Bernoulli case to the case of general symmetric real valued random variables.

Theorem 4.6.

Let fXi j i � 1 g be a sequence of independent symmetric real valued random variables defined

on a probability space (
;F ; P ) , and let k � kT denote the Orlicz norm on (
;F ; P ) as defined

in section 2. Then the following maximal inequality is satisfied:

(1)



 1� nX

i=1

j Xi j2
�1=2 � max

1�j�n
j

jX
i=1

Xi j




T 

� C

where C is the numerical constant appearing in (1) in theorem 4.1.

Proof. It might be proved by using theorem 4.1 in exactly the same way as it has been

suggested for the proof of inequality (3) in the course of the proof of inequality (2) for �=2 in

the beginning of the proof of theorem 3.6 with C0 =
p
C . We shall leave the details to the reader.

We shall continue our considerations by trying to move the expression (
Pn

i=1 jaij2)1=2 in

11



inequality (1) in theorem 4.1 from the left side of that inequality to the right one, see (1) in theorem

3.1. Let f "i j i � 1 g be a Bernoulli sequence defined on a probability space (
;F ; P ) ,

and let k � kT denote the Orlicz norm on (
;F ; P ) as defined in section 2. Then by (4.2) in

[14] and (1) in theorem 4.1 we have:

(1)


 max

1�j�n
�� jX
i=1

ai"i
�� 



T 
� C �

� nX
i=1

jaij2
�1=2

being valid for all a1; . . . ; an 2 R and all n � 1 for which
Pn

i=1 jaij2 � 1 , where C is

the numerical constant appearing in (1) in theorem 4.1. Moreover putting a1 = . . . = an = 1=n
for n � 1 and using (2.7) one can easily verify that (1) does not hold in general. Note that in

this case we have
Pn

i=1 jaij2 = 1=n ! 0 for n ! 1 . However by (2.4) in [14] and (1) in

theorem 3.1 we easily find:

(2)


 max

1�j�n
�� jX
i=1

ai"i
�� 



T 
�
p
18=5 �

h � nX
i=1

jaij2
�1=2

_
� nX

i=1

jaij2
�1=4 i

being valid for all a1; . . . ; an 2 R and all n � 1 . In particular, we have:

(3)


 max
1�j�n

�� jX
i=1

ai"i
�� 



T 
�
p
18=5 �

� nX
i=1

jaij2
�1=4

for all a1; . . . ; an 2 R and all n � 1 for which
Pn

i=1 jaij2 � 1 . Moreover, given a1; . . . ; an 2 R
for some n � 1 , put An =

Pn
i=1 jaij2 and Mn = max1�j�n jSj j with Sj =

Pj
i=1 ai"i for

1 � j � n . Then by (5) in the proof of theorem 3.1 we have:

(4)

Z


exp

� 1

C2
p
An

� (Mn)
2
�
dP =

Z


exp

� p
An

C2An
� (Mn)

2
�
dP

� 2 �
�
1� 2

p
An

C2

��1=2
� 1

whenever 2
p
An=C

2 < 1 . Since C >
p
2 , then the last inequality is valid in the case where

An � 1 . Moreover one can easily verify that we have:

2 � x3 + 8

C
� x2 +

� 8

C2
� C2

�
� x � 4C � 0

for all 0 � x � 1 , and thus the following inequality is satisfied:

(5) 2 �
�
1� 2

C2
x
��1=2

� 1 � 1 + C � px

for all 0 � x � 1 . By (4) and (5) we get:Z


exp

� 1

C2
p
An

� (Mn)
2
�
dP � 1 + C � 4

p
An .

Hence by the definition of the Orlicz norm k � kT we may deduce:

(6)


 max

1�j�n
�� jX
i=1

ai"i
�� 



T 
� C �

� nX
i=1

jaij2
�1=4
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being valid for all a1; . . . ; an 2 R and all n � 1 for which
Pn

i=1 jaij2 � 1 . Now by (1)

and (6) we may conclude:

(7)


 max

1�j�n
�� jX
i=1

ai"i
�� 



T 
� C �

h � nX
i=1

jaij2
�1=2

_
� nX

i=1

jaij2
�1=4 i

being valid for all a1; . . . ; an 2 R and all n � 1 . Our next aim is to show that the exponent

1=4 in inequality (7) may be replaced by the exponent 1=3 in an optimal way, see section 4 in

[14]. We proceed these considerations under the same hypotheses and notation as above. Suppose

that An � 1 , let 1 < p < 1 be given, and let q be the conjugate exponent of p , that is

1=p+1=q = 1 . Then 2(An)
1=q=C2 < 1 and therefore by (5) in the proof of theorem 3.1 we have:

(8)

Z


exp

� 1

C2(An)1=p
� (Mn)

2
�
dP =

Z


exp

� (An)
1=q

C2An
� (Mn)

2
�
dP

� 2 �
�
1� 2 (An)

1=q

C2

��1=2
� 1 .

