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to Uniform Ergodic Theorems

GORAN PESKIR

The purpose of these lectures is to present three different approaches with

their own methods for establishing uniform laws of large numbers and uni-

form ergodic theorems for dynamical systems. The presentation follows the

principle according to which the i.i.d. case is considered first in great de-

tail, and then attempts are made to extend these results to the case of more

general dependence structures. The lectures begin (Chapter 1) with a re-

view and description of classic laws of large numbers and ergodic theorems,

their connection and interplay, and their infinite dimensional extensions to-

wards uniform theorems with applications to dynamical systems. The first

approach (Chapter 2) is of metric entropy with bracketing which relies upon

the Blum-DeHardt law of large numbers and Hoffmann-Jørgensen’s exten-

sion of it. The result extends to general dynamical systems using the uniform

ergodic lemma (or Kingman’s subadditive ergodic theorem). In this context

metric entropy and majorizing measure type conditions are also considered.

The second approach (Chapter 3) is of Vapnik and Chervonenkis. It relies

upon Rademacher randomization (subgaussian inequality) and Gaussian ran-

domization (Sudakov’s minoration) and offers conditions in terms of random

entropy numbers. Absolutely regular dynamical systems are shown to sup-

port the VC theory using a blocking technique and Eberlein’s lemma. The

third approach (Chapter 4) is aimed to cover the wide sense stationary case

which is not accessible by the previous two methods. This approach relies

upon the spectral representation theorem and offers conditions in terms of

the orthogonal stochastic measures which are associated with the underlying

dynamical system by means of this theorem. The case of bounded variation

is covered, while the case of unbounded variation is left as an open question.

The lectures finish with a supplement in which the role of uniform conver-

gence of reversed martingales towards consistency of statistical models is

explained via the concept of Hardy’s regular convergence.
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PREFACE

These lecture notes are on the uniform law of large numbers with a view to uniform

ergodic theorems for dynamical systems. Our main aim was not to give the final word on the

subject, but to motivate its development. As two disjointed subject areas (modern probability

theory of empirical processes and classic theory of ergodic theorems) are coming across and

interacting in these notes, the reader requires some familiarity with both probability and ergodic

theory. In order to aid the reading and understanding of the material presented we have tried to

keep technical complexity to a minimum. Occasionally, we needed to refer to other literature

sources for the reader to obtain additional information, but despite this fact we believe that the

main text is self-contained. We also believe that a reader belonging to either of the subject

areas mentioned should have no difficulty in grasping the main points and ideas throughout.

Moreover, if we succeed in stimulating further work, our aim will be gladly accomplished.

Aarhus, August 1998 Goran Peskir
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1. Introduction

The aim of these lectures is to present solutions to the following problem. Given a dynamical

system (X;A; �; T ) and a family F of maps from X into R , find and examine conditions

under which the uniform ergodic theorem:

(1.1) sup
f2F

���� 1n
n�1X
j=0

f(T j) �
Z
X
f d�

���� ! 0 �-a.a.

is valid as n!1 . This problem is fundamental in many ways, and it was only recently realized

(see Section 1.3 below) that it has not been studied previously, except in a rather special (i.i.d.) case

(the Glivenko-Cantelli theorem), or a very general (operator) case (the Yosida-Kakutani theorem).

1. Our approach towards (1.1) in these lectures is the following. We first consider a particular

case of (1.1) where (X;A; �) equals the countable product of a probability space with itself, and

where T equals the (unilateral) shift. In this case (1.1) reduces (see Section 1.2 below) to the

well-investigated uniform law of large numbers:

(1.2) sup
f2F

���� 1n
nX
j=1

f(�j) �Ef(�1)

���� ! 0 �-a.s.

where f�j j j � 1g is an i.i.d. sequence of random variables and n ! 1 . In this context we

first present known methods for the uniform law of large numbers in great detail, and then try to

extend them towards (1.1) in a case as general as possible.

2. The methods we present in this process are the following. First, we consider the Blum-

DeHardt approach (Chapter 2) which uses the concept of metric entropy with bracketing. It appeared

in the papers of Blum [7] and DeHardt [15], and presently offers the best known sufficient condition

for (1.2). A necessary and sufficient condition for (1.2) which involves the Blum-DeHardt condition

as a particular case was found by Hoffmann-Jørgensen [39]. It was shown later in [66] and [67]

that this result extends to (1.1) in the case of general dynamical systems. Second, we consider the

Vapnik-Chervonenkis approach (Chapter 3) which uses the concept of random entropy numbers. It

appeared in the papers of Vapnik and Chervonenkis [89] and [90]. It was shown in [68] that this

result extends to (1.1) in the case of absolutely regular dynamical systems. Third, since both of

the previous two methods could adequately cover only the (strict sense) stationary ergodic case, we

make an independent attempt in Chapter 4 to treat the wide sense stationary case. Our approach

in this context relies upon the spectral representation theorem and offers conditions in terms of the

orthogonal stochastic measures. From the point of view of applications, we find it useful to recall

that (1.1) and (1.2) play an important role in establishing consistency of statistical models. In this

context reversed martingales happen to form a natural framework for examination. It turns out that

the concept of Hardy’s regular convergence is precisely what is needed to serve the purpose, and

details in this direction are presented in the Supplement (see also Section 1.4 below).

3. We would like to point out that (1.2) represents the first and the most natural example of an

infinite dimensional law of large numbers ( with F from the classic Glivenko-Cantelli theorem

for instance ). One should also observe that (1.2) can be viewed as a law of large numbers in the

(non-separable) Banach space of bounded functions with the supremum norm. Moreover, it may

be noted that (1.2) involves the classic law of large numbers in any separable Banach space B .

It clearly follows upon recalling that kxk = supf�2S1 jf�(x)j for all x 2 B , where S1 denotes
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the unit ball (or a smaller subset which suffices) in the dual space B� of B . For these reasons

it is clear that (1.1) may be viewed as an infinite dimensional Birkhoff’s (von Neumann’s) ergodic

theorem. More details in this direction will be presented in Section 1.3 below.

4. In Section 1.1 we review the essential aspects from ergodic theory (and physics) which

additionally clarify the meaning and importance of (1.1). We hope that this material will help

the reader unfamiliar with ergodic theory to enter into the field as quickly as possible. For more

information on this subject we further refer to the standard monographs [14, 17, 26, 36, 44, 47,

52, 70]. In Section 1.2 we review the essential facts on law of large numbers, and display its

fundamental connection with ergodic theorem. This is followed in Section 1.3 by its infinite

dimensional extension in the form of the uniform law of large numbers (1.2) which originated in

the papers of Glivenko [34] and Cantelli [13]. For more information on the extensive subject of

empirical processes we refer to the standard monographs [18, 20, 27, 28, 54, 73, 74, 88].

5. One may observe that certain measurability problems related to (1.1) and (1.2) could (and do)

appear (when the supremums are taken over uncountable sets) which is due to our general hypotheses

on the family F . Despite this drawback we will often assume measurability (implicitly) wherever

needed. We emphasize that this simplification is not essential and could be supported in quite a

general setting by using the theory of analytic spaces. Roughly speaking, if F is an analytic

space and the underlying random function (x; f) 7! G(x; f) is jointly measurable, then the map

x 7! supf2F G(x; f) is �-measurable (see [43] p.12-14). This is a consequence of the projection

theorem. Moreover, in this case the measurable selection theorem is available, as well as the image

theorem (see [43] p.12-14). It turns out that these three facts are sufficient to support the VC

theory in Chapter 3, although for simplicity we do not provide all details. Another approach could

be based upon a separability assumption which would reduce the set over which the supremum is

taken to a countable set. Finally, even the most general case of an arbitrary family F could be

successfully treated using the theory of non-measurable calculus involving the upper integral (see

[1] and [62]). This is done in Chapter 2, while in Chapter 4 such details are omitted.

6. There are numerous applications of the results presented and we would like to make a few

general comments on this point. The uniform ergodic theorem (1.1) treated in these lecture notes

appears fundamental as an infinite dimensional extension of the Glivenko-Cantelli theorem and

classic ergodic theorems (see Section 1.3). A clear way of getting a good feeling for applications is

first to understand the meaning of the classical Glivenko-Cantelli theorem in the i.i.d. context, and

then to replace this with the context of any dynamical system. This sort of reasoning is displayed

in the Supplement where the consistency problem for statistical models is treated in detail. Another

class of applications comes solely from ergodic theory. For this, it is enough to think of the meaning

of Birkhoff’s ergodic theorem in the context of a single dynamical system, in order to see what the

meaning and applications of an infinite dimensional ergodic theorem (1.1) would be in the context

of a family of such systems (in foundations of statistical mechanics for instance). Details in this

direction are presented in Section 1.4.

7. We believe that our exposition in these lectures serves a purpose for at least two reasons.

First, our approach tries to unify probability theory and ergodic theory as much as possible. (We

believe that this interaction is of considerable interest in general.) Second, our approach relies in

part upon the theory of Gaussian processes (Chapter 3) and harmonic analysis (Chapter 4), and in

part upon the theory of martingales (Supplement).

2



1.1 Ergodic Theorem

Before passing to an up-to-date formulation of the ergodic theorem we shall first look back at

its origin. In order to understand fully the meaning of an ergodic theorem, it is indispensable to

comprehend historically the first example of Hamiltonian dynamics. For more information in this

direction we refer the reader to the excellent exposition [47].

1. The study of ergodic theory originated in problems of statistical mechanics. In this context

one considers a mechanical system with d degrees of freedom, the states of which are described

by values of the Hamiltonian variables:

(1.3) q1; . . . ; qd ; p1; . . . ; pd

which form a phase space X being assumed a subset of R2d . For example, a system could

consist of N particles (of a gas) each of which has 3 coordinates of position and 3 coordinates

of momentum, so in this case d = 3N . By the laws of nature, the state of a system at any given

time determines its state at any other time. The equations of motion of the system are:

(1.4)
dqi
dt

=
@H

@pi
,

dpi
dt

= �@H
@qi

( 1� i� d )

where H = H(q1; . . . ; qd ; p1; . . . ; pd) is the so-called Hamiltonian function. It follows from

(1.4) that H does not depend on time:

(1.5)
dH

dt
� 0 .

Typically, the Hamiltonian function H is the sum of the kinetic and potential energy of the system:

(1.6) H = H(q; p) = K(p) + U(q)

where p = (p1; . . . ; pd) is a (generalized) momentum and q = (q1; . . . ; qd) is a (generalized)

position. By the theorem on the existence and uniqueness of solutions of first order differential

equations, the system (1.4) determines uniquely the state Tt(x) at any time t if the initial

state of the system was x = (q; p) 2 X . Thus, when time passes by, all the phase space

X is transforming into itself, and this clearly happens in one-to-one and onto way. The motion

generated by equations (1.4) may be called the natural motion of the system, and this motion is

clearly stationary (independent of the time shift). In other words, the identity is satisfied:

(1.7) Tt � Ts = Tt+s

for all s ; t 2 R . In this way a one-parameter flow (Tt)t2R on the phase space X is obtained.

The special form of the system (1.4) indicates that not every transformation of the phase space

into itself can appear as its natural motion. It turns out that the natural motion has some special

properties. The two most important ones (upon which the whole statistical mechanics is based) are

formulated in the following two theorems.
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Liouville’s Theorem 1.1

The Lebesgue measure of any Lebesgue measurable set A � X equals the Lebesgue measure

of its image Tt(A) for all t 2 R .

Proof. Set At = Tt(A) for t 2 R , and let � denote Lebesgue measure in R2d . By

the natural change of variables we have:

�(At) =

Z
At

dx1 . . . dx2d =

Z
A
J(t; y1; . . . ; y2d) dy1 . . . dy2d

where J = J(t; y1; . . . ; y2d) is the Jacobian of (x1; . . . ; x2d) at (y1; . . . ; y2d) . Hence:

d

dt
�(At) =

Z
A

@J

@t
dy1 . . . dy2d .

A straightforward calculation by using (1.4) shows:

@J

@t
� 0 .

Thus �(At) is constant for all t 2 R and equals to �(A0) = �(A) . The proof is complete.

Birkhoff’s Ergodic Theorem (for Hamiltonian Flow) 1.2

Let A be an invariant subset of X ( meaning Tt(A) � A for all t 2 R ) of finite Lebesgue

measure, such that it cannot be decomposed into:

(1.8) A = A1 [ A2

where both A1 and A2 are invariant subsets of X of strictly positive Lebesgue measure. Then

for any phase function f on X which is integrable over A we have:

(1.9) lim
�!1

1

�

Z �

0
f
�
Tt(x)

�
dt =

1

�(A)

Z
A
f(y) dy

for almost all x in A with respect to the Lebesgue measure � .

Proof. The reader should have no difficulty in constructing the proof of this theorem in this

particular case if first using the reduction to discrete time as indicated by (1.10)+(1.11) below and

then applying the general version of Birkhoff’s Theorem 1.6 stated and proved below.

2. The basic idea of statistical mechanics (Gibbs) is to abandon the deterministic study of one

state (which correspond to a point in the phase space) in favour of a statistical study of a collection

of states (which correspond to a subset of the phase space). Liouville’s Theorem 1.1 states that the

flow of natural motion of a system preserves the Lebesgue measure of any measurable subset of

the phase space. Birkhoff’s Theorem 1.2 states if the flow of natural motion of a system satisfies

property (1.8), then the time average of a phase function equals in the limit to its space average. Both

of these theorems have a clear physical meaning in the context of Gibbs’ fundamental approach.

The first property is named “measure-preserving”, and the second is called “ergodic”. We shall now

turn to their formal introduction by presenting a general setting which was used in the development

of modern ergodic theory. In light of the preceding example we believe that the reader will have
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no difficulty in comprehending the formalism of the objects and definitions to follow.

