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The Optimal Mean-Variance Selling
Problem with Finite Horizon

P. Johnson, J. L. Pedersen & G. Peskir

The optimal mean-variance selling problem seeks to determine a dynamically
optimal stopping time in the nonlinear problem

sup [E(X;) —cVar(X,)]
0<r<T

where X is a geometric Brownian motion with strictly positive drift, the supremum
is taken over stopping times 7 of X ,and ¢ > 0 is a given and fixed constant. The
solution to the problem is known when the horizon 7' is infinite (cf. [11]), however,
the method of proof developed to solve the problem in that case is not applicable in
the case when the horizon T is finite. In this paper we develop a new method of
proof which solves the problem when the horizon T is finite. In this way we find
that the dynamically optimal stopping time is given by

T*:inf{tZO|Xth(1§(72tg(t))}

where the function b can be characterised as a unique solution to a nonlinear Volterra
integral equation. We also prove that the dynamically optimal stopping time 7,
satisfies the smooth fit principle. To our knowledge this is the first time that such a
nonlinear phenomenon of ‘dynamic smooth fit’ has been derived in the literature.

1. Introduction

Imagine an investor who owns a stock which he wishes to sell so as to maximise his return
and minimise his risk upon selling. In line with the mean-variance analysis of Markowitz (8]
we identify the return with the expectation of the stock price and the risk with the variance of
the stock price. The quadratic nonlinearity of the variance then moves the resulting optimal
stopping problem outside the scope of the standard/linear optimal stopping theory (see e.g.
[14]). Consequently the results and methods of the standard/linear optimal stopping theory
are no longer applicable in this new/nonlinear setting. The solution to the nonlinear problem
when the horizon is infinite has been found in [11], however, the method of proof used to solve
the nonlinear problem in that case is not applicable in the case when the horizon is finite. The
purpose of the present paper is to develop a new method of proof which solves the nonlinear
problem when the horizon is finite.
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Assuming that the stock price X follows a geometric Brownian motion one could consider
the constrained problem in which the investor aims to maximise the expectation of X, over
all stopping times 7 of X such that the variance of X, is bounded above by a positive
constant. Similarly the investor could aim to minimise the variance of X, over all stopping
times 7 of X such that the expectation of X, is bounded below by a positive constant.
An application of Lagrange multipliers implies that the Lagrange function (Lagrangian) for
either /both constrained problems can be expressed as a linear combination of the expectation
of X, and the variance of X, with opposite signs. Optimisation of the Lagrangian over all
stopping times 7 of X thus yields the central optimal stopping problem under consideration.
The constrained problems themselves will not be considered in the present paper as these
extensions are somewhat lengthy and more routine.

Due to the quadratic nonlinearity of the variance one can no longer apply standard/linear
results of the optimal stopping theory to solve the problem. Moreover, as shown in [11] (see
also [10] as well as [1], [2], [3], [4], [7], [9] for subsequent developments), in addition to the
static formulation of the nonlinear problem where the maximisation takes place relative to the
initial time-space point of X that is given and fixed, one is also naturally led to consider a
dynamic formulation of the nonlinear problem in which each new time-space point of X yields
a new optimal stopping problem to be solved upon overruling all the past problems. These
overarching aims are formalised in Definitions 1 and 2 recalled below.

The main result of the paper is presented in Theorem 3 below. In its first part we derive
the statically optimal stopping time and in its second part we disclose the dynamically optimal
stopping time (see also Figure 1 below). The proof of Theorem 3 is divided into nine parts.
Each part has a heading describing its contents for ease of reading and overall understanding.
In Remark 4 we shed light on the optimality condition derived as part of the main result. In
Remarks 5 and 6 we briefly compare the method of proof developed in the present paper to
solve the problem when the horizon is finite with the method of proof used in [11] to solve
the problem when the horizon is infinite. Both methods, although different, may be seen
as methods of linearisation, which in turn are intimately related to the method of Lagrange
multipliers. Moreover, the fact that nonlinearity of the variance is quadratic is not essential
and both methods are applicable in the cases of more general nonlinearities as well. Finally
in Theorem 7 we prove the remarkable fact that the static value function associated with the
dynamically optimal stopping time in the nonlinear problem satisfies the smooth fit principle.
To our knowledge this is the first time that such a nonlinear phenomenon of ‘dynamic smooth
fit” has been derived in the literature.