Let us define:

q� = sup
�
q � 2 j

�
1� 2

C2
x1=q

��1=2
� 1 +

C

2
� x1=2�1=2q ; 8x 2 [0; 1]

	
and let p� be the conjugate exponent of q� , that is 1=p�+1=q� = 1 . Then by (8), the definition

of q� , and the definition of the Orlicz norm k � kT we may easily conclude:

(9) kMn kT � C � (An)
1=2p� .

Furthermore it is easily verified that the inequality in the definition of q� for q = 4 is equivalent

to the following inequality:

x6 � C2

2
� x4 + 4

C
� x3 � 2C � x +

4

C2
� 0

being valid for all 0 � x � 1 , which is obviously not satisfied. Thus q� < 4 . Moreover it is

easily verified that the inequality in the definition of q� for q = 3 is equivalent to the following

easily checking inequality:

x2 +
� 4

C
� C2

2

�
� x +

4

C2
� 2C � 0

being valid for all 0 � x � 1 . Therefore 3 � q� < 4 . Finally it is easily verified that the inequality

in the definition of q� for q = 3 + " with 0 < " < 1 is equivalent to the following inequality:

x2+"� C2

2
� x1+"+ 4

C
� x1+"=2 � 2C � x"=2+ 4

C2
� 0

for all 0 < x � 1 . However the left side of this inequality takes the value 4=C2> 0 at x = 0
for every 0 < " < 1 . Therefore q� = 3 , and by (9) we get:

(10) kMn kT � C � (An)
1=3 .

In this way we have proved the following theorem.
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Theorem 4.7.

Let f "i j i � 1 g be a Bernoulli sequence defined on a probability space (
;F ; P ) , and

let k � kT denote the Orlicz norm on (
;F ; P ) as defined in section 2. Then the following

maximal inequality is satisfied:

(1)


 max
1�j�n

�� jX
i=1

ai"i
�� 



T 
� C �

h � nX
i=1

jaij2
�1=2

_
� nX

i=1

jaij2
�1=3 i

for all a1; . . . ; an 2 R and all n � 1 , where C is the numerical constant appearing in (1)

in theorem 4.1.

Proof. Straight forward by (1) and (10) above.

Problem 4.8.

What is the best possible exponent that can take the place of 1=3 in inequality (1) in theorem

4.7? Note that according to results deduced above we may conclude that this number belongs to

the interval [1=3; 1=2[ . For more details in this direction see problem 4.8 in [14].

Using the classical symmetrization technique we shall extend the result of theorem 4.7 from

the Bernoulli case to the case of more general real valued random variables. Again this procedure

has several steps and the final result may be stated as follows.

Theorem 4.9.

Let f Xi j i � 1 g be a sequence of independent a:s: bounded real valued random variables

defined on a probability space (
;F ; P ) , let k � kT denote the Orlicz norm on (
;F ; P ) as

defined in section 2, let k � k1 denote the usual sup-norm on (
;F ; P ) , and let C be the

numerical constant appearing in (1) in theorem 4.1. Then for every � > 0 and all n � 1 we have:

(1)


 max
1�j�n

j
jX

i=1

(Xi�EXi) j



T 

� Cn(�) �
h � nX

i=1

k Xi�EXi k�1
�1=�

_

_
� nX

i=1

k Xi�EXi k�1
�2=3� i

where Cn(�) is given by:

Cn(�) =

8<:
2C ; if 0 < � � 2

2C � n 1
2
� 1
� ; if 2 < � <1 :

Moreover, if X1; X2; . . . are symmetric, then for every � > 0 and all n � 1 we have:

(2)


 max
1�j�n

j
jX

i=1

Xi j



T 
� Dn(�) �

h � nX
i=1

k Xi k�1
�1=�

_
� nX

i=1

k Xi k�1
�2=3� i
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where Dn(�) is given by:

Dn(�) =

8<:
C ; if 0 < � � 2

C � n 1
2
� 1
� ; if 2 < � <1 :

Proof. It might be proved in exactly the same way as inequalities (1) and (2) in theorem 3.6

by using theorem 4.7 and inequalities (2.20) and (2.21) in [14]. For this purpose the following

inequality is turned out to be valid:

kMn kT � k M̂n kT 
with Mn and M̂n as in the proof of theorem 3.6. We shall leave the details to the reader.