3. Before passing to formal definitions let us record yet another remark which should clarify the

presentation below. It concerns an easy reduction of the continuous time case to the discrete time

case in the problems on the limiting behaviour of the time average in (1.9). Due to the semigroup

property (1.7) we shall now demonstrate that the reduction mentioned in essence consists only of a

change of the phase function. Namely, if in the notation of Birkhoff’s Ergodic Theorem 1.2 above

we introduce a new phase function as follows (see Paragraph 1 in Section 3.8 below):

(1.10) F (x) =

Z 1

0
f
�
Tt(x)

�
dt

then by (1.7) we clearly have:

(1.11)
1

N

Z N

0
f
�
Tt(x)

�
dt =

1

N

N�1X
k=0

F
�
T k(x)

�
for all x 2 X , where we set T to denote T1 , so that T k equals Tk . This indicates that the

asymptotic behaviour of the integral in (1.11) is the same as the one of the sum in (1.11). For this

reason we shall be mainly interested in discrete time formulations of the results in the sequel, but

having understood the reduction principle just explained the reader will generally have no difficulty

to restate these results in the continuous parameter setting.

4. Dynamical systems. Let (X;A; �) be a finite measure space, where with no loss of

generality we assume that �(X) = 1 , and let T be a measurable map from X into itself. Such

a map will be called a transformation of X . A transformation T is said to be measure-preserving

if �(T�1(A)) = �(A) for all A 2 A . In this case we also say that � is T -invariant, and we

call (X;A; �; T ) a dynamical system. A set A 2 A is said to be T -invariant if T�1(A) = A .

The family AT of all T -invariant sets from A is clearly a �-algebra on X . A measurable

map f from X into R is said to be T -invariant if T (f) := f � T = f . It is easily verified

that f is T -invariant if and only if f is AT -measurable.

A measure-preserving transformation T is called ergodic if �(A) equals either 0 or 1
whenever A 2 AT . Then we also say that AT is trivial. Clearly T is ergodic if and only if

each T -invariant map is constant �-a.s. It is easily seen that T is ergodic if and only if:

(1.12)
1

n

n�1X
k=0

�
�
T�k(A) \ B

� � �(A)�(B) ! 0

for all A;B 2 A as n ! 1 .

A measure-preserving T is called strongly mixing, if we have:

(1.13) �
�
T�n(A) \ B

� � �(A)�(B) ! 0

for all A;B 2 A as n ! 1 , and T is called weakly mixing, if we have:

(1.14)
1

n

n�1X
k=0

�� ��T�k(A) \ B
� � �(A)�(B)

�� ! 0

for all A;B 2 A as n!1 . It is evident that every strongly mixing transformation is weakly
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mixing, and that every weakly mixing transformation is ergodic.

We shall conclude our definitions by stating some useful tips on ergodicity. Suppose we are

given an ergodic transformation T on a probability space (X;A; �) , and let A be from A .

Then if either A � T�1(A) or T�1(A) � A , we can conclude that �(A) is either 0 or 1 .

In particular, if T (A) � A then A � T�1(A) and the same conclusion holds. However, if we

only know that A � T (A) , then we cannot claim that �(A) is 0 or 1 . ( Take for instance

A = [0; 1=2[ in the case of a doubling transformation T in the end of this section.)

5. The earliest result on the asymptotic behaviour of the powers of a measure-preserving trans-

formation (when the measure space is finite) is due to H: Poincaré. Despite its simplicity this result

has become famous for its physical and philosophical implications (see [70] p.34-37).

Poincaré’s Recurrence Theorem 1.3

Let (X;A; �) be a finite measure space (with �(X) = 1), and let T be a measure-preserving

transformation of X . Then for each A 2 A almost all points in A are recurrent. In other words,

given A 2 A one can find N 2 A with N � A and �(N) = 0 , such that for any x 2 A nN
there exists n � 1 for which T n(x) 2 A .

Proof. Given A 2 A , consider the set:

(1.15) B = A \
� 1\
k=1

T�k
�
X n A�� .

Then clearly B ; T�1(B) ; T�2(B) ; . . . are disjoint sets, so as T is measure-preserving and

� is finite, we must have �(B) = 0 .

In this context it is instructive to note that T is ergodic if and only if the mean sojourn time

for almost all points in any measurable set equals the measure of the set: For any given A 2 A ,

there exists N 2 A with N � A and �(N) = 0 , such that:

(1.16) lim
n!1

1

n

n�1X
k=0

1A
�
T k(x)

�
= �(A)

for all x 2 A n N .

6. Our next aim is to restate and prove Birkhoff’s Ergodic Theorem 1.2. The key step in the

proof is contained in the following lemma which is formulated in a somewhat more general operator

setting. This formulation nevertheless seems to be the most natural one. We should recall that the

linear operator T in L1(�) is said to be a contraction in L1(�) if
R jTf j d� � R jf j d� for

all f 2 L1(�) . The linear operator T in L1(�) is said to be positive if T (f) � 0 whenever

f � 0 . Note that the finiteness of � is not used in the proof of the lemma, so its statement

holds for infinite measure spaces too.

Maximal Ergodic Lemma 1.4

Let T be a positive contraction in L1(�) , and let us for given f 2 L1(�) denote

An = fmax 1�k�n Sk(f)�0g where Sk(f) =
Pk�1

j=0 T
j(f) for 1�k�n . Then we have:

(1.17)

Z
An

f d� � 0 .

6



Proof. The main point in the proof is to establish the following inequality:

(1.18) f � max
1�k�n

Sk(f) � T

�
max
1�k�n

Sk(f)

�+
.

Once having (1.18) we can clearly conclude by using properties of T being assumed that:

(1.19)

Z
An

f d� �
Z
An

max
1�k�n

Sk(f) d� �
Z
An

T

�
max
1�k�n

Sk(f)

�+
d�

=

Z
An

�
max
1�k�n

Sk(f)

�+
d� �

Z
An

T

�
max
1�k�n

Sk(f)

�+
d�

=

Z
X

�
max
1�k�n

Sk(f)

�+
d� �

Z
An

T

�
max
1�k�n

Sk(f)

�+
d�

�
Z
X

�
max
1�k�n

Sk(f)

�+
d� �

Z
X
T

�
max
1�k�n

Sk(f)

�+
d� � 0 .

To verify the validity of (1.18) it will be enough to show that:

(1.20) f � Sk(f) � T

�
max
1�k�n

Sk(f)

�+
for all 1 � k � n . This inequality is evident for k = 1 . To proceed further for 1 < k � n
we shall note that due to:

(1.21)

�
max
1�k�n

Sk(f)

�+
� Sk(f)

the following inequality is satisfied:

(1.22) f + T

�
max
1�k�n

Sk(f)

�+
� f + TSk(f) = Sk+1(f)

for all 1 � k < n . This establishes (1.20) for all 1 � k � n , and the proof is complete.

When specialized to measure-preserving transformations, the Maximal Ergodic Lemma 1.4

may be refined as follows.

Maximal Ergodic Inequality 1.5

Let T be a measure-preserving transformation of a finite measure space (X;A; �) ( with

�(X) = 1), and let us for given f 2 L1(�) and � > 0 denote An;� = fmax1�k�n Sk(f)=k � �g
where Sk(f) =

Pk�1
j=0 T

j(f) for 1 � k � n . Then we have:

(1.23) �
n

max
1�k�n

Sk(f)=k � �
o
� 1

�

Z
An;�

f d� .

Proof. Note that:

7



(1.24) An;� =
n

max
1�k�n

Sk(f��)=k � 0
o
=
n

max
1�k�n

Sk(f��) � 0
o

.

Hence from (1.17) we get:

(1.25)

Z
An;�

(f��) d� � 0 .

However, this is precisely (1.23), so the proof is complete.

Note that by the monotone convergence theorem one can let n ! 1 in both (1.17) and

(1.23) and extend these inequalities to the case when the maximum is replaced by the supremum

taken over all k � 1 . We shall leave precise formulations of such extensions to the reader. The

inequalities obtained in such a way will be freely used below.

We need the following definition to identify the limit in the next theorem. Let (X;A; �) be a

finite measure space with �(X) = 1 , let B � A be a �-algebra, and let f 2 L1(�) be given.

Then E(f j B) denotes the conditional expectation of f given B . It is the element of L1(�)
which is characterized by being B-measurable and satisfying:

(1.26)

Z
B
E(f j B) d� =

Z
B
f d�

for all B 2 B . Its existence follows easily by the Radon-Nikodým theorem (see [19]).

Birkhoff’s (Pointwise) Ergodic Theorem 1.6

Let T be a measure-preserving transformation of a finite measure space (X;A; �) ( with

�(X) = 1 ), and let f 2 L1(�) be given and fixed. Then we have:

(1.27)
1

n

n�1X
k=0

T k(f) ! E(f j AT ) �-a.s.

as well as in L1(�) as n ! 1 .

Proof. Denote Sn(f) =
Pn�1

k=0 T
k(f) for n � 1 , and introduce:

(1.28) f� = lim sup
n!1

1

n
Sn(f) and f� = lim inf

n!1
1

n
Sn(f) .

Claim 1: f� and f� are T -invariant functions from X into �R . This follows in a

straightforward way upon observing that:

(1.29)
1

n+1
Sn+1(f) =

1

n+1
f +

n

n+1

� 1
n
Sn(f)

�
�T

for all n � 1 , and letting n ! 1 .

Claim 2: �1 < f� � f� < +1 �-a.s. To see this we shall note that:

(1.30) f f� > � g �
n

sup
k�1

Sk(f)=k > �
o

8



being valid for all � > 0 . Hence by (1.23) from the Maximal Ergodic Inequality 1.5 we get:

(1.31) �f f� > � g � 1

�

Z
jf j d�

for all � > 0 . Letting � ! 1 we obtain �ff� =+1g = 0 . In exactly the same way we

find �ff� =�1g = 0 . The proof of the claim is complete.

Claim 3: f� = f� �-a.s. To show this we shall consider the set:

(1.32) D = ff� < � < � < f�g

where � and � , both from Q , are given and fixed. Clearly it is enough to show that �(D) = 0 .

Since D is T -invariant (it follows by Claim 1) there is no harm in replacing the original

measure space (X;A; �) with its trace on D , being denoted by (D;AD; �D) , at which we

shall apply (1.17) from the Maximal Ergodic Lemma 1.4 to the functions:

(1.33) g = (f��) 1D and h = (��f) 1D
respectively. (Recall that AD = fA\D j A 2 Ag while �D(A\D) = �(A\D) for all A 2 A .)

For this note that for every x 2 D we have supk�1 Sk(g)(x) = supk�1(Sk(f)(x)�k�) > 0 .

Thus the set (from the Maximal Ergodic Lemma 1.4) being defined by:

(1.34)
n
x 2D �� sup

k�1
Sk(g) � 0

o
equals D itself. Applying (1.17) from the Maximal Ergodic Lemma 1.4 we can conclude:

(1.35)

Z
D
(f��) d� � 0 .

In exactly the same way we obtain:

(1.36)

Z
D
(��f) d� � 0 .

As this would imply � � � , we see that �(D) must be zero. The proof of the claim is complete.

Claim 4: The sequence fSn(f)=n j n � 1g is uniformly integrable. This clearly establishes

the L1(�)-convergence in (1.27), as well as identifies the limit.

To prove the claim we shall first note that the sequence f T k(f) j k � 0 g is uniformly

integrable. This clearly follows from the identity:

(1.37)

Z
f jf�T kj > c g

jf �T kj d� =

Z
fjf j>cg

jf j d�

upon taking the supremum over all k � 0 and then letting c ! 1 . The claim now follows

from the following simple inequalities:

(1.38) sup
n�1

Z
A

� 1
n
Sn(f)

�
d� � sup

n�1
1

n

n�1X
k=0

Z
A
jf �T kj d� � sup

k�1

Z
A
jf �T kj d�

9



being valid for all A 2 A . The proof of the theorem is complete.

Birkhoff’s Pointwise Ergodic Theorem 1.6 in its main part remains valid for infinite measure

spaces as well. The a.s. convergence in (1.27) to a T -invariant limit satisfying an analogue of (1.26)

for sets of finite measure is completely preserved, while the uniform integrability of the averages

in (1.27) will imply the L1(�)-convergence. Having understood basic ideas in the preceding proof,

the reader will easily complete the remaining details. Note also that if T is ergodic, then AT is

trivial, and the limit in (1.27) equals E(f) =
R
X f d� (see Paragraph 3 in Section 1.2 below).

7. Due to the linear structure of the mapping f 7! f � T k where T is a measure-

preserving transformation, there are many sensible generalizations and extensions of Birkhoff’s

theorem in various operator or group theoretic settings. We will make no attempt here to survey

this development but instead will refer the reader to the standard textbooks in ergodic theory. Still

to illustrate a method developed in such a direction we shall now present the mean ergodic theorem

of von Neumann, which is a little older than Birkhoff’s pointwise ergodic theorem. For this we

shall recall that a linear operator T in a Hilbert space H is called a contraction in H , if

kThk � khk for all h 2 H . Each contraction T in H is clearly a bounded linear operator, or

in other words sup khk�1 kThk < 1 . Having a bounded linear operator T in a Hilbert space

H , the dual T � of T is a bounded linear operator in H which is characterized by (Tf; g) =
(f; T �g) being valid for all f ; g 2 H . Having a contraction T in a Hilbert space H , it is

easily verified that Tf = f if and only if T �f = f for f 2 H .

Von Neumann’s (Mean) Ergodic Theorem 1.7

Let T be a contraction in a Hilbert space H , and let P be a projection from H onto the

closed subspace f f 2 H j Tf = f g . Then we have:

(1.39)
1

n

n�1X
k=0

T k(h) ! P (h)

for all h 2 H as n ! 1 .

Proof. The key point of the proof is the following decomposition:

(1.40) H = f f 2H j Tf = f g � cl
�
(I�T )H�

where cl denotes the closure operation in H , and � denotes the direct sum operation in H .

To verify (1.40) we shall denote F = f f 2H j Tf=f g and G = cl
�
(I�T )H� . Thus it is

enough to show that F? = G . Since for a linear subspace S of H we have S?? = cl(S) ,

it will be enough to show that ((I�T )H)? = F . For this note that f 2 ((I�T )H)? iff

(f; (I�T )h) = (f�T �f; h) = 0 for all h 2 H , iff T �f = f , iff Tf = f , thus proving

the claim as stated.