2. Formulation of the problem
Let X be a geometric Brownian motion solving
(21) dXtJrS = /,I/Xt+s ds —|—O'Xt+s dBS

with Xy =z for (t,x) € [0,7]x(0,00), where u € IR is the drift, ¢ > 0 is the volatility,
B is a standard Brownian motion defined on a probability space (2, F,P), and T > 0 is
the time horizon. It is well known that the stochastic differential equation (2.1) has a unique
strong solution given by

(2.2) Xi, =xexp (aBs—l—(,u—%z)s)
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for s € [0,7—t]. The law of the process (2.2) on the canonical space will be denoted by P .
Thus under P,, the coordinate process X at time ¢ starts at position x . It is well known
that X is a strong Markov process with respect to P, for (¢,z) € [0,7]x(0,00) .

Consider the optimal stopping problem

(2.3) V(t,z) = sup [EW(XHT)—cVarm(XtH)]

0<T<T—t

for (t,x) € [0,T] x(0,00) , where the supremum is taken over stopping times 7 of X (i.e.
with respect to the natural filtration of X ), and ¢ > 0 is a given and fixed constant. Clearly,
if pw <0 then E; (X¢y,) < x in (2.3) by the supermartingale property of X so that it
is optimal to stop at once. For this reason we will assume that g > 0 in the sequel. Due
to the quadratic nonlinearity of the second term in Var; . (X,;) = E;.(X?)—(E;.(X,))? it is
then well known that the problem (2.3) falls outside the scope of the standard/linear optimal
stopping theory for Markov processes (see e.g. [14]). In addition to the static formulation of the
nonlinear problem (2.3) where the maximisation takes place relative to the initial time-space
point (¢,z) that is given and fixed, one is also naturally led to consider a dynamic formulation
of the nonlinear problem (2.3) in which each new time-space point of the process X yields a
new optimal stopping problem to be solved upon overruling all the past problems. These aims
will be formalised in two definitions to be recalled shortly below.

The problem (2.3) seeks to maximise the investor’s return identified with the expectation
of X;i. and minimise the investor’s risk identified with the variance of X;,, upon selling
the stock at time t+7 . This identification is made in line with the mean-variance analysis
of Markowitz [8]. The linear combination of the expectation and the variance represents the
Lagrangian and once the optimal stopping problem has been solved in that form this will also
lead to the solution of the constrained problems where either an upper bound is imposed on
the size of the variance or a lower bound is imposed on the size of the expectation.

We now recall definitions of the static and dynamic optimality alluded to above. All stopping
times throughout refer to stopping times of X .

Definition 1 (Static optimality). A stopping time 7, is statically optimal in (2.3) for
(t,z) € [0,T]x(0,00) given and fixed, if

(2-4> Ei (Xt+a) —CVCLT’t,:B(Xt+U) < Et,x<Xt+n> _Cvart,:v(XtJrn)

for all stopping times o < T —t.

Note that the static optimality refers to the optimality relative to the initial time-space
point (¢,z) which is given and fixed. Changing the initial time-space point may yield a
different optimal stopping time in the nonlinear problem since the statically optimal stopping
time may and generally will depend on the initial time-space point in an essential way.

Definition 2 (Dynamic optimality). A stopping time 7, is dynamically optimal in (2.3)
if for every (t,z) € [0,7]x(0,00) given and fixed, we have

(2.5) Eir(Xito)—cVar,(Xito) < x

for all stopping times ¢ < T —t if and only if P, (1. =0)=1.
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Note that the dynamic optimality corresponds to solving infinitely many optimal stopping
problems dynamically in time where each new time-space point of the process X yields a
new optimal stopping problem to be solved upon overruling all the past problems. The optimal
decision at each time tells us either to stop (if no other stopping time from that time and position
could do better) or to continue (if such a stopping time exists). While the static optimality
remembers the past (through the initial time-space point) the dynamic optimality completely
ignores it and only looks ahead. For more details on the static and dynamic optimality we refer
to [11] (see also Section 4 in that paper for a historical account).

3. Solution to the problem

In this section we present solutions to the problems formulated in the previous section.

Recall that &(x) = (1/v2m) [*_ e ¥ /2dy denotes the standard normal distribution function
for z € R.

Theorem 3. Consider the optimal stopping problem (2.3) where the process X solves (2.1)
with Xy = x under P, for (t,x) €[0,7]x(0,00) and pu>0.