5. Maximal inequalities in the Orlicz space L� (P )

This section consists of maximal inequalities involving the Orlicz norm k � k� as defined in

section 2. The method relies upon the facts obtained in the previous two sections. The deduced

estimates are sharp and near to be as optimal as possible.

Theorem 5.1.

Let f "i j i � 1 g be a Bernoulli sequence defined on a probability space (
;F ; P ) , and let

k � k� denote the Orlicz norm on (
;F ; P ) as defined in section 2. Then for every C >
p
2

the following maximal inequality is satisfied:

(1)



 1

C �
� nX

i=1

jaij2
�1=2 � max

1�j�n
j

jX
i=1

ai"i j




� 

� 2Cp
C2 � 2

� 2

for all a1; . . . ; an 2 R and all n � 1 .

Proof. Given a1; . . . ; an 2 R for some n � 1 , we denote An =
Pn

i=1 jaij2 and

Mn = max1�j�n j Sj j with Sj =
Pj

i=1 ai"i for 1 � j � n . Then by (5) in the proof of

theorem 3.1 we have:


 1

C �
� nX

i=1

jaij2
�1=2 � max

1�j�n
j

nX
i=1

ai"i j




� 

=

Z


exp

� 1

C2An
� (Mn)

2
�
dP � 1

� 2 �
�
1� 2

C2

��1=2
� 2 =

2Cp
C2 � 2

� 2

for all C >
p
2 . This fact completes the proof.

Theorem 5.2.

Let f Xi j i � 1 g be a sequence of independent symmetric real valued random variables
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defined on a probability space (
;F ; P ) , and let k � k� denote the Orlicz norm on (
;F ; P )
as defined in section 2. Then for every C >

p
2 and all n � 1 the following maximal inequality

is satisfied:

(1)



 1

C �
� nX
i=1

jXij2
�1=2 � max

1�j�n
j

jX
i=1

Xi j




� 

� 2Cp
C2 � 2

� 2

Proof. It might be proved in exactly the same way as inequality (1) in theorem 5.2 in [14] by

using theorem 5.1 and working with the function g defined by:

g(x; C) = E
�
exp

h 1

C2 �
nX

i=1

jxij2
� max
1�j�n

j
jX

i=1

xi"i j2
i	

for x = (x1; . . . ; xn) 2 Rn and C >
p
2 , where "1; "2 . . . is a Bernoulli sequence. We shall

leave the details to the reader.

Remark 5.3.

By (4.8) we may easily deduce the following "dual" estimate which extends the result of

theorem 5.1:

(1)



 1

C �
� nX

i=1

jaij2
�1=2p � max

1�j�n
j

jX
i=1

ai"i j




� 

� 2
�
1� 2

C2
�
� nX

i=1

jaij2
�1=q ��1=2

� 2

being valid for all a1; . . . an 2 R , all n � 1 , and all C > 0 for which
� Pn

i=1 jaij2
�1=2

<�
C=
p
2
�p=p�1

with p > 1 and 1=p+ 1=q = 1 . And as in the proof of theorem 5.2 one might be

able to conclude that the following inequality extends inequality (1) in theorem 5.2: If X1; X2; . . .
are independent symmetric a:s: bounded real valued random variables, then we have:

(2)



 1

C �
� nX

i=1

jXij2
�1=2p � max

1�j�n
j

jX
i=1

Xi j




� 

� 2
�
1� 2

C2
�
� nX

i=1

k Xi k21
�1=q ��1=2

� 2

for all C > 0 and all n � 1 for which
� Pn

i=1 k Xi k21
�1=2

<
�
C=

p
2
�p=p�1

with p > 1 and

1=p + 1=q = 1 . The given estimates are sharp and near to be as optimal as possible.
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