To prove the convergence in (1.39) take now any h 2 H . Then h = f + g where f 2 F
and g 2 G . Hence we get:

(1.41)
1

n

n�1X
k=0

T k(h) = f +
1

n

n�1X
k=0

T k(g)

for all n � 1 . By a simple approximation (which is based on the fact that the iterates of a

10



contraction are contractions themselves) this shows that (1.39) will follow as soon as we show that

the last average in (1.41) tends to zero as n!1 for all g 2 (I�T )H . So take such g = h�Th
for some h 2 H . Then by a telescoping argument we find:

(1.42)

 1n
n�1X
k=0

T k(g)

 =
1

n

h�T n(h) � 2

n
khk .

for all n � 1 . Letting n ! 1 we obtain:

(1.43)
1

n

n�1X
k=0

T k(g) ! 0

for all g 2 G . This completes the proof.

We shall conclude this section by recalling a very useful extension of Birkhoff’s Pointwise

Ergodic Theorem 1.6 that (or some of its variants) may be of particular interest for establishing

uniform ergodic theorems to which these lectures are primarily devoted.

Kingman’s (Subadditive) Ergodic Theorem 1.8

Let T be a measure-preserving transformation of a finite measure space (X;A; �) ( with

�(X) = 1 ) , and let f gn j n � 1g be a T -subadditive sequence in L1(�) , that is:

(1.44) gn+m � gn + gm � T n �-a.s.

for all n ; m � 1 . Then we have:

(1.45)
gn
n
! inf

m�1
E

�
gm
m

��AT

�
�-a.s.

as n!1 . If infm�1E(gm=m) > �1 , then the convergence in (1.45) is in L1(�) as well.

Proof. For a proof see e.g. [19] (p.292-299). For more general formulations of this theorem

see [52] (p.35-38)+(p.146-150). We shall omit details for simplicity.

8. To indicate the existence of some other typical (abstract) examples of measure-preserving

transformations which gained significant interest in the development of ergodic theory, we shall

recall that a rotation of the unit circle S1 = f z 2 C : jzj=1 g is defined by the formula:

(1.46) T�
�
e2�i�

�
= e2�i(�+�)

for � 2 [0; 1[ , where � 2 [0; 1[ is given and fixed. Equivalently T� may be regarded as a

map from [0; 1[ into [0; 1[ defined by T�(x) = x + � (mod 1) being the fractional part of

x+� for x 2 [0; 1[ . Then T� is clearly a measure-preserving transformation for all � 2 [0; 1[ .

Moreover T� is ergodic if and only if � is irrational. For a measure-theoretic proof of this fact

and its standard extensions to higher dimensions see [52] (p.12-13). For a Fourier-analysis proof

with standard extensions we refer the reader to [70] (p.49-51).

Further, the doubling transformation T (z) = z2 for z 2 S1 , or equivalently T (x) = 2x
(mod 1) for x 2 [0; 1[ , is ergodic. It turns out to be isomorphic to the unilateral shift � in the
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countable product (f0; 1gN;B(f0; 1gN); �N) where �(f0g) = �(f1g) = 1=2 . Similarly, the

so-called baker’s transformation on [0; 1[�[0; 1[ (the action of which looks like kneading dough)

is isomorphic to the bilateral shift � in the countable product (f0; 1gZ;B(f0; 1gZ); �Z) with the

same � , thus both being ergodic. For proofs and remaining details see [36].

Yet another class of interesting examples will be presented following the proof of Theorem 1.9

below, where an important link between ergodic theory and probability theory by means of shift

transformations will be displayed.

Notes: Liouville’s theorem goes back to the middle of the 19th century. Boltzmann (1887) introduced the word

“ergodic” in connection with statistical mechanics (see [8] p.208). Poincaré [72] derived his theorem in 1899. Birkhoff

[6] proved his theorem in 1931 by using a weaker maximal inequality. Von Neumann [60] deduced his theorem in

1932 via spectral theory. Von Neumann’s theorem was proved first and was known to Birkhoff. The maximal ergodic

lemma was first proved for measure-preserving transformations by Hopf in 1937 (see [44]). Yosida and Kakutani [95]

showed in 1939 how this lemma can be used to prove Birkhoff’s ergodic theorem. The short proof of the maximal

ergodic lemma as given above is due to Garsia [29]. The subadditive ergodic theorem was proved by Kingman [48]

in 1968. This result plays a useful role in establishing uniform convergence results as realized by Steele [79].

1.2 Law of Large Numbers

1. In order to comprehend the concept of law of large numbers suppose we consider a random

phenomenon with a quantity of interest to us. Suppose moreover that as a result of our consecutive

measurements of this quantity we are given numbers x1 ; x2 ; . . . ; xn . From the practical and

theoretical point of view it would be desirable that the limit:

(1.47) lim
n!1

1

n

nX
k=1

xk =: M

exists in some sense, and if so, its value M could be viewed as a proper (or mean) value for

the quantity being measured. Modern probability theory (founded by Kolmogorov [50]) provides

a mathematical framework for such and related investigations. We shall now present some basic

facts in this direction.

2. The basic object in this context is the probability space (
;F ; P ) . In the terminology of

modern measure theory (
;F ; P ) is a measure space with P (
) = 1 , thus 
 is a non-empty

set, F is a �-algebra of subsets of 
 , and P is a normalized measure on F . Each ! 2 

may be thought of as an outcome or realization of the random phenomenon. The k-th consecutive

measurement of the quantity under examination is realized as a random variable Xk defined on


 and taking values in R for k � 1 . This means Xk : 
 ! R is a measurable function

( with respect to F and the Borel �-algebra on R denoted by B(R) ) for all k � 1 . In the

ideal case the measurements are taken independently each from other, so that the random variables

may be assumed to satisfy:

(1.48) P

� n\
k=1

fXk 2Bkg
�

=
nY

k=1

PfXk 2Bkg

for all Bk 2 B(R) and all 1 � k � n . For this reason if (1.48) is fulfilled then fXk j k � 1g is
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said to be a sequence of independent random variables. Moreover, as long as we measure the same

quantity in a consecutive way ( with the units of time 1; 2; . . . ) we can assume that the random

variables X1 ; X2; . . . are identically distributed:

(1.49) PfX1 2B g = PfX2 2B g = . . .

being valid for all B 2 B(R) .

3. The problem (1.47) is now more precisely formulated by asking when:

(1.50)
1

n

nX
k=1

Xk ! M

in some sense as n ! 1 . Clearly, since Xk’s are measurable maps defined on a measure

space, the classical convergence concepts from measure theory appeal naturally. The validity of

(1.50) is called a strong law of large numbers if the convergence in (1.50) is P -a.a. ( in this case

we write P -a.s. and say P -almost surely ), while it is called a weak law of large numbers if the

convergence in (1.50) is in P -measure ( in this case we say in P -probability ) or in Lr(P ) for

some 0 < r <1 . The most desirable in (1.50) is that the limit M equals the Lebesgue-Stieltjes

integral of X1 over 
 under P :

(1.51) E(X1) =

Z


X1 dP .

This number is called the expectation of X1 . The strong law of large numbers is completely

characterized by the following fundamental theorem.

Kolmogorov’s (Strong) Law of Large Numbers 1.9

Let X = fXk j k � 1 g be a sequence of independent and identically distributed random

variables defined on the probability space (
;F ; P ) . Then we have:

(1.52)
1

n

nX
k=1

Xk ! E(X1) P -a.s.

as n ! 1 if and only if E(X1) exists ( its value may be �1 ).

Proof. The validity of (1.52) under the existence and finiteness of E(X1) follows from the

Birkhoff’s Pointwise Ergodic Theorem 1.6 as indicated in more detail following the proof. The

converse follows (as in the proof of (2.132) below) by the second Borel-Cantelli lemma which

states P (lim supn!1An) = 1 whenever An’s are independent and
P1

n=1 P (An) = 1 . The

cases of infinite expectation are easily deduced from the cases of finite expectation.

4. It is evident that there is a strong analogy between the ergodic problem from the previous

section and the problem of convergence in (1.50), thus (due to the more restrictive assumption

of independence made here) it shouldn’t be surprising that the essential part of this theorem ( if

E(X1) exists then (1.52) holds ) follows from Birkhoff’s Pointwise Ergodic Theorem 1.6. In

trying to make this reduction more explicit, we shall now establish an important link between the

probabilistic setting of Kolmogorov’s Law 1.9 and the ergodic setting of Birkhoff’s Theorem 1.6.

In Example 2.28 below (see Section 2.5.4) we shall also present a major difference between them
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(the characterization of (1.52) by the existence of the integral fails in Birkhoff’s case).

In order to apply Birkhoff’s Theorem 1.6 in the context of Kolmogorov’s Law 1.9 we should

chose a natural dynamical system (X;A; �; T ) where (X;A; �) is a finite measure space and

T : X ! X is a measure-preserving transformation. To do so, first note, that the measure space

should clearly be (
;F ; P ) . Moreover, since our interest is in establishing P -a.s. convergence

in (1.52), there is no restriction to assume that (
;F ; P ) equals (RN;B(RN); PX) where

PX(B) = PfX 2Bg for B 2B(RN) with X = (X1; X2; . . . ) being the given sequence of

random variables, and that Xk equals the k-th projection pk from RN into R defined by

pk(x1; x2; . . . ) = xk for k � 1 . The state x = (x1; x2; . . . ) of the phase space RN can

be thought of as a realization of the (total) measurement (performed from the definite past to the

indefinite future), thus after a unit of time this state is to be transformed into (x2; x3; . . . ) . ( The

reader could note a very interesting reasoning at this step which, roughly speaking, would say that

the randomness in essence is deterministic. Philosophical speculations on this point are well-known

in physics.) This indicates that the transformation T above should be the (unilateral) shift:

(1.53) �(x1; x2; x3; . . . ) = (x2; x3; . . . )

for (x1; x2; x3; . . . ) 2 RN . In this way we have obtained (RN;B(RN); PX ; �) as a candidate

for our dynamical system.

The sequence X = f Xk j k � 1 g is called stationary (ergodic), if � is a measure-

preserving (ergodic) transformation in (RN;B(RN); PX) . By (1.48) and (1.49) it is easily verified

that each i.i.d. sequence X = f Xk j k � 1 g is stationary ( i.i.d. means that Xk’s are

independent and identically distributed). Moreover, for the �-algebra of �-invariant sets B�(RN) =
fB 2 B(RN) j ��1(B) = B g and the tail �-algebra B1(RN) = \1n=1�fXk j k � ng we have:

(1.54) B�(RN) � B1(RN) .

Recalling Kolmogorov’s 0-1 law (see [50]) which states that in the case of a sequence of independent

random variables X = fXk j k � 1g the tail �-algebra B1(RN) is PX -trivial ( PX(B) equals

either 0 or 1 for all B 2 B1(RN) ), this shows that every i.i.d. sequence X = fXk j k � 1 g
is ergodic as well.

Applying Birkhoff’s Theorem 1.6 to the dynamical system (RN;B(RN); PX ; �) with f = p1 ,

and noting that p1 � �k�1 = Xk for k � 1 , we get:

(1.55)
1

n

n�1X
k=0

p1(�
k) =

1

n

nX
k=1

Xk ! E
�
p1jB�(R

N)
�
= E(X1)

P -a.s. as n ! 1 , provided that EjX1j < 1 , where the sequence X = fXk j k � 1 g is

as in the setting of Kolmogorov’s Law 1.9. This establishes (1.52) above under the assumption

that E(X1) exists and is finite.

5. There are many generalizations and extensions of Kolmogorov’s law of large numbers (1.52)

which can be found in the standard textbooks on this subject (see [35], [75], [80] and [71]). Perhaps

the best illustration of such results is another theorem of Kolmogorov which states that (1.52) above

holds if X = fXk j k � 1 g is a sequence of independent random variables satisfying:
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(1.56)

1X
n=1

EjXnj2
n2

< 1 .

In the literature this is sometimes also referred to as Kolmogorov’s (strong) law of large numbers.

Note, however, that X1; X2; . . . are only assumed independent, but with finite second moment.

6. The law of iterated logarithm. The best refinement of the law of large numbers is known

as the law of the iterated logarithm. It states that for any i.i.d. sequence of random variables

X = fXk j k � 1 g with Sn =
Pn

k=1Xk for n � 1 , we have:

(1.57) lim sup
n!1

Snp
2n log logn

= 1 P -a.s.

if and only if E(X1) = 0 and E(X2
1 ) = 1 . Clearly (1.57) is equivalent to:

(1.58) lim inf
n!1

Snp
2n log logn

= �1 P -a.s.

No general ergodic-theoretic result of this type is possible (see [52] p.14-15).

7. The central limit theorem. Yet another control of the error in the law of large numbers is

provided by the central limit theorem. In its simplest form it states that for any i.i.d. sequence of

random variables X = fXk j k � 1 g with E(X1) = 0 and E(X2
1 ) = 1 , we have:

(1.59)
Snp
n

��! N(0; 1)

as n ! 1 , where Sn =
Pn

k=1Xk for n � 1 .

The convergence in (1.59) is convergence in distribution (also called weak convergence). It

means that PfSn=pn � xg ! PfZ1 � xg as n ! 1 for all x 2 R , where Z1�N(0; 1)
is a normally distributed (Gaussian) random variable with expectation 0 and variance 1 , thus

its distribution function is given by:

(1.60) FZ1
(x) = PfZ1� x g =

1p
2�

Z x

�1
e�t

2=2 dt

for x 2 R . Note that (1.59) states:

(1.61)
p
n

�
Sn
n

�
=

Snp
n
� N(0; 1)

for n large. Hence we see that:

(1.62)
Sn
n
� N(0; 1n)

for n large. Note that the density function of Zn � N(0; 1=n) ( a non-negative Borel function

t 7! fZn(t) satisfying FZn(x) = PfZn�xg = R x
�1 fZn(t) dt for all x 2 R ) is given by:

(1.63) fZn(t) =

r
n

2�
exp

��(pnt)2
2

�
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for t 2 R , thus it is bell-shaped (even) with the maximal value
p
n=2� (the bell-top) attained

at 0 and tending to infinity, with the bell-sides approaching 0 at points different from 0 , both

when n ! 1 . In view of (1.62) this offers a clear meaning of the central limit theorem (1.59)

in the context of the law of large numbers (1.52).