(1) The stopping time
(3.1) P =inf {s € [0,T—1] | Xirs = Ac(t, 2)b(t+5) }
is statically optimal in (2.3) for (t,x) € [0,T]x(0,00) given and fixed, where X\ = \.(t,z) is
the unique positive solution to the equation

1
(3.2) A= =+ 2E00(Xeinon)

with m,(A) =1inf{s € [0,T—t] | Xiys > Ab(t+s) }, and t > b(t) can be characterised as the
unique continuous decreasing solution to the nonlinear Volterra integral equation

(3.3) b(t) [6(2u+a2)(T—t) _ 1} — [e,u(T—t) _ 1]

T—t lOg b(t) + /ll—i-ﬁ s
= (2M+02) b(t)/ e(2u+o'2)s @( (b(t+s)) ( 2 ) s
0

b(t)

Tt log +(pu+2)s
_M/ €MS@< (b(t+s)) (h+%) )ds
0 o\/s

satisfying b(t) > v/(2(1+7)) for t € [0,T) where v := u/(c%2) . [The solution b satisfies
b(0) < (1/2) A (v/(1+7)) and b(T) =~/(2(1+7)) (see Figure 1 below).]
(II) The stopping time

. B b(t+s)
(3.4) ¢ = inf {S € [0, 7—¢] | Xits 2> c(1=20(t+s)) }

is dynamically optimal in (2.3) for t € [0, T] (see Figure 1 below).

Proof. We assume throughout that the process X solves (2.1) with X, = x under P,
and can be realised by (2.2) under P for (¢,z) € [0,7]x(0,00) given and fixed. We will divide
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Figure 1. A computer drawing of the dynamically optimal boundary z + b%(x)
= b(t)/(c(1—2b(t))) in the nonlinear problem (2.3) for ¢ >0 and u > 0?/2,
where t — b(t) is the optimal stopping boundary in the linear problem (3.15)
uniquely solving the nonlinear Volterra integral equation (3.3).

the proof into nine parts. The first eight parts will establish static optimality (Part I) and the
final ninth part will establish dynamic optimality (Part II).

(I): In the first part of the proof we will establish that the stopping time (3.1) is statically
optimal in (2.3). We will divide this part of the proof into eight parts as follows.

1. Linearisation. Note that the optimal stopping problem (2.3) reads
(35) V(t, .T;) = sup F(Et,x(Xt+T>7 Et,I<Xt2+T))

0<T<T—t
where the convex nonlinear function F' : (0,00) % (0,00) is given by
(3.6) F(a1,2) = 71 — (w9 — 27)
for (z1,22) € (0,00) % (0,00) . Applying a first-order convexity condition we find that

(3.7) F(y1,y2) > F(x1,22) + Fyy (21, 22) (1 —21) + Fop (1, 22) (y2 —22)

F( )

F(z1,22) + (142cx1) (1 —21) — c(y2—22)
F( ) — ) —

F( ) —

8

1, T2 [(?JQ_@ ( +2x1)(y1—x1)}

c[Galy1,y2) — Ga(x1,22)]

L1, T2
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where the linear function G, : (0,00) % (0,00) is given by
(38) G)\(l'l,l‘g) = X9 — )\.731

and we set A = 2+2xy for (w1,22) and (y1,42) in (0,00) % (0,00). This shows that if
(x1,22) is given and (y1,y2) is chosen so that Gy(y1,y2) < Gi(xy,z2) with A = l—i—2x1,
then F(yi,y2) > F(x1,22) . In particular, if (21(0),22(0)) = (Etu(Xito), Et,x(Xt2+g)) for a
stopping time o with values in [0,7—¢] given and fixed, then the minimiser (y;(A),y2(\)) of
G(z1(7), z2(7)) over all stopping times 7 with values in [0,7—t] for A = 142z(c) satisfies

(3.9) F(yl()\),yg()\)) > F(a:l(a),xg(a)) )

This motives us to consider the optimal stopping problem

(3.10) inf G, (1’1(7')7 952(7'))

0<r<T—t

with A > 0 given and fixed. After we solve that problem we will apply exactly the same
argument using (3.7) above to (y1(A),y2(A)) in place of (z1(0),z2(0)) and proceed inductively
in exactly the same way further until we reach the maximiser of F(x;(0),z2(c)) over all ¢ in
the limit. This will be realised in the remaining seven parts of the proof.

2. Linear problem. The optimal stopping problem (3.10) reads more explicitly as follows

(3.11) Va(t,z) = inf By (X7, —AXr)

0<r<T—¢

for (t,z) € [0,7]x(0,00) and A > 0 where 7 is a stopping time of X . This is a linear
problem and we can make use of known techniques to solve it (see e.g. [14]).

3. Measure change. Looking at (3.11) and recalling (2.2) above note that
(312) Et@ (Xt2+7' )\Xt+7') - Et,x [Xt+T(Xt+T_>\)}
=aE[Z, " (XF-N)] = xE[e“T(Xf—)\)]
= \w Et,x/)\[ XH—T }

where dP = ZpdP with Zp = e?Br—(c%/2T By the Girsanov theorem we know that B; =
B;—ot is a standard Brownian motion under P for ¢ € [0,7] so that X under P,, solves

(3.13) dXyys = (402 Xisds + 0 X, dB,

with X; =z for (¢,z) € [0,7]x(0,00) . From (3.12) we see that
(3.14) Va(t, ) = Az V (t,z/\)

where the value function V is given by

(3.15) V(t,x) = inf E..[e" (X —1)]

0<r<T—t

for (t,x) € [0,T]x(0,00) . To solve (3.15) we first look at its infinite horizon version.
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4. Infinite horizon. If the horizon T in (3.15) is infinite then the value function reads

(3.16) V(z) = inf E.[e" (X, —1)]

where X under st solves
(317) dXt = (M+02)Xt dt+UXt dét
with Xg =2 for x > 0 and hence has the infinitesimal generator given by

d o ,d?
1 Ly = 2y Ly T2t
(3.18) x = (u+o )mdx +52 73

Solving (3.16) we find that the stopping time
(3.19) mn=inf{t>0| X, >b}

is optimal, where b is given by

/')/
1+

(3.20) b= if v<1ie p<o?2

1
=3 if v>1 ie pu>o%2

upon recalling that v = u/(6%/2) , and the value function V is given by

(3.21) V(z) 1( i )lﬂ iy <1 i p<oy2
_ x) = ——(—— 7 ie. o
~\17 RS S
1
= —Zx_l if v>1 ie pu>oc%2

for 0 <z <b with V(x):x—l for . >b.
Indeed, from (3.16) we see that V' and b should solve the free-boundary problem

(3.22) (Lx+p)V(z)=0 for = € (0,b)
(3.23) V(b) =b—1 (instantaneous stopping)
(3.24) V'(b) =1 (smooth fit) .

On closer look one also finds from (3.16) that z +— V(x) is increasing and concave on (0, 00)
with V(z) <z —1 for z € (0,b) and V(z) =2 —1 for « > b where both V' and b are to
be found. Solving the Cauchy-Euler equation (3.22) we find that

(3.25) V(r)=Az"+Ba ' if y#1
= Az '+Batlogz if y=1

for x > 0. By Itd’s formula and the optional sampling theorem one finds that the value
function (3.16) dominates every solution (3.25) to the free-boundary problem (3.22)-(3.24).
For this reason we are naturally led to choose the maximal solution (3.25) which (for small
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x > () is obtained by setting B =0 when v <1 and A =0 when ~ > 1. This yields (3.20)
and (3.21) above as candidate solutions. Verification that these are true solutions can then be
carried out by Itd’s formula and the optional sampling theorem using standard arguments (see

e.g. [14]).

5. Finite horizon. Returning to (3.15) when the horizon T is finite, and setting G(x) :=
x —1 for x >0, we see that the value function reads

(3.26) V(t,z) = Ogirglg B ("G (Xp4r)]

where X solves (3.13) with X, = z under P,, for (¢,z) € [0,7]x(0,00) . Using (3.18) we
find that H(z) := (Gi+ LxG+uG)(z) = 2u+0?)z—p for z > 0. Solving (3.26) based on
the shape of H we find that the stopping time

(3.27) 7 =inf{s € [0,T—t] | Xiys > b(t+s) }

is optimal, where ¢ +— b(t) can be characterised as the unique continuous decreasing solution
to the nonlinear Volterra integral equation

T—t

(3.28) G(b(t)) = e"TVE, ) [G(XT)] - /0 " Epp [H(Xigs) I(Xirs > blt+5))] ds

satisfying b(t) > v/(2(147)) for t € [0,T), and the value function V is given by

(3.29) V(t,z) = " VE, [G(X7)] _/T_te#s Evo[H(Xips) [(Xips > b(t+5))] ds

0
= H(T=D) [gelnto?)T—0) 1]

T—t log LS —+ ,U+U—2)S
—|—u/ e“%ﬁ( (b(t+)) 5 ds if 0 <z <b(t)
0 o\/s

=x—1if x> b(t)

for (t,x) € [0,T]x(0,00). [The solution b satisfies b(0) < (1/2) A (v/(1+47)), where the
right-hand side equals (3.20) above, and b(T) = v/(2(14+7)) (see Figure 1 above).]