The central limit theorem for weakly dependent sequences was already established by Bernstein

[5], while for completely regular sequences it was fully characterized by Volkonskii and Rozanov

[92]. The problem of weak convergence (central limit theorem) relative to the uniform convergence

topology (in the context of empirical processes) stays out of the scope of these lectures, and for

more information on this subject with additional references we refer to [3], [20], [33], [88].

Notes: The Borel-Cantelli lemma was proved by Borel [9] in 1909. Cantelli [12] noticed in 1917 that one half

holds without independence (this half is now called the first Borel-Cantelli lemma). Kolmogorov [49] showed in 1930

that (1.56) is sufficient for the strong law of large numbers if the variables are independent. Kolmogorov [50] proved

his strong law 1.9 in 1933. The “if part” also follows from Birkhoff’s ergodic theorem 1.6 by using Kolmogorov’s

0-1 law [50] as shown above. Weak laws appeared much earlier, and go back to Bernoulli (1713). The law of iterated

logarithm is in essence discovered by Khintchine in 1923 (see [45] and [46]). The “if part” for (1.57) in full generality

(of an i.i.d. sequence with finite second moment) was first proved in 1941 by Hartman and Wintner [38], while the

“only if” part was established in 1966 by Strassen [81]. The central limit theorem goes back to de Moivre (1733) and

Laplace (1812). Lindeberg [55] first proved a theorem in 1922 which contains the central limit theorem (1.59).

1.3 Infinite Dimensional Extensions

1. The following important extension of Kolmogorov’s law of large numbers (1.52) is estab-

lished when considered in the particular setting of empirical distribution functions.

Glivenko-Cantelli’s Theorem 1.10

Let X = fXk j k � 1 g be a sequence of independent and identically distributed random

variables defined on the probability space (
;F ; P ) . Then we have:

(1.64) sup
x2R

���� 1n
nX

k=1

1]�1;x](Xk) � PfX1� xg
���� ! 0 P -a.s.

as n ! 1 .

Proof. This result follows from Corollary 3.26 and Example 3.30 below. More straightforward

proofs can also be found in standard textbooks (see e.g. [19] p.314).

Note that for each fixed x 2 R we have P -a.s. convergence in (1.64) by Kolmogorov’s Law

1.9. The novelty in (1.64) is that this convergence is uniform over all x 2 R . For its profound

implications this result is often referred to as the Fundamental Theorem of Statistics. Not only that

the empirical distribution (on the left) approaches the true distribution (on the right):

(1.65)
1

n

nX
k=1

1]�1;x](Xk) ! PfX1 � xg P -a.s.

for each fixed x 2 R , but this also happens uniformly over all x 2 R as stated in (1.64).
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The importance of this conclusion for statistical inference is evident: Consecutive measurements

x1 ; x2 ; . . . ; xn of the quantity of interest associated with the random phenomenon (in the

beginning of Section 1.2 above) can be used to determine the distribution law of this quantity

as accurately (in probability) as needed. The random variable appearing in (1.64) is called the

Kolmogorov-Smirnov statistics. For more information in this direction see [21].

2. On the other hand it was natural to ask if Kolmogorov’s law of large numbers (1.52) also

holds when observations x1 = X1(!) ; x2 = X2(!) ; . . . ; xn = Xn(!) are taken with values in

a more general set being equipped with a structure which makes such a convergence meaningful

(linear topological space). A first definite answer to this question was obtained by Mourier in 1951

(see [58] and [59]) in the case when Xk’s take values in a separable Banach space B . Along

these lines a lot of people entered into investigations of such and related problems. This field is

called Probability in Banach spaces, and for a review of results established and methods developed

we refer the reader to [54].

However, the assumption of separability of B turns out too restrictive even to cover the first

and the most natural example of infinite dimensional law of large numbers (1.64). To see this, note

that the underlying Banach space in (1.64) is (B(R); k � k1) , where B(R) denote the linear

space of all bounded functions on R , and the sup-norm is defined by kfk1 = supx2R jf(x)j for

f 2 B(R) . Then f 1]�1; � ](Xn) j n � 1g can be viewed as an i.i.d. sequence of random variables

taking values in B(R) , and the P -a.s. convergence in (1.64) is exactly P -a.s. convergence in

(1.52) taken to hold in the Banach space (B(R); k � k1) . A well-known fact is that B(R) is

not separable with respect to the sup-norm k � k1 ( take for instance F = f fx j x 2 R g with

fx = 1]�1;x] , then kfx0�fx00k1 = 1 for x0 6= x00 , while F is uncountable ). Thus the Mourier

result cannot be applied in the context of the Glivenko-Cantelli theorem (1.64). In Chapter 2 and

Chapter 3 we shall present results which do apply in this context. Such statements are commonly

called uniform laws of large numbers.

3. Going back to ergodic theory we have seen in Section 1.1 how Birkhoff’s Pointwise Ergodic

Theorem 1.6 was extended to Von Neumann’s Mean Ergodic Theorem 1.7 in the operator setting of

Hilbert spaces. In 1938 Yosida [94] further extends this result by proving a mean ergodic theorem

in Banach spaces. These theorems are pointwise ergodic theorems, and the convergence is taken

with respect to the norm in the (Hilbert) Banach space. For a review of the results which followed,

particularly in the setting of various specific spaces, we refer the reader to [52].

In 1941 Yosida and Kakutani [96] went further and obtained sufficient conditions on a bounded

linear operator T in a Banach space B for the averages (1=n)
Pn�1

k=0 T
k converge to an operator

P in the operator norm (uniform operator topology):

(1.66)

 1

n

n�1X
k=0

T k � P

 ! 0

as n!1 . Since the convergence in (1.66) is taken with respect to the uniform operator topology,

this result has been referred to as the uniform ergodic theorem, and has been well applied to some

problems in Markov processes theory.

However, when B is taken to be L1(�) and T is the composition with a measure-preserving

transformation, that is T (f) = f � T for f 2 L1(�) , then T satisfies (1.66) if and only if

T is periodic with bounded period. This shows that the concept of uniform ergodic theorem in
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the sense of Yosida and Kakutani does not apply in the context of a dynamical system. In other

words, the operator uniform ergodic theorem (1.66) does not provide applications to the uniform

law of large numbers, and in particular, cannot be applied in the context of the Glivenko-Cantelli

theorem (1.64) (with or without the assumption of independence). This is the crucial point which

motivated our exposition in these lectures.

4. Thus, to summarize, we would like to point out the following facts: (1) We have Birkhoff’s

ergodic theorem (for dynamical systems) and Kolmogorov’s law of large numbers (i.i.d. finite

dimensional case) as a special case of it. These two theorems are at the basis of modern ergodic

and probability theory. (2) We have the Glivenko-Cantelli theorem (i.i.d. infinite dimensional case)

which is the first and the most natural example of an infinite dimensional law of large numbers.

This theorem is at the basis of modern statistics. (3) We have the uniform law of large numbers

(i.i.d. infinite dimensional case) which contains the GC theorem as a special case. These include the

best known and the most natural examples of infinite dimensional laws of large numbers. (4) We

do not have a uniform ergodic theorem which contains the uniform law of large numbers as a

special case (as is the case in (1) above with Birkhoff’s ergodic theorem and Kolmogorov’s law

of large numbers). Our lectures are devoted to precisely such a class of theorems. In our opinion

this is the most natural development:

Kolmogorov’s law —> Birkhoff’s ergodic theorem

GC’s theorem —> Uniform ergodic theorem (for dynamical systems)

The fact is that the Yosida-Kakutani (operator norm) theorem does not cover the case of

dynamical systems, and moreover does not include either uniform law of large numbers or the GC

theorem, although it is widely called the uniform ergodic theorem. It should be noted however,

which is seen as follows, that this theorem is indeed a uniform ergodic theorem in our terminology

as well. Recalling in the setting above that kxk = sup f�2S1 jf�(x)j and kTk = sup kxk�1 kTxk ,

we see that the mean ergodic theorem may be seen as a uniform ergodic theorem over the unit ball

S1 in the dual space B� consisting of all continuous linear functionals on B , and the uniform

ergodic theorem in the sense of Yosida and Kakutani can be viewed as a uniform ergodic theorem

over the unit ball in the Banach space B . For more details and more general formulations of these

problems see [67]. The essential facts and results on operators and functionals in Banach spaces

used above can be found in the standard monograph on the subject [17].

Notes: The Glivenko-Cantelli theorem was first proved by Glivenko [34] in 1933 for the sample from a

continuous distribution function, and then in the same year it was extended by Cantelli [13] to the general case. Tucker

[86] proves that the GC theorem remains valid for (strictly) stationary sequences which are not necessarily ergodic,

thus the limit being a random variable (the conditional distribution with respect to the �-algebra of shift-invariant sets).

It was an interesting question to see which classes of sets would further admit such an extension. Stute and Schuman

[82] extended Tucker’s result to Rk and showed that the empirical measures converge uniformly over intervals,

half-spaces and balls. Their proof is interesting since it uses a well-known fact that each such (strictly) stationary

sequence can be decomposed into ergodic components (see [76] p.171-178). For this reason we are mainly interested

in ergodic sequences in the text below.

18



1.4 Applications to dynamical systems

In this section we shall describe some fundamental applications of the uniform ergodic theorem

(1.1) to dynamical systems. There are three different types of applications we want to display, the

third one being towards consistency of statistical models, the greater details of which are given

in the Supplement. The first two types will be explained in the context of a dynamical system as

considered in the beginning of Section 1.1.

1. Suppose we are given a physical system with states belonging to the phase space X and

collections of states belonging to the �-algebra A of subsets of X . By the law of nature the

phase space X transforms into itself through a one-parameter flow (Tt)t2R as explained in (1.7).

Due to the reduction principle (1.10)-(1.11), there will be no restriction to assume that the units of

time are discrete. Suppose moreover that we are given a probability measure � on (X;A) for

which T := T1 is measure-preserving and ergodic. Then by Birkhoff’s Theorem 1.6 we have:

(1.67)
1

n

n�1X
k=0

1A
�
T k(x)

� ! �(A)

as n ! 1 for �-a.a. x 2 X . This shows that the measure � can be thought of as a

probability measure which describes how likely states of the system appear: The value of � at

any (measurable) collection of states may be interpreted as the appearance probability of any state

from this collection. (Recall also (1.16) above.)

2. Now, if the measure � is not known a priori, the question of how to find it appears

fundamental. We may observe that (1.67) can be used to determine its value at any given and fixed

A 2 A as accurate as needed: Given "1 ; "2 > 0 , there is an n0 � 1 large enough, such that

for all n � n0 the probability of the set of all x 2 X for which:

(1.68)

���� 1n
n�1X
k=0

1A
�
T k(x)

� � �(A)

���� � "2

is smaller than "1 . A serious disadvantage of this procedure is that the n0 found also depends

on the set A from A , so to determine the measure � completely within a given and fixed level

of accuracy, it would mean that we have to possess information on the entire collection of time

averages (from the definite past to the indefinite future). This is clearly not satisfactory, so what we

would really want is that (1.68) holds in the following stronger form: Given "1 ; "2 > 0 , there is an

n0 � 1 large enough, such that for all n � n0 the probability of the set of all x 2 X for which:

(1.69) sup
A2C

���� 1n
n�1X
k=0

1A
�
T k(x)

� � �(A)

���� � "2

is smaller than "1 , where C � A is a family of sets large enough so that a probability measure

on A is uniquely determined by its values on C . It is well-known that any family C which

generates A ( meaning that A is the smallest �-algebra on X which contains C ), and

which is closed under finite intersections, satisfies this property (see [19]). For example, the family

C = f ]�1; x] j x 2 R g satisfies this property relative to A as the Borel �-algebra on R .
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The preceding analysis shows that the uniform ergodic theorem:

(1.70) sup
A2C

���� 1n
n�1X
k=0

1A
�
T k
� � �(A)

���� ! 0 �-a.s.

plays a fundamental role in determining the measure � , which further plays the essential role

in our mathematical description of the physical system. Clearly, such uniform ergodic theorems

are at the basis of statistical inference for dynamical systems, much in the same manner as the

Glivenko-Cantelli theorem is at the basis of modern statistics for i.i.d. observations.

3. Once the measure � is known, the essential task in a mathematical description of the given

physical system is to find and investigate conditions under which the time averages of a phase

function can be replaced by the phase average of the same function. The importance and meaning

of this task will be now explained.

With our physical system we usually associate some physical quantities of interest (energy,

temperature, pressure, density, colour, etc.). The values of these quantities characterize the state of

the system, and in turn are uniquely determined by this state. Thus a physical quantity appears as

a phase function f : X ! R , which is measurable with respect to A . Therefore, if we wish to

compare deductions of our theory with the experimental data from measurements of the physical

quantity, we would have to compare the values of the physical quantity found experimentally with

the values of the phase function f furnished by our theory. Very often, for practical reasons,

the latter cannot be done (for systems in statistical mechanics, for instance, where the number of

degrees of freedom is astronomical), and in such a case the time average of the phase function:

(1.71)
1

n

n�1X
k=0

f(T k)

is seen as a natural interpretation of experimental measurements. Thus, in such a case, we will have

to compare experimental data not with separate values of the phase function, but with their averages

over very large intervals of time. (Collisions of molecules occur so rapidly that no matter how

small interval of time our experiment has been made through, the time effect appears astronomical.)

Knowing that the time averages (1.71) are close to the space average of the phase function:

(1.72)

Z
X
f d�

we reduce our problem to comparing the experimental data with the space average (1.72), the

evaluation of which is accessible to the methods of mathematical analysis. For these reasons the

space average is usually taken as a theoretical interpretation of the physical quantity.