Indeed, noting that t — V(t,z) and z +— V(t,x) are increasing and z — V(t,z) is
concave, and applying the change-of-variable formula with local time on curves from [12] to
ers V(t+s,Xt+s) , one obtains (3.29) by the optional sampling theorem upon using that the
(vertical) smooth fit holds at b (cf. [5]). Inserting = = b(f) in (3.29) one obtains (3.28) or
equivalently (3.3) above. To show that b is a unique solution to (3.3) i.e. (3.28) one can
adopt the four-step procedure from the proof of uniqueness given in [6, Theorem 4.1] extending
and further refining the original uniqueness arguments from [13, Theorem 3.1]. Given that the
present setting creates no additional difficulties we will omit further details of these verifications.

6. Solution to linear problem. Returning to the linear problem (3.11) and recalling (3.14)
we see that Vy(¢t,z) = 2>~ Az if and only if V(¢,2/)\) = (z/\)—1 showing that (¢,x) belongs
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to the stopping set in (3.11) if and only if (¢,2/A) belongs to the stopping set in (3.15). It
follows therefore that the stopping time

(3.30) 7(\) =inf {s € [0,T—t] | Xyprs > Ab(t+5) }

is optimal in (3.11) where A >0 and b is given in (3.27)-(3.28) above.

7. Linearisation continued. Having solved the linear problem (3.11) and recalling that (3.11)
is equivalent to (3.10), we know that the minimiser in (3.10) equals

(3.31) (11(A), 12(N) = (Ere(Xegry)s Eva(X2iry )

and satisfies (3.9) above when A = 2+42x(0) for (z1(0),22(0)) = (Eto(Xito), Era(XEs,))
with any stopping time o with values in [0,7—t] given and fixed. Applying exactly the same
argument using (3.7) above to (y1(A),y2(A)) in place of (z1(0),z2(0)) upon setting

(3.32) A= 2420 (N)
we obtain the first inequality in

(3.33) Fy(M) 2(M) = F(y1(A),12(N) = F(21(0), 22(0)) -

where (y1(A\1),y2(A1)) = (Et,x(XHTb(Al)), Et’x(Xt2+Tb()\1))) is the minimiser in (3.10) with X\,
in place of A while the second inequality in (3.33) follows by (3.9) above. Continuing by
induction and applying exactly the argument using (3.7) above to (y1(\,),y2(An)) in place of
(y1(An=1),y2(An_1)) with Ao := A upon setting

1
(3.34) Ang1 = T 2y1(An)
we obtain the first inequality in

(3.35)  F(y1(Ans1), 2(Ans1)) = F(y1(Mn), 12(An)) = oo = F(y1(A),12(N) > F(21(0), 22(0))

where (y1(Aps1), Y2(Ans1)) = (Et7$(Xt+Tb(>\n+1))7 EW(XEMWH 1))) is the minimiser in (3.10) with
Ant1 in place of A for n > 1 while the remaining inequalities in (3.35) follow inductively from
(3.33) above. It is now tempting to pass to the limit in (3.34) as n — oo . We will show in the
next part below that this is possible. The limit A. = A.(¢,z) of A\, as n — oo solves

1
(3.36) Ae =~ 420 (A)

which is the same equation as (3.2) above. Moreover, the convergence of A, to A. is monotone
so that not only ;(A\,) converges to y;(A.) by construction (fixed point) but also ya(A,)
converges to ys(A.) by the monotone convergence theorem as n — oo . Passing to the limit
in (3.35) as n — oo then yields

(3.37) F(yi(Ae), v2(Ae)) = F(z1(0), 22(0)) .

for any stopping time o with values in [0,7—t] . Recalling (3.5) this shows that the stopping
time (3.1) is statically optimal in (2.3) as claimed.
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8. Fized point. The right-hand side of (3.34) may be viewed as the n-th iterate of the
mapping f : (0,00) — (0,00) defined by

(3.39) FO) = 1+ 200

for A >0 where y;(A) = E¢2(Xiyr,) and 7,(A) is given by (3.30) above. The convergence
in (3.34) can then be seen as the statement of a fixed-point theorem. To examine the properties
of f to this end note that

(3.39) x — By 2(Xiyr,(n) is increasing
(3.40) A= Ero(Xign,(n)) Is increasing
where (3.39) follows from the fact that b is decreasing and (3.40) follows from the fact that X
is a submartingale due to p > 0. From (3.39) we see that A +— f(\) is increasing on (0, 00) .