The mathematical task mentioned above can (to a certain extent) be solved by means of

Birkhoff’s Theorem 1.6: If T is ergodic, then the time average coincides with the space average:

(1.73)
1

n

n�1X
k=0

f(T k) �
Z
X
f d�

for n large. This approach reduces the problem to verifying if T is ergodic, and as soon as we

know that this is true, our mathematical task will be completed.
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4. In some cases of interest (for instance when the system is not isolated) the physical quantity

under consideration may depend on a parameter � 2 � (which may be a priori unknown to us)

through the phase function f( � ; �) : X ! R . In view of the exposition above, two distinct

problems appear naturally in this context. The first one deals with stability of the system on the

parameter � 2 � . The second one is the statistical problem of determining the true (but unknown)

parameter �� which correspond to the physical quantity under observation. Below we describe

how both of these problems require knowledge of the uniform ergodic theorem for the dynamical

system (X;A; �; T ) relative to the family of phase functions F = f f( � ; �) j � 2 � g :

(1.74) sup
�2�

���� 1n
n�1X
k=0

f(T k; �) �
Z
X
f(x; �) �(dx)

���� ! 0 P -a.s.

as n ! 1 .

The first problem on stability of the system on the parameter � 2 � is motivated by our desire

to have the time average and the space average equal:

(1.75)
1

n

n�1X
k=0

f(T k; �) �
Z
X
f(x; �) �(dx)

not just for each individual � 2 � , but simultaneously for all them, when n is large. The

meaning of this is clear: Experimental measurements of the physical quantities do not depend on

a particular quantity ( �2� ) but are at once valid for all of them. In other words, whenever the

uniform ergodic theorem (1.75) is valid for a family of phase functions, the physical system is

(experimentally) stable on the physical quantities which are represented by these phase functions.

This fact is of great interest in foundations of statistical mechanics for instance.

The second problem is of a statistical nature and is concerned with finding the true parameter

�� which correspond to the phase function representing the physical quantity we observe. In this

problem, contrary to the first problem, the time average:

(1.76)
1

n

n�1X
k=0

f(T k; �)

must be available, thus the considerations below are not suitable for systems with a large number

of degrees of freedom for instance. The essential idea of the method is based upon the fact that

the true parameter �� may be characterized in terms of the space average:

(1.77)

Z
X
f(x; �) �(dx)

being considered as a function of � 2 � . Applying the same characterization to the time average

(1.76), we may obtain a good approximation for the true parameter value. For instance, the true

parameter �� is in some cases a maximum point of the space average (1.77) on � , and the

validity of the uniform ergodic theorem (1.74) will then guarantee that the maximum points �̂n of

the time average in (1.76) approach the maximum point of the limit (1.77), thus the true parameter

value �� . This idea is illustrated in greater detail through a specific example in the Supplement.
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5. Having understood the basic ideas and principles presented above, we hope that the reader

will be able to recognize further applications of the uniform ergodic theorem for dynamical systems

in a different context as well.

Notes: For more details and facts which will additionally clarify and deepen the meaning of the applications

presented above, the reader is referred to the fundamental book of Khintchine [47]. Kryloff and Bogoliouboff [53]

develop a theory where they start with a measure-preserving transformation T and try to define an ergodic T -

invariant measure � by (1.67) when the limit exists. Fisher [24]-[25] presents foundations of theoretical statistics and

theory of statistical estimation which are closely related to the statistical applications of the uniform ergodic theorem

presented above.
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2. Metric Entropy With Bracketing Approach
In this chapter we present a metric entropy with bracketing approach towards uniform laws of

large numbers and uniform ergodic theorems for dynamical systems. The first section concerns the

Blum-DeHardt law of large numbers which appeared in [7] and [15]. The second section is devoted

to its extension which is due to Hoffmann-Jørgensen [39]. Our exposition in this context follows

the stationary ergodic case as appeared in [66]. We return to the i.i.d. case in the fifth section.

The third section presents a uniform ergodic lemma which was proved by the author in [67]. The

fourth section relies upon this result and presents a uniform ergodic theorem for dynamical systems,

taken also from [67], which extends the results from the first two sections to the case of general

dynamical systems. Although there are other ways to prove the essential part of this theorem (as

indicated below), we think that the approach relying upon the uniform ergodic lemma is the most

natural one (recall that the proof of classic Birkhoff’s Ergodic Theorem 1.6 relies upon the Maximal

Ergodic Lemma 1.4, and note that the uniform ergodic lemma is designed to play a similar role in

the case of uniform convergence). The fifth section is reserved for examples and complements.

The following definition plays a key role throughout Chapter 2 and Chapter 3. Its concept

should always be compared with related concepts whenever appear.

Definition (Metric Entropy)

Suppose we are given a pseudo-metric space (T; d) and a subset A of T , and let " > 0 be

given and fixed. Then the covering number N("; A; d) is defined as the smallest number N � 1
such that for some t1; . . . ; tN in A we have min 1�k�N d(t; tk) � " for all t 2 A . The number

logN("; A; d) is called the metric entropy of A with respect to d .

The concept of metric entropy was introduced by Kolmogorov and Tikhomirov in 1959 (see

[51]). It has proved a useful measure for the size of subsets in pseudo-metric spaces.

2.1 The Blum-DeHardt law of large numbers

Let (S;A; �) be a probability space, and let F � L1(�) be a family of functions. Given

g � h in L1(�) , we denote [g; h] = ff 2 L1(�) j g � f � hg . Given " > 0 , we let N1[";F ]
denote the smallest N � 1 such that for some g1 � h1; . . . ; gN � hN in L1(�) we have:

(2.1) F � SN
k=1[gk; hk]

(2.2) max
1�k�N

Z
S
(hk�gk) d� < " .

The set [f; g] is called a bracket, and logN1[ � ;F ] is called a metric entropy with bracketing

(according to Dudley [18]). The main result of this section is stated as follows.

Theorem 2.1 (Blum 1955, DeHardt 1971)

Let f�jgj�1 be a sequence of independent and identically distributed random variables defined

on a probability space (
;F ; P ) with values in the measurable space (S;A) and distribution law

� . If F � L1(�) satisfies N1[";F ] < 1 for all " > 0 , then we have:

sup
f2F

���� 1n
nX

j=1

f(�j) �Ef(�1)
���� ! 0 P -a.s.

as n ! 1 .
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Proof. Given " > 0 , put N = N1[";F ] . Then there exist g1 � h1; . . . ; gN � hN in

L1(�) satisfying (2.1) and (2.2). Given f 2 F , by (2.1) there exists 1 � k � N such that

gk � f � hk . Moreover, we have:

(2.3)
1

n

nX
j=1

�
f(�j)� Ef(�1)

�
=

1

n

nX
j=1

�
f(�j)� gk(�j)

�
+

1

n

nX
j=1

�
gk(�j)� Egk(�1)

�
+ Egk(�1) � Ef(�1)

for all n � 1 . From (2.3) we obtain:

(2.4) sup
f2F

���� 1n
nX
j=1

f(�j) � Ef(�1)

���� � max
1�k�N

1

n

nX
j=1

�
hk(�j) � gk(�j)

�
+ max
1�k�N

���� 1n
nX

j=1

gk(�j) � Egk(�1)

���� + max
1�k�N

E
�
hk(�1) � gk(�1)

�
for all n � 1 . From (2.2) and (2.4) we see by Kolmogorov’s Law 1.9 that:

lim sup
n!1

sup
f2F

���� 1n
nX
j=1

f(�j)� Ef(�1)

���� � 2 max
1�k�N

Z
S
(hk � gk) d� < 2" P -a.s.

The proof is completed by letting " # 0 over rationals.

The next two interesting facts are from [18]. The first shows that the simple sufficient condition

from Theorem 2.1 may provide applications of considerable interest.

Proposition 2.2

Let B be a separable Banach space with the norm k � k , and let � be a probability measure

on the Borel �-algebra of B satisfying:

(2.5)

Z
B
kxk �(dx) < 1 .

If F is the unit ball in the dual space B� of B , then N1[";F ] < 1 for all " > 0 .

Proof. Let " > 0 be given and fixed. Since � is tight (see [19]), then by (2.5) there exists a

compact set K = K" in B such that
R
BnK kxk�(dx) < "=6 . Consider the family G consisting

of all f ’s restricted to K when f runs over F . Then jg(x)j � kxk �M <1 for all g 2 G
and all x 2 K . Hence we see that the family G is equicontinuous and uniformly bounded with

respect to the supremum norm k � kK on K . Therefore by Arzelà-Ascoli’s theorem (see [19])

the family G is totally bounded. Thus there exist f1; . . . ; fN 2 F such that:

sup
f2F

inf
1�k�N

kf�fkkK < "=3 .

Now, define gk(x) = (fk(x)� "=3) � 1K(x)�kxk �1BnK(x) and hk(x) = (fk(x)+ "=3) �1K(x)+
kxk�1BnK(x) for all x 2 B and all k = 1; . . . ; N . Then for any f 2 F with kf�fkkK < "=3
for some 1 � k � N , we have gk(x) � f(x) � hk(x) for all x 2 B . Moreover, we have:
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Z
B

�
hk(x)� gk(x)

�
�(dx) =

Z
BnK

2 kxk �(dx) +
Z
K

2"

3
�(dx) � "

for all 1 � k � N . Thus N1[";F ] � N < 1 , and the proof is complete.

From the preceding two results we obtain Mourier’s classic law of large numbers [58]-[59] (see

Section 1.3). The results of this section do also extend to more general U -statistics (see [2]).

Corollary 2.3 (Mourier 1951)

Let fXjgj�1 be a sequence of independent and identically distributed random variables defined

on a probability space (
;F ; P ) with values in the separable Banach space B with the norm k�k .

If the following condition is satisfied:

(2.6)

Z


kXk dP < 1

then there exists EX1 2 B such that:

(2.7)
1

n

nX
j=1

Xj ! EX1 P -a.s.

as n ! 1 .

Proof. Put Sn =
Pn

j=1Xj for n � 1 . Then by Theorem 2.1 and Proposition 2.2 we see

from (2.6) that the sequence Sn=n is P -a.s. Cauchy’s sequence in B . Thus Sn=n! Z P -a.s.,

where Z is a random variable from 
 into B . Hence by Kolmogorov’s Law 1.9 we easily

get Ef(X1) = f(Z) P -a.s. for all f 2 F . (Here F denotes the unit ball in the dual space

B� of B . ) Thus Z 2 f�1
�fEf(X1)g

�
P -a.s. for all f 2 F .

Let now F0 be a countable subset of F satisfying kxk = supf2F0
jf(x)j for all x 2 B .

Such a set exists by the Hahn-Banach theorem (see [17]). Let G =
T

f2F0
f�1

�fEf(X1)g
�

.

Then Z 2 G P -a.s., and moreover G consists of a single point. For the second claim note that

x; y 2 G implies f(x) = f(y) for all f 2 F0 , and thus kx�yk = supf2F0
jf(x�y)j = 0 .

Thus (2.7) is satisfied, and the proof is complete.

2.2 Extension to necessary and sufficient conditions

Our main aim in this section is to present a necessary and sufficient condition for the uniform

law of large numbers (called eventually totally bounded in the mean) which includes the Blum-

DeHardt sufficient condition from Theorem 2.1 as a particular case. The result in the i.i.d. case is

due to Hoffmann-Jørgensen [39]. Our exposition follows the stationary ergodic case as appeared

in [66]. Further necessary and sufficient conditions are presented as well.

1. Stationary ergodic sequences. We begin by considering stationary sequences of random

variables. Roughly speaking, these sequences may be described as those whose distributions remain

unchanged as time passes by (see Section 1.2). More precisely, a sequence of random variables

f �j j j � 1 g is said to be stationary, if we have:

(2.8) (�n1 ; . . . ; �nk) � (�n1+p; . . . ; �nk+p)
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for all 1 � n1 < . . . < nk and all p = 1; 2 . . . . In order to explain the concept of a stationary

sequence in more detail, we shall recall some concepts from ergodic theory (see Section 1.1).

Let (
;F ; P ) be a probability space, then a map � from 
 into 
 is said to be a measure-

preserving transformation, if it is measurable and satisfies P � ��1 = P . Measure-preserving

transformations are also called endomorphisms. Let � be an endomorphism in (
;F ; P ) , then

a set A in F is said to be �-invariant, if ��1(A) = A . The family F� of all �-invariant

sets is a �-algebra in 
 . An endomorphism � is called ergodic, if P (A) 2 f0; 1g for all

A 2 F� . A measurable function f from 
 into R is called �-invariant, if f � � = f . It

is easily verified that f is �-invariant, if and only if f is F�-measurable. Therefore, if �
is ergodic, then any �-invariant function is equal to a constant P -a.s. An endomorphism � in

(
;F ; P ) is called strongly mixing, if we have:

lim
n!1P (A \ ��n(B)) = P (A) � P (B)

for all A;B 2 F . Clearly, if � is strongly mixing, then it is ergodic as well.

Let us now consider a measurable space (S;A) , and let (SN;AN) denote the countable

product of (S;A) with itself. Then the unilateral shift � is a map from SN into SN defined by:

�(s1; s2; s3; . . . ) = (s2; s3; . . . )

for all (s1; s2; . . . ) 2 SN . Let � be a probability measure on (S;A) , and let �N be the

countable product of � with itself. Then � is an endomorphism in (SN;AN; �N) , and it is

well-known that � is strongly mixing and thus ergodic (see Section 1.2).

2. We are now in position to define stationarity in an instructive way. Let � = f �j j j � 1 g
be a sequence of random variables defined on a probability space (
;F ; P ) with values in a

measurable space (S;A) , and let P� be the distribution law of � as a random variable from


 into SN , that is P�(A) = Pf�2Ag for all A 2 AN . Then P� is a probability measure

on (SN;AN) , and � is said to be stationary, if the unilateral shift � is a measure-preserving

transformation in (SN;AN; P�) . It is clear that the present definition coincides with that given

by (2.8). Finally, the stationary sequence � is called ergodic, if the unilateral shift � is ergodic

in (SN;AN; P�) . The following four facts on stationary and ergodic sequences are very useful.