Moreover, noting that E,,(X;in0) = if > Ab(t) i.e. A <x/b(t), we see that f'(A) =0
for A€ (0,z/b(t)] . If A > x/b(t) i.e. x < Ab(t) then

, , 0 0
BA) PO =20 =2 S B (X y) =2 1
r 0

=2 Et,z/)\<Xt+Tb) - X % Et,I(XtJFTb)‘x:x/)\]

2
X Eto(Xitn0)

< ;)\b(t) — b < 1

AEqe/n (X))
S 2 Et,:):/)\ (Xt+Tb) =

where in the third equality we use (2.2) above, in the first inequality we use (3.39) above, in the
second (strict) inequality we use the fact that b is (strictly) decreasing, and in the third (final)
inequality we use (3.20) above. This shows that f is a contractive mapping and hence by the
Banach fixed-point theorem there exists a unique fixed-point of f on (0,00), i.e. a unique
point . = A.(t,x) in (0,00) such that f(A.) = A.. This establishes (3.36) or equivalently
(3.2) as claimed. Moreover, using that A — f()\) is increasing (and differentiable) one can
easily verify that the iterates A,.1 := f(\,) for n >0 satisfy A, T A. if \g < Ao and A\, | A
if A\g > A, as n — oo . This completes the first part of the proof.

(IT): In the second part of the proof we will make use of the facts derived in the first part
of the proof and establish that the stopping time (3.4) is dynamically optimal in (2.3).

9. Dynamic optimality. Recall that for (¢,x) € [0,T]x(0,00) given and fixed there exists a
unique A = A (t,x) solving (3.2) where 7,() is given by (3.30) above. From this fact we can
derive the following characterisation of the time-space points (t,z) in [0,7]x(0,00) at which
it is optimal to stop at once

1
(3.42) > AN(t) <= A=—-+2z.
c

Indeed, if & > Ab(t) then 7,(A) = 0 by (3.30) so that A = 1+ 2z by (3.2). Conversely, if
A =2+2z then A solves (3.2) with 7,(A) =0 so that = > Ab(¢) by (3.30) as claimed. From
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(3.42) we can then infer further that

1 1 b(t)

(343) o> M\b(l) & <a: > A\b(t) & A= C—I—2x> s> <C+2x>b(t) Sz o

where the first equivalence follows by (3.42) and the third equivalence is evident. For the second
equivalence note that if « > Ab(t) & A = 142z then evidently = > (142z)b(t) . On the
other hand, if = > (1+2x)b(t) then setting A = 142z we see that (3.2) is satisfied because
x > Ab(t) implies that 7,(A\) = 0. By the uniqueness of the solution to (3.2) we can then
concluded that A\ = %+2x indeed and z > Ab(t) as needed. From the equivalence between
the first expression and the final expression in (3.43) we can then conclude that a time-space
point (t,z) in [0,7]x(0,00) is dynamically optimal if and only if = > b(t)/(c(1—2b(t))) (see
Figure 1 above). This establishes that the stopping time (3.4) is dynamically optimal in (2.3)
as claimed and the proof is complete. [l

Remark 4. To shed light on the optimality condition (3.2), note that (3.9) combined with
(3.10) and (3.31) shows that the optimal stopping time in (2.3) i.e. (3.5) is of the form (3.30)
for some A > 0 to be found. Recalling the notation from (3.31) we thus see that the problem
(3.10) can be equivalently rewritten as follows

(3.44) inf G (y1(%), y2(k))

where G is given by (3.8) above, so that a first-order condition at the optimal point A > 0
to be found reads as follows

(3.45) Yo(A)=Ayi(A) = 0.
Moreover, the problem (3.5) can then be equivalently rewritten as follows

(3.46) sup F(y1(k), y2(k))

k>0

where F' is given by (3.6) above, so that a first-order condition at the optimal point A > 0 to
be found reads as follows

(3.47) i (V) —c(a(N) =21 (Ni (V) = 11 () =My () =251 (Vi (A)) =0

where we use (3.45) in the first equality. From (3.47) we see that a first-order condition in the
problem (2.3) i.e. (3.5) reads

(3.48) A= % +2y1(\)

and this is exactly the condition (3.2) above. These somewhat informal arguments show that
the condition (3.2) is necessary for the (static) optimality in (2.3). The result of Theorem 3
above establishes its sufficiency.

Remark 5. The method of proof used in [11] to solve the problem (2.3) when the horizon
T is infinite is not applicable when T is finite. This is because that method of proof makes an
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essential use of explicit expressions for the value function and the optimal stopping boundary
in (3.11) that are no longer available when 7' is finite. The method of proof developed above
to solve the problem when 7' is finite is applicable when T is infinite as well. Indeed, the
proof in the latter case can be carried out in exactly the same way and the conclusions remain
the same. For example, from (3.20) we see that b = (1/2) A (v/(1+7)) and from (3.43) we
see that the dynamically optimal stopping point equals b/(c(1—2b)) which thus further equals
v/(c(1=7)) if v € (0,1) ie. u€ (0,0%2) and formally equals oo if v>1 ie. pu>oc%2 as
both found in [11] as well.

Remark 6. On closer look one sees that the linear problem (3.11) plays a central role in
both methods of proof addressed in the previous remark. The method of proof used in [11]
relies upon conditioning on the size of the expected value of the process stopped at a given
stopping time. This conditioning removes the (quadratic) nonlinearity of the variance and leads
to (3.11) as the Lagrangian of the constrained problem. The method of proof developed above
relies upon a first-order converity condition which also removes the (quadratic) nonlinearity of
the variance and provides (3.11) as a generator of more optimal values. Both methods may
thus be seen as methods of linearisation and both of them are intimately related to the method
of Lagrange multipliers itself. Note that the nonlinearity being quadratic is not essential and
both methods are applicable in the cases of more general nonlinearities as well.

4. Dynamic smooth fit principle

In this section we prove the remarkable fact that the static value function associated with
the dynamically optimal stopping time (3.4) in the nonlinear problem (2.3) satisfies the smooth
fit principle. More specifically, let

(4.) VAt ) = Era(Xypra) e Varo(Xo. o)

for (t,z) € [0,T]x(0,00) and ¢ > 0, where 72 is the dynamically optimal stopping time in
(2.3) given by (3.4) above. Setting

(12) b0 =

where t +— b(t) is the unique continuous decreasing solution to (3.3), we see that (3.4) reads
(4.3) 4 =inf{s € [0,T—t] | X¢ys > bl (t+5)}
for t € [0,T] (see Figure 1 above).

Theorem 7 (Smooth fit). We have

(4.4) x— VL, ) is continuously differentiable at b?(t) with
ove

45 “(t,00(t) =1

(45) ()

for every t € [0,T7].
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Proof. Let t € [0,7) be given and fixed (note that both (4.4) and (4.5) hold trivially
when ¢t = T because VI(T,x) = z for z > 0). Set z := b%(t) and take any z, | = as
n — oo . Passing to a subsequence if needed there is no loss of generality in assuming that

d AUt o +e,)— Vit 2,
(4.6) lim inf aaL(t,xn) — lim V(L xnten) = V7L, 1)
n—oo T N—0o gn

for some ¢, | 0 as n — oo with z,+e, <z for n > 1. Let 7, := 7(\,) with A\, := A.(t, z,,)
denote the statically optimal stopping time (3.1) in the problem (2.3) for n > 1.

1. We claim that
(4.7) Tp — 0
P-almost surely as n — oo . For this, first note that
(4.8) Ty < Apb(t) < V(1)

for n > 1. Indeed, for the first (strict) inequality suppose that x, > \,b(t) for some n > 1.
Then by (3.43) we have z,, > b%(t) which is a contradiction because z, < x = b%(t) . Moreover,
for the second inequality recall using (3.40) that A +— f(A) defined in (3.38) is increasing so
that x — A.(t,z) solving (3.36) uniquely is increasing as well on (0, 00) . It thus follows that

(4.9) Anb(t) = Ao(t, 2,)b(t) < Ao(t, 2)b(t) = b(1)

for n > 1 as claimed, where the second (final) equality follows upon recalling that z = b%(t)
and using (3.43) with equalities throughout. This establishes (4.8) as claimed. Next note that
by letting n — oo in (4.8) and using that z, Tz = b%(t) we find that

(4.10) Anb(t) T 02(t)
as n — oo . Hence using that ¢+ b(t) is decreasing we see by (2.2) above that
(4.11) To = Tp(An) =1inf { s € [0, T—t] | X7y > Aub(t+s) }

<inf{s e [0,7—t] | X;, > Ab(t) }

=inf {s €[0,7—1] | B, > L log (Alb(t))—(g—%)s} —0

n

as n — oo because a, := (1/0)log(\,b(t)/x,) — 0 as n — oo by (4.10) above and s — bs
is an upper function for B for every b > 0 (as well as b < 0 trivially). From (4.11) we see
that (4.7) holds as claimed.