(2.9) (Endomorphisms generate plenty of stationary sequences)

Let � be an endomorphism in a probability space (
;F ; P ) , let (S;A) be a measurable

space, and let f be a measurable map from 
 into S . If we define �i+1 = f � �i for

i � 0 , then � = f �j j j � 1 g is a stationary sequence of random variables from 
 into

S . Moreover if � is ergodic, then � is also ergodic.

(2.10) (Shifts preserve stationarity)

Let � = f �j j j � 1 g be a stationary sequence of random variables defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) , let � be the

unilateral shift in SN , let (T;B) be another measurable space, and let F : SN ! T
be a measurable map. If we define:

�i+1 = F � �i � �
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for i � 0 , then � = f �j j j � 1 g is a stationary sequence of random variables from


 into T . In particular, if � = f �j j j � 1 g is a stationary sequence of real valued

random variables, and if we consider:

�i =
1

N

i+N�1X
j=i

�j

for given and fixed N � 1 and all i � 1 , then � = f �j j j � 1 g is stationary.

(2.11) (Shifts preserve ergodicity)

Under the assumptions in (2.10) suppose moreover that the sequence � = f �j j j � 1 g is

ergodic, then � = f �j j j � 1 g is also ergodic.

(2.12) (The law of large numbers for stationary sequences)

Let � = f �j j j � 1 g be a stationary sequence of real valued random variables defined

on a probability space (
;F ; P ) , let � be the unilateral shift in RN , and let B�(RN)
denote the �-algebra of all �-invariant sets in the Borel �-algebra B(RN) . If �1 belongs

to L1(P ) , then we have:

1

n

nX
j=1

�j ! E
�
�1 j ��1(B�(R

N))
	

P -a.s.

as well as in P -mean as n ! 1 .

Proofs of (2.9)-(2.11) are easily deduced by definition, and (2.12) follows from Birkhoff’s

Ergodic Theorem 1.6. We find it useful to point out that the convergence in mean is obtained

from the pointwise convergence by using the following trivial but useful result on the uniform

integrability of averages (see Claim 4 in the proof of Theorem 1.6):

(2.13) Let � = f �j j j � 1 g be a stationary sequence of real valued random variables defined

on a probability space (
;F ; P ) such that �1 belongs to L1(P ) . Then the sequence of

averages
�
1
n

Pn
j=1 �j j n � 1

	
is uniformly integrable.

3. We will now consider ergodicity of stationary sequences more closely. First, it should be

noted if the sequence � = f �j j j � 1 g in (2.12) is ergodic, then 1
n

Pn
j=1 �j ! E(�1) as n!1 .

Second, we present necessary and sufficient conditions for ergodicity. Let � = f �j j j � 1 g
be a sequence of random variables defined on a probability space (
;F ; P ) with values in a

measurable space (S;A) , let P� denote the distribution law of � in (SN;AN) , and let �
denote the unilateral shift in (SN;AN) .

(2.14) Suppose that � is a stationary sequence. Then � is ergodic, if and only if any of the

following four equivalent conditions is satisfied:

(i) P�(A) > 0 for A 2 AN ) P�(
S1

i=0 �
�i(A)) = 1

(ii) P�(A) � P�(B) > 0 for A;B 2 AN ) P1
i=0 P�(A \ ��i(B)) > 0

(iii) n�1
Pn�1

j=0 P�(A \ ��j(B)) ! P�(A) � P�(B) , for all A;B 2 AN

(iv) n�1
Pn�1

j=0

R
SN F �(G��j) dP� !

R
SN F dP� �

R
SN G dP� , for all F;G 2 L2(P�) .
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Third, we describe a connection with independence by giving a sufficient condition for ergodicity.

Let pi denote the i-th projection from SN into S for i � 1 . Then the tail �-algebra in

(SN;AN) is defined by AN1 =
T1

n=1 �(pj j j � n) , and we obviously have:

AN� � AN1 � AN

where AN� denotes the �-algebra of all �-invariant sets in AN . Therefore a triviality of the tail

�-algebra AN1 implies the ergodicity of the unilateral shift in (SN;AN; P�) . It is well-known that

the tail �-algebra AN1 is trivial, if and only if the Blackwell-Freedmann asymptotic independence

condition is satisfied (see [52] p.28):

(2.15) lim
n!1 sup

B2�(pj jj�n)

�� P�(A \B)� P�(A) � P�(B)
�� = 0

for every A 2 AN1 . Finally, one should note that random variables from a stationary sequence

are identically distributed, as well as that every sequence of independent and identically distributed

random variables is stationary and ergodic.

4. Non-measurable calculus. We proceed by recalling some facts from the calculus of non-

measurable sets and functions. For more details we refer to [1] and [62].

Let (
;F ; P ) be a probability space, then P � and P� denote the outer and the inner P -

measure. Any map Z from 
 into �R is called a random element. Then
R �

Z dP and
R
� Z dP

denote the upper and the lower P -integral of Z , and Z� and Z� denote the upper and the lower

P -envelope of Z (see Paragraph 2 in Section 2.3 below). Let f Zn j n � 1 g be a sequence of

random elements on (
;F ; P ) . Then the following convergence concepts show useful below:

(2.16) Zn ! 0 (a:s:) , if 9N 2 F such that P (N) = 0 and Zn(!)! 0 , 8! 2 
 nN
(2.17) Zn ! 0 (a:s:)� , if jZnj� ! 0 (a:s:)

(2.18) Zn ! 0 (P �) , if P �f jZnj � " g ! 0 ; 8" > 0

(2.19) Zn ! 0 (P�) , if P�f jZnj � " g ! 0 ; 8" > 0

(2.20) Zn ! 0 (L1)� , if
R � jZnj dP ! 0

(2.21) Zn ! 0 (L1)� , if
R
� jZnj dP ! 0 .

It should be noted that if Zn is measurable for all n � 1 , then the convergence concept in

(2.16)-(2.17) coincides with the concept of P -almost sure convergence, the convergence concept

in (2.18)-(2.19) coincides with the concept of convergence in P -probability, and the convergence

concept in (2.20)-(2.21) coincides with the concept of convergence in P -mean. Moreover, it is

easily verified that we have:

(a:s:)� ) (a:s:)

+ +
(2.22) (P �) ) (P�)

* *
(L1)� ) (L1)�
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and no other implication holds in general.

Let � be a random variable defined on a probability space (
;F ; P ) with values in a

measurable space (S;A) . Then � is said to be P -perfect, if 8F 2 F , 9A 2 A , A � �(F )
such that P (F n ��1(A)) = 0 . If � is P -perfect, then for any function G from S into �R we

have
R �

G � � dP =
R �

G dP� and (G � �)� = G� � � . If (
;F ; P ) is a probability space, then

L<1>(P ) denotes the set of all functions Z from 
 into R satisfying kZk�1 =
R � jZj dP <1 .

The space (L<1>(P ); k � k�1) is a Banach space. For more details about these facts see [62].

5. Formulation of the problem. First we fix some notation. If T is a non-empty set, then

RT denotes the set of all real valued functions defined on T , and B(T ) denotes the set of all

bounded functions in RT . For f 2 RT and A � T we put kf kA = supt2A jf(t)j . Then

(f; g) 7! kf�g kT defines a metric on RT . It is well-known that (B(T ); k � kT ) is a Banach

space. The finite covering of a set T is any family  = fD1; . . . ; Dng of non-empty subsets of T
satisfying T =

Sn
j=1Dj . The family of all finite coverings of a set T will be denoted by �(T ) .

We will now formulate the main problem under consideration and discuss some necessary

conditions. Let � = f �j j j � 1 g be a stationary sequence of random variables defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) and a common distribution

law � , let T be an arbitrary set, and let f : S � T ! R be a given map. Let us denote:

(2.23) Sn(f) =
nX

j=1

f(�j)

for all n � 1 . Then Sn(f) maps 
 into RT for n � 1 , and we will study the uniform

convergence of the sequence of averages f 1
nSn(f) j n � 1 g over the set T . In other words,

we will look for necessary and sufficient conditions under which the uniform convergence is valid:

(2.24)
 1

n
Sn(f)� L


T
! 0 (c)

for some L in RT as n!1 , where (c) denotes any of the following convergence concepts:

P -almost sure convergence, convergence in P -mean, convergence in P -probability. We will also

consider a weak convergence concept closely related.

One may note that the map on the left-hand side in (2.24) needs not to be P -measurable under

our general hypotheses on the set T . Thus we need to use concepts and results from the calculus

of non-measurable sets and functions. According to (2.22) we may clearly conclude that the (a:s:)�-

convergence, the (L1)�-convergence and the (P �)-convergence are convergence concepts of vital

interest for (2.24). Therefore we turn our attention in this direction. All of the facts needed for

establishing a weak convergence concept related to (2.24) will be presented later on. For those

who would like to avoid measurability problems in (2.24) we suggest to forget all “stars” in the

notation and to assume measurability wherever needed. This approach may be justified in quite a

general setting by using the projection theorem as explained in Paragraph 5 of Introduction.

For the reasons stated below, the following two conditions on the map f appear natural:

(2.25)

Z �
k f(s) kT �(ds) <1

(2.26) s 7! f(s; t) is �-measurable for every t 2 T .
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Under the canonical representation (see Section 1.2) in the case of independent and identically

distributed random variables it turns out that (2.25) is necessary for the (a:s:)-convergence in

(2.24). (This result is presented in Section 2.5.2 below.) Moreover, in this case �1 is P -perfect

and thus (2.25) is equivalent to the following condition:

(2.27)

Z �
k f(�1) kT dP <1 .

However, an example due to Gerstenhaber (see Section 2.5.4 below) shows that this condition may

fail in the general stationary ergodic case without additional hypothesis. In this way we are put

into position to assume that our map f satisfies (2.25). Of course, this is a very weak assumption

and the establishment of this fact from (2.24) would have mainly a theoretical importance. Note

that the condition (2.25) may be simply expressed by requiring that k f kT belongs to L<1>(�) ,

as well as the condition (2.27) by requiring that kf(�1)kT belongs to L<1>(P ) . Note also that

(2.27) is a consequence of (2.25), and is equivalent to (2.25) whenever �1 is P -perfect.

Let us now turn to the condition (2.26). Similarly to (2.25), under the canonical representation

in the case of independent and identically distributed random variables, it turns out that (2.26) is

necessary for the (P �)-convergence in (2.24). (This result is presented in Section 2.5.3 below.)

Therefore it is not too restrictive to assume that our map f satisfies (2.26), and we will permanently

follow this course in the sequel.

Finally, we would like to point out that our stationary sequence � is supposed throughout to be

ergodic. In this case by (2.10) and (2.11) we may also conclude that the sequence ff(�j; t) j j � 1g
is stationary and ergodic for all t 2 T . Therefore by (2.12) we get:

(2.28)
1

n

nX
j=1

f(�j; t)!M(t) P -a:s:

as n ! 1 , where M(t) =
R
S f(s; t) �(ds) is the �-mean function of f for every t 2 T .

Thus we may (and do) assume that L in (2.24) equals M . Note that (2.25) and (2.26) imply

that f(t) belongs to L1(�) for every t 2 T . Moreover, it is easily verified that under (2.25)

the function M belongs to B(T ) . This concludes our discussion on the basic hypotheses. Their

necessity for (2.24) under additional hypotheses will not be considered here.

6. The main results. We begin by recalling that the given map f is said to be eventually

totally bounded in �-mean, if the following condition is satisfied:

(2.29) For each " > 0 there exists " 2 �(T ) such that:

inf
n�1

1

n

Z �
sup

t0;t002A

��Sn�f(t0)�f(t00)��� dP < "

for all A 2 " .

To be more precise, conditions (2.25) and (2.26) should also be included into definition, but

for our purposes the present definition is more convenient and we shall refer to (2.25) and (2.26)

separately whenever needed. The more important fact in this context is that condition (2.29) includes

the Blum-DeHardt sufficient condition from Theorem 2.1 as a particular case. This follows readily

by noticing that the Blum-DeHardt condition is obtained in (2.29) by requiring that the infimum
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is attained for n = 1 .

Our next aim is to show that (2.29) is necessary and sufficient for (2.24) with any of the

convergence concepts mentioned above. The first result in this direction may be stated as follows.

Theorem 2.4.

Let � = f �j j j � 1 g be a stationary ergodic sequence of random variables defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) and a common distribution

law � , let T be an arbitrary set, and let f : S � T ! R be a given map. Let us suppose that

k f kT belongs to L<1>(�) and that the map s 7! f(s; t) is �-measurable for every t 2 T ,

and let M(t) =
R
S f(s; t) �(ds) be the �-mean function of f for t 2 T . If f is eventually

totally bounded in �-mean and � is P -perfect as a map from 
 into SN , then we have:

(2.30)
 1

n

nX
j=1

f(�j)�M

T
! 0 (a:s:)� & (L1)�

as n ! 1 .

Proof. Let " > 0 be given, then there exists " 2 �(T ) satisfying:

(2.31) inf
n�1

1

n

Z �
sup

t0;t002A
j Sn

�
f(t0)� f(t00)

� j dP < "

for all A 2 " . Since under our hypotheses M belongs to B(T ) , there is no restriction to

assume that for all A 2 " we also have:

(2.32) sup
t0;t002A

j M(t0)�M(t00) j � " .

For every A in " , choose a point tA in A . Then by (2.32) we have:

k 1

n
Sn(f)�M kT = max

A2"
k 1

n
Sn(f)�M kA � max

A2"
�

sup
t0;t002A

j 1
n
Sn(f(t

0))

� 1

n
Sn(f(t

00)) j + j 1
n
Sn(f(tA))�M(tA) j

+ sup
t0;t002A

j M(t0)�M(t00) j 	 � max
A2"

sup
t0;t002A

j 1
n
Sn

�
f(t0)� f(t00)

� j
+ max

A2"
j 1
n
Sn(tA))�M(tA) j + " .

By the law of large numbers for stationary sequences (2.12) hence we easily get:

lim sup
n!1

k 1

n
Sn(f)�M k�T � lim sup

n!1
max
A2"

�
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j �� + "

= max
A2"

lim sup
n!1

�
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j �� + " .

Therefore by (2.31) we may conclude that in order to establish the (a:s:)�-convergence in (2.30)
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it is enough to show the following inequality:

(2.33) lim sup
n!1

�
sup

t0;t002A
j 1

n
Sn
�
f(t0)� f(t00)

� j ��
� inf

n�1

Z �
sup

t0;t002A
j 1

n
Sn
�
f(t0)� f(t00)

� j dP
for every A 2 " . We leave this fact to be established with some additional information in the

next proposition. Thus we shall proceed with the (L1)�-convergence in (2.30).

Let g� denote the upper �-envelope of the map s 7! k f(s)�M kT . By our assumptions

we may easily verify that g� belongs to L1(�) . Therefore by (2.10) and (2.13) the sequence of

averages f 1
n

Pn
j=1 g

�(�j) j n � 1 g is uniformly integrable. Now note that we have:

 1

n
Sn(f)�M

�
T
� 1

n

nX
j=1

g�(�j)

for all n � 1 , and thus the sequence
� k 1

nSn(f) �M k�T j n � 1
	

is uniformly integrable

as well. Therefore the (L1)�-convergence follows straightforwardly by the (a:s:)�-convergence.

These facts complete the proof.

In order to prove the key inequality (2.33) in the preceding proof, and to obtain some additional

information, we shall first recall the following fact which is easily verified. Given a stationary

sequence � = f �j j j � 1 g on (
;F ; P ) with values in (S;A) , the unilateral shift � is

P�-perfect in (SN;AN) . In other words, for any function G from SN into �R we have

(G � �)� = G� � � . The next proposition finishes the proof of the preceding theorem.

Proposition 2.5

Under the hypotheses in Theorem 2.4 let us suppose that k f kT belongs to L<1>(�) and

that the map s 7! f(s; t) is �-measurable for every t 2 T . If � is P -perfect as a map from 

into SN , then for any subset A of T the following three statements are satisfied:

(2.34) lim sup
n!1

�
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j �� = C P -a:s:

(2.35) C � inf
n�1

Z �
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j dP
(2.36) inf

n�1

Z �
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j dP
= lim sup

n!1

Z �
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j dP
where C is a real constant depending on A .

Proof. There is no restriction to assume that A itself is equal to T , and that the expression

supt0;t002A j n�1Sn
�
f(t0) � f(t00)

� j involving the differences f(t0) � f(t00) in (2.34)-(2.36) is
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replaced by the expression supt2A j n�1Sn(f(t)) j involving the single function f(t) . Note

that our hypotheses remain valid after this change.

For every n � 1 define a map Gn : SN ! �R by:

Gn(s) = sup
t2T

j 1

n

nX
j=1

f(sj; t) j =
 1

n

nX
j=1

f(sj)

T

for s = (s1; s2; . . . ) 2 SN . For given d � 1 and n > d , put �n = [n=d] to be the integer

part of n=d . Then we have:

(2.37) Gn(s) � �n � d
n

� 1

�n

�nX
j=1

�
Gd � �(j�1)d

�
(s) +

1

n

X
�n�d<j�n

k f(sj) kT

for all s = (s1; s2; . . . ) 2 SN . Indeed, let us note that:

1

n

nX
j=1

f(sj) =
1

n

�n�dX
j=1

f(sj) +
1

n

X
�n�d<j�n

f(sj)

=
1

n

�nX
j=1

dX
i=1

f(si+(j�1)d) +
1

n

X
�n�d<j�n

f(sj)

=
�n � d
n

� 1

�n

�nX
j=1

� 1

d

dX
i=1

f(si+(j�1)d)
�

+
1

n

X
�n�d<j�n

f(sj)

for all s = (s1; s2; . . . ) 2 SN . Therefore (2.37) follows easily by taking the supremum over all

t 2 T . Taking the upper P�-envelopes of Gn and Gd in (2.37) we get:

G�
n(s) � �n � d

n
� 1

�n

�nX
j=1

�
G�
d � �(j�1)d

�
(s) +

1

n

X
�n�d<j�n

k f(sj) k�T

for all s = (s1; s2; . . . ) 2 SN , where k f k�T denotes the upper �-envelope of k f kT as a

function from S into �R . Hence by P -perfectness of � we directly find:

(2.38)
 1

n

nX
j=1

f(�j)
�
T

= G�
n(�) � �n � d

n
� 1

�n

�nX
j=1

�
G�
d � �(j�1)d

�
(�)

+
1

n

X
�n�d<j�n

k f k�T � �j .

Next note by (2.10) and (2.11) that the sequence f �G�
d � �(j�1)d

�
(�) j j � 1 g is stationary

and ergodic. Moreover, since k f kT belongs to L<1>(�) , then obviously:Z
(G�

d � �) dP �
Z �

k f(s) kT �(ds) < 1 .

Thus the law of large numbers (2.12) may be applied, and since (�n � d)=n ! 1 as n ! 1 ,
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we may conclude:

(2.39)
�n � d
n

� 1

�n

�nX
j=1

�
G�d � �(j�1)d

�
(�) �!

Z


(G�d � �) dP P -a:s:

as n ! 1 . Since � is by our assumption P -perfect, we have:

(2.40)

Z


(G�d � �) dP =

Z �




 1

d

dX
j=1

f(�j)

T
dP .

Similarly, by (2.10) and (2.11) we may conclude that the sequence f k f k�T � �j j j � 1 g
is stationary and ergodic. Moreover, since k f kT belongs to L<1>(�) , then obviously:Z �



k f k�T � �1 dP =

Z �
k f(s) kT �(ds) < 1 .

Thus the law of large numbers (2.12) may be applied, and since (�n � d)=n ! 1 as n ! 1 ,

we may conclude:

(2.41)
1

n

X
�n�d<j�n

k f k�T � �j =
1

n

nX
j=1

k f k�T � �j � 1

n

�n�dX
j=1

k f k�T � �j

=
1

n

nX
j=1

k f k�T � �j � �n � d
n

� 1

�n � d
�n�dX
j=1

k f k�T � �j ! 0 P -a:s:

as n ! 1 . Now by (2.38)-(2.41) we obtain:

(2.42) lim sup
n!1

 1

n

nX
j=1

f(�j)
�
T
�

Z �




 1

d

dX
j=1

f(�j)

T
dP P -a:s:

for all d � 1 . Thus by showing (2.34), the statement (2.35) will also be established.

To prove (2.34), since by our assumption � is P -perfect, it is enough to show that we have:

(2.43) lim sup
n!1

G�n(�) = C P -a:s:

In order to establish (2.43) it is enough to show that the map lim sup n!1 G�n is �-invariant

P�-a.s., or in other words (see Paragraph 4 in Section 1.1) that:

(2.44) lim sup
n!1

G�n � � = lim sup
n!1

G�n P�-a:s:

Since � is P�-perfect, we have G�n � � = (Gn � �)� . Moreover, we also have:

(Gn � �) = sup
t2T

�� 1

n

nX
j=1

f(sj+1; t)
�� = sup

t2T

�� n+ 1

n
� 1

n+ 1

n+1X
j=1

f(sj ; t) � 1

n
� f(s1; t)

��
for all s = (s1; s2; . . . ) 2 SN . Using these two facts one can easily verify the validity of

(2.44). Note since k f kT belongs to L<1>(�) that we have k f kT < 1 �-a:s: . Thus

lim sup n!1 G�n is �-invariant mod P� , and (2.43) follows from the ergodicity of � .
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To prove (2.36) take the P -integral on both sides in (2.38). Then by (2.40) we get:Z �  1

n

nX
j=1

f(�j)

T
dP � �n � d

n

Z �




 1

d

dX
j=1

f(�j)

T
dP +

n� �n � d
n

Z �
k f kT �(ds) .

Since (�n � d)=n � 1 and (n� �n � d)=n � d=n , and since by our assumption k f kT belongs

to L<1>(�) , we may conclude:

lim sup
n!1

Z �  1

n

nX
j=1

f(�j)

T
dP �

Z �  1

d

dX
j=1

f(�j)

T
dP

for all d � 1 . Now (2.36) follows straightforwardly by taking the infimum over all d � 1 .

This fact completes the proof.

Remark 2.6

Under the hypotheses in Theorem 2.4 and Proposition 2.5 it is easily verified that in the case

when the map (s1; s2; . . . ) 7! sup t0;t002A j 1n
Pn

j=1(f(sj ; t
0)� f(sj; t

00)) j is P�-measurable for

all n � 1 , the assumption of P -perfectness on � is not needed for their conclusions remain valid.

Theorem 2.7

Let � = f �j j j � 1 g be a stationary ergodic sequence of random variables defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) and a common distribution

law � , let T be an arbitrary set, and let f : S � T ! R be a given map. Let us suppose that

k f kT belongs to L<1>(�) and that the map s 7! f(s; t) is �-measurable for every t 2 T ,

and let M(t) =
R
S f(s; t) �(ds) be the �-mean function of f for t 2 T . If we have:

(2.45)
 1

n

nX
j=1

f(�j)�M

T
! 0 (P �)

as n ! 1 , then f is eventually totally bounded in �-mean.

Proof. Let us for n � 1 and � 2 �(T ) denote:

Dn;� =
�
max
A2�

sup
t0;t002A

j 1
n
Sn
�
f(t0)� f(t00)

� j �� = max
A2�

�
sup

t0;t002A
j 1
n
Sn
�
f(t0)� f(t00)

� j �� .

Then we obviously have:

Dn;� � 2 k 1

n
Sn(f) k�T � 2

n

nX
j=1

k f k�T � �j

for all n � 1 and all � 2 �(T ) . Therefore by (2.10) and (2.13) we may conclude that the

family of random variables f Dn;� j n � 1 ; � 2 �(T ) g is uniformly integrable. Thus for given

" > 0 , there exists 0 < � < "=2 such that:

(2.46)

Z
F
Dn;� dP < "=2

for all F 2 F satisfying P (F ) < � , whenever n � 1 and � 2 �(T ) . Since under our

35



assumptions M belongs to B(T ) , then for given � > 0 , there exists �� 2 �(T ) such that:

(2.47) sup
t0;t002A

jM(t0)�M(t00) j � �=2

for all A 2 � . Thus by (2.45) and (2.47) we easily get:

(2.48) Pf Dn;� > � g � P �f 2 k 1

n
Sn(f)�M kT

+ max
A2�

sup
t0;t002A

jM(t0)�M(t00) j > � g

� P �f k 1

n
Sn(f)�M kT > �=4 g < �

for all n � n� with some n� � 1 . Now by (2.46) and (2.48) we may conclude:Z
Dn;� dP =

Z
fDn;�

��g
Dn;� dP +

Z
fDn;�

>�g
Dn;� dP � � + "=2 < "

for all n � n� . Hence we get:

inf
n�1

Z �
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j dP � lim sup
n!1

Z
Dn;� dP < "

for all A 2 � . Thus f is eventually totally bounded in �-mean, and the proof is complete.

Corollary 2.8

Under the hypotheses in Theorem 2.7 let us suppose that k f kT belongs to L<1>(�) and

that the map s 7! f(s; t) is �-measurable for every t 2 T , and let M(t) =
R
S f(s; t) �(ds)

be the �-mean function of f for t 2 T . If � is P -perfect as a map from 
 into SN , then

the following four statements are equivalent:

(2.49)
 1

n
Sn(f)�M


T
! 0 (a:s:)�

(2.50)
 1

n
Sn(f)�M


T
! 0 (L1)�

(2.51)
 1

n
Sn(f)�M


T
! 0 (P �)

(2.52) The map f is eventually totally bounded in �-mean.

Proof. Straightforward from Theorem 2.4 and Theorem 2.7 by using (2.22).

The next proposition shows that the (L1)�-convergence and the (P �)-convergence in the

preceding corollary may be seemingly relaxed.

Proposition 2.9

Under the hypotheses in Theorem 2.7 let us suppose that k f kT belongs to L<1>(�) and

that the map s 7! f(s; t) is �-measurable for every t 2 T , and let M(t) =
R
S f(s; t) �(ds) be
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the �-mean function of f for t 2 T . If � is P -perfect as a map from 
 into SN , then we

have k 1
nSn(f) �M kT ! 0 (P �) , if and only if we have:

(2.53) inf
n�1

P ��  1

n
Sn(f)�M


T
> " g < "

for every " > 0 . Similarly, if � is P -perfect as a map from 
 into SN , then we have

k 1
nSn(f) �M kT ! 0 (L1)� , if and only if we have:

(2.54) inf
n�1

Z �  1

n
Sn(f)�M


T
dP = 0 .

Proof. First we show that (2.53) implies (2.54). So, suppose that (2.53) holds, and denote:

Dn =
 1

n
Sn(f)�M

�
T

for all n � 1 . Then we have:

Dn � 1

n

nX
j=1

k f k�T � �j + kM kT

for all n � 1 . Since by our hypotheses k f kT belongs to L<1>(�) and M belongs to

B(T ) , then by (2.10) and (2.13) the sequence of random variables fDn j n � 1 g is uniformly

integrable. Thus for given " > 0 , there exists 0 < � < "=2 such that:

(2.55)

Z
F
Dn dP < "=2

whenever F 2 F with P (F ) < � , for all n � 1 . Given this � > 0 we know by (2.53)

that there is n� � 1 such that:

(2.56) Pf Dn� > � g < � .

Now by (2.55) and (2.56) we may conclude:Z �
k 1

n�
Sn�(f)�M kT dP =

Z
Dn� dP =

Z
fDn�

��g
Dn� dP

+

Z
fDn�

>�g
Dn� dP � � + "=2 < " .

This fact establishes (2.54). To show that (2.54) implies the (L1)�-convergence one can easily

verify that the same arguments as the ones given in the proof of Proposition 2.5 apply here as

well, and in this way one obtains:

inf
n�1

Z �
k 1

n
Sn(f)�M kT dP = lim sup

n!1

Z �
k 1

n
Sn(f)�M kT dP .