2. Focusing on the right-hand side in (4.6) we find using (2.2) that

(4.12) VAt zpten) =Vt 2,) > E(X ) —cVar (Xt ) —E(XE. ) +cVar (X, )

t+7n t+7 t+7n t+7n
= E(Xip = X, ) —cB (X7 )" = (X, )]
+e[(EXTr)? = (X, )]

= E(antl+rn) —cE(2¢&, (th+7n)25n) +c2n, [E (Xt1+rn>]25n
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for some ¢, and 7, in (x,,x,+¢€,) for n > 1 by the mean value theorem. Dividing both
sides in (4.12) by ¢, and letting n — oo we find from (4.6) that

d
(4.13) lim inf aav* (t,z,) > 1

n— oo T

upon using (4.7) above.

3. Similarly, there is no loss of generality in assuming that

d d _1/d _
(4.14) lim sup aai(t7 z,) = lim VAt x,) = V(L v —en)
x

n—00 n—00 En

for some ¢, | 0 as n — oo with z,—e, > 0 for n > 1. Focusing on the right-hand side in
(4.14) we find using (2.2) that

(4.15) VAt zn) =Vt xn—c,) < E(XT )—cVar(X, )—E(X ") +cVar (X5 )

t+7n t+Tn t+7n +7n
= E(X{p,, —X{ o) —cE[(Xir, )P = (X))
+e[(EXfr, ) = (EX[7oo)?

= E(enX ., ) —cE(26, (X}, ) %en) +e2m, [E(XG, )Pen

for some &), and 7], in (x,—epn,x,) for n >1 by the mean value theorem. Dividing both
sides in (4.15) by ¢, and letting n — oo we find from (4.14) that

ova
41 I Tt m,) < 1
(4.16) msup —- (t,zn) <

upon using (4.7) above. Combining (4.13) and (4.16) we see that (4.4) and (4.5) hold as claimed
and the proof is complete. O

Acknowledgements. The authors gratefully acknowledge support from Villum Fonden
(Grant 17617).

References

[1] Buonacuipi, B. (2015). A remark on optimal variance stopping problems. J. Appl.
Probab. 52 (1187-1194).

[2] Buonacuipi, B. (2018). Dynamic optimality in optimal variance stopping problems.
Statist. Probab. Lett. 141 (103-108).

[3] CHRISTENSEN, S. and LINDENSJO, K. (2018). On finding equilibrium stopping times for
time-inconsistent Markovian problems. SIAM J. Control Optim. 56 (4228-4255).

[4] CHRISTENSEN, S. and LINDENSJO, K. (2020). On time-inconsistent stopping problems
and mixed strategy stopping times. Stochastic Process. Appl. 130 (2886-2917).

14



[5]

DE ANGELIS, T. and PESKIR, G. (2020). Global C! regularity of the value function in
optimal stopping problems. Ann. Appl. Probab. 30 (1007-1031).

Du Torr, J. and PESKIR, G. (2009). Selling a stock at the ultimate maximum. Ann.
Appl. Probab. 19 (983-1014).

GAD, K. S. T. and MATOMAKI, P. (2020). Optimal variance stopping with linear diffu-
sions. Stochastic Process. Appl. 130 (2349-2383).

MarkowiTz, H. M. (1952). Portfolio selection. J. Finance 7 (77-91).

MILLER, C. W. (2017). Nonlinear PDE approach to time-inconsistent optimal stopping.
SIAM J. Control Optim. 55 (557-573).

PEDERSEN, J. L. (2011). Explicit solutions to some optimal variance stopping problems.
Stochastics 83 (505-518).

PEDERSEN, J. L. and PESKIR, G. (2016). Optimal mean-variance selling strategies. Math.
Financ. Econ. 10 (203-220).

PESKIR, G. (2005). A change-of-variable formula with local time on curves. J. Theoret.
Probab. 18 (499-535).

PESKIR, G. (2005). On the American option problem. Math. Finance 15 (169-181).

PESKIR, G. and SHIRYAEV, A. N. (2006). Optimal Stopping and Free-Boundary Problems.
Lectures in Mathematics, ETH Ziirich. Birkhauser.

Peter Johnson Jesper Lund Pedersen

Department of Mathematics Department of Mathematical Sciences
The University of Manchester University of Copenhagen

Oxford Road Universitetsparken 5

Manchester M13 9PL DK-2100 Copenhagen

United Kingdom Denmark

peter. johnson-3@manchester.ac.uk  jesper@math.ku.dk

Goran Peskir

Department of Mathematics
The University of Manchester
Oxford Road

Manchester M13 9PL

United Kingdom
goran@maths.man.ac.uk

15