Therefore (2.54) implies k 1
nSn(f) � M k�T ! 0 (L1)� as n ! 1 . Since by (2.22) the

(L1)�-convergence implies (P �)-convergence in general, these facts complete the proof.
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We pass to the connection with a weak convergence concept. Let us consider a Banach space

B and a sequence of arbitrary functions f Zj j j � 1 g from a probability space (
;F ; P ) into

B . Let C(B) denote the set of all bounded continuous functions from B into R , and let

K(B) denote the family of all compact subsets of B . Let � be a probability measure defined

on the Borel �-algebra in B , then the sequence f Zj j j � 1 g is said to be:

(2.57) weakly convergent to � , if we have:

lim
n!1

Z �
F (Zn) dP = lim

n!1

Z
�
F (Zn) dP =

Z
B
F d�

for all F 2 C(B) , and in this case we shall write Zn ! � weakly in B

(2.58) uniformly tight, if 8" > 0 , 9K" 2 K(B) such that:

lim sup
n!1

P �f Zn =2 K" g � "

(2.59) eventually tight, if 8" > 0 , 9K" 2 K(B) such that:

lim sup
n!1

Z �
F (Zn) dP � "

for all F 2 C(B) satisfying 0 � F � 1BnK"
.

It is easily verified that we have (see [42]):

(2.60) If f Zj j j � 1 g is uniformly tight, it also is eventually tight.

(2.61) If Zn ! � weakly in B and � is Radon, then fZj j j � 1 g is eventually tight.

(2.62) If Zn ! c (P �) for some c 2 B , then Zn ! c weakly in B .

Clarify that Zn ! c (P �) means k Zn � c k! 0 (P �) where k � k denotes the norm in

B , and that Zn ! c weakly in B means Zn ! �c where �c denotes the Dirac measure at c .

Our next aim is to show that in the stationary ergodic case the eventually tightness of the

sequence of averages f 1
nSn(f) j n � 1 g in the Banach space (B(T ); k � kT ) is equivalent

to the uniform law of large numbers. One implication in this direction is obvious. Namely, if

k 1
nSn(f) �M kT ! 0 (P �) as n ! 1 , then by (2.61) and (2.62) we see that the sequence

f 1
nSn(f) j n � 1 g is eventually tight. The remaining part is contained in the following theorem.

Theorem 2.10

Let � = f �j j j � 1 g be a stationary ergodic sequence of random variables defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) and a common distribution

law � , let T be an arbitrary set, and let f : S � T ! R be a given map. Let us suppose that

k f kT belongs to L<1>(�) and that the map s 7! f(s; t) is �-measurable for every t 2 T . If

� is P -perfect as a map from 
 into SN , then the following two statements are equivalent:

(2.63) The map f is eventually totally bounded in �-mean

(2.64) The sequence of averages f n�1Sn(f) j n � 1 g is eventually tight in B(T ) .
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Proof. The implication (2.63))(2.64) follows by Theorem 2.4, (2.22) and (2.61)+(2.62) as

already mentioned. For the converse, suppose that (2.64) holds. Then we claim that for given

� > 0 , there exists � 2 �(T ) such that:

(2.65) P �
�

max
A2�

sup
t0;t002A

�� 1
n
Sn

�
f(t0)�f(t00)� �� > �

	
< �

for all n � n� with some n� � 1 . To prove (2.65) we may proceed as follows. Since the

sequence of averages f 1
nSn(f) j n � 1 g is eventually tight in B(T ) , then for given � > 0 ,

there exists K� 2 K(B(T )) such that:

(2.66) lim sup
n!1

Z �
F
�
n�1Sn(f)

�
dP � �

for all F 2 C(B(T )) satisfying 0 � F � 1B(T )nK�
. The compactness of K� yields the

existence of � 2 �(T ) satisfying:

(2.67) sup
t0;t002A

j '(t0)� '(t00) j < �=3

for all ' 2 K� and all A 2 � (see [17] p.260). By using (2.67) one can easily verify that for

any  2 b(K�; �=3) =
S
'2K�

b('; �=3) we have:

(2.68) sup
t0;t002A

j  (t0)�  (t00) j < �

for all A 2 � . Now by (2.66) and (2.68) we may conclude:

P �� max
A2�

sup
t0;t002A

�� 1
n
Sn

�
f(t0)�f(t00)� �� > �

	
= P �� max

A2�
sup

t0;t002A

�� 1
n
Sn

�
f(t0)

�� 1

n
Sn

�
f(t00)

� �� > �
	

�
Z �

1fn�1Sn(f)=2b(K�;�=3)g dP �
Z �

F�
�
n�1Sn(f)

�
dP � �

for all n � n� with some n� � 1 , where F� 2 C(B(T )) is chosen to satisfy F�(') = 1
for ' 2 B(T ) n b(K�; �=3) , F�(') = 0 for ' 2 K� , and 0 � F�(') � 1B(T )nK�

(') for all

' 2 B(T ) . These facts complete the proof of (2.65). Now, denote:

Dn;� =
�
max
A2�

sup
t0;t002A

j 1
n
Sn

�
f(t0)� f(t00)

� j ��
= max

A2�

�
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j �� .

for n � 1 and � 2 �(T ) . Then by (2.10) and (2.13) we may conclude as in the proof of

Theorem 2.7 that the family fDn;� j n � 1 ; � 2 �(T ) g is uniformly integrable. Therefore for

given " > 0 , there exists 0 < � < "=2 such that:

(2.69)

Z
F
Dn;� dP < "=2

whenever F 2 F with P (F ) < � , for all n � 1 and all � 2 �(T ) . If we now apply (2.65)

with this � > 0 , we can find � 2 �(T ) satisfying:
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(2.70) Pf Dn;� > � g < � .

By (2.69) and (2.70) we get:Z
Dn;� dP =

Z
fDn;�

��g
Dn;� dP +

Z
fDn;�

>�g
Dn;� dP � � + "=2 < "

for all n � 1 . Therefore we may conclude:

(2.71) inf
n�1

Z �
sup

t0;t002A
j 1
n
Sn

�
f(t0)� f(t00)

� j dP � lim sup
n!1

Z
Dn;� dP < "

for all A 2 � , and the proof is complete.

Corollary 2.11

Under the hypotheses in Corollary 2.8 let us suppose that k f kT belongs to L<1>(�) and

that the map s 7! f(s; t) is �-measurable for every t 2 T , and let M(t) =
R
S f(s; t) �(ds) be

the �-mean function of f for t 2 T . If � is P -perfect as a map from 
 into SN , then the

statements (2.49)-(2.52) are also equivalent to the following statement:

(2.72)
1

n
Sn(f)!M weakly in B(T )

as n ! 1 .

Proof. Straightforward by Corollary 2.8, Theorem 2.10 and (2.61)+(2.62).

We proceed by considering the property of being eventually totally bounded in the mean in

some more technical details.

Theorem 2.12

Under the hypotheses in Theorem 2.10 let us suppose that k f kT belongs to L<1>(�) and

that the map s 7! f(s; t) is �-measurable for every t 2 T . If � is P -perfect as a map from


 into SN , then the following two statements are equivalent:

(2.73) The map f is eventually totally bounded in �-mean

(2.74) For every " > 0 , there exists " 2 �(T ) such that any of the following seven conditions

is satisfied:

(2.74.1) inf
n�1

Z �
max
A2"

sup
t0;t002A

�� 1
n
Sn

�
f(t0)�f(t00)��� dP < "

(2.74.2) lim sup
n!1

Z �
sup

t0;t002A

�� 1
n
Sn

�
f(t0)�f(t00)��� dP < " , 8A 2 "

(2.74.3) lim sup
n!1

Z �
max
A2"

sup
t0;t002A

�� 1
n
Sn

�
f(t0)�f(t00)��� dP < "

(2.74.4) inf
n�1

P �
�

sup
t0;t002A

�� 1
n
Sn

�
f(t0)� f(t00)

��� > "
	
< " , 8A 2 "

(2.74.5) inf
n�1 P �

�
max
A2"

sup
t0;t002A

�� 1
n
Sn

�
f(t0)� f(t00)

��� > "
	
< "
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(2.74.6) lim sup
n!1

P �
�

sup
t0;t002A

�� 1
n
Sn

�
f(t0)� f(t00)

��� > "
	
< " , 8A 2 "

(2.74.7) lim sup
n!1

P �
�

max
A2"

sup
t0;t002A

�� 1
n
Sn

�
f(t0)� f(t00)

��� > "
	
< " .

Proof. The implication (2.73)) (2.74.7) is established in the proof of Theorem 2.10, see

(2.65), as well as the implication (2.73))(2.74.3), see (2.71). To complete the proof one can easily

verify by combining deduced and obvious implications that it is enough to show (2.74.4)) (2.73).

(Note that Markov’s inequality for upper integrals (see [62]) may be useful for this verification.)

So, suppose that (2.74.4) holds. Let us for n � 1 , � 2 �(T ) and A 2 �(T ) denote:

Dn;A =
�

sup
t0;t002A

�� 1
n
Sn

�
f(t0)� f(t00)

��� �� .

Since we have:

Dn;A � 2
 1

n
Sn(f)

�
T

� 2

n

nX
j=1

k f k�T � �j

for all n � 1 and all A 2 � with � 2 �(T ) , then by (2.10) and (2.13) we may conclude that

the family of random variables fDn;A j n � 1 ; A 2 � ; � 2 �(T ) g is uniformly integrable.

Therefore for given " > 0 , there exists 0 < � < "=2 such that:

(2.75)

Z
F
Dn;A dP < "=2

whenever F 2 F with P (F ) < � , for all n � 1 and all A 2 � with � 2 �(T ) . Applying

(2.74.4) with this � > 0 , we see that there are � 2 �(T ) and n� � 1 such that:

(2.76) Pf Dn�;A > � g < �

for all A 2 � . Now by (2.75) and (2.76) we may conclude:Z �
sup

t0;t002A

�� 1

n�
Sn�

�
f(t0)� f(t00)

��� dP =

Z
Dn� ;A dP

=

Z
fDn�;A

��g
Dn�;A dP +

Z
fDn� ;A

>�g
Dn� ;A dP � � + "=2 < "

for all A 2 � . This fact establishes (2.73), and the proof is complete.

We conclude this section with a characterization of the eventually totally bounded in the mean

property in terms of the existence of some totally bounded pseudo-metrics. Recall that a pseudo-

metric � on a set T is said to be totally bounded, if T may be covered by finitely many �-balls

of any given radius r > 0 . A pseudo-metric � on a set T is called an ultra-pseudo-metric,

if �(s; t) � �(s; u) _ �(u; t) whenever s; t; u 2 T .

Theorem 2.13

Let � = f �j j j � 1 g be a stationary ergodic sequence of random variables defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) and a common distribution

law � , let T be an arbitrary set, and let f : S � T ! R be a given map. Let us suppose that
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k f kT belongs to L<1>(�) and that the map s 7! f(s; t) is �-measurable for every t 2 T ,

and let M(t) =
R
S f(s; t) �(ds) be the �-mean function of f for t 2 T . If � is P -perfect as

a map from 
 into SN , then the following three statements are equivalent:

(2.77) The map f is eventually totally bounded in �-mean

(2.78) There exists a totally bounded ultra-pseudo-metric � on T such that either of the following

two equivalent conditions is satisfied:

(2.78.1) lim
r#0

lim sup
n!1

Z �
sup

�(t0;t00)<r
j 1
n
Sn

�
f(t0)� f(t00)

� j dP = 0

(2.78.2) lim
r#0

inf
n�1

Z �
sup

�(t0;t00)<r
j 1
n
Sn

�
f(t0)� f(t00)

� j dP = 0

(2.79) For every " > 0 there exist a totally bounded pseudo-metric �" on T and r" > 0 such

that either of the following two equivalent conditions is satisfied:

(2.79.1) lim sup
n!1

P �f sup
�"(s;t)<r"

j 1
n
Sn

�
f(s)� f(t)

� j > " g < " , 8t 2 T

(2.79.2) inf
n�1

P �f sup
�"(s;t)<r"

j 1
n
Sn

�
f(s)� f(t)

� j > " g < " , 8t 2 T .

Proof. We first prove that (2.77) implies (2.78.1). So, suppose that (2.77) holds. Let

f rn j n � 0 g be a sequence of real numbers satisfying 1 = r0 > r1 > r2 > . . . > 0
with limn!1 rn = 0 . Then for every n � 1 , there exists n 2 �(T ) such that

j M(t0) � M(t00) j < (rn�1)
2 for all t0; t00 2 A and all A 2 n . There is no restriction

to assume that 1 � 2 � . . . . Let us define:

�(t0; t00) = sup
n�1

�
rn�1 � max

A2n
j 1A(t0)� 1A(t

00) j �
for all t0; t00 2 T . Then � is evidently a totally bounded ultra-pseudo-metric on T , and it is

easy to verify that �(t0; t00) < " implies jM(t0)�M(t00) j < "2 for 0 < " < 1 and t0; t00 2 T .

Therefore by Markov’s inequality for upper integrals (see [62]) we may conclude:

P �f sup
�(t0;t00)<"

j 1
n
Sn

�
f(t0)� f(t00)

� j > " g � 1

"

Z �
sup

�(t0;t00)<"
j 1
n
Sn

�
f(t0)� f(t00)

� j dP
� 1

"

Z �
sup

�(t0;t00)<"

�
j 1
n
Sn

�
f(t0)

��M(t0) j + jM(t0)�M(t00) j

+ jM(t00)� 1

n
Sn

�
f(t00)

� j �
dP � 1

"

�
2

Z �
k 1

n
Sn(f)�M kT dP + "2

�
for all 0 < " < 1 and all n � 1 . Hence by (2.77) and Theorem 2.4 we obtain:

(2.80) lim sup
n!1

P �f sup
�(t0;t00)<"

j 1
n
Sn

�
f(t0)� f(t00)

� j > " g � "
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for all 0 < " < 1 . Let us denote:

Dn;" =
�

sup
�(t0;t00)<"

j 1
n
Sn
�
f(t0)� f(t00)

� j ��

for all n � 1 and all " > 0 . Then we have:

Dn;" � 2

n

nX
j=1

k f k�T � �j

for all n � 1 and all " > 0 . Therefore by (2.10) and (2.13) the family of random variables

f Dn;" j n � 1 ; " > 0 g is uniformly integrable. Thus for given " > 0 , there exists

0 < � < ("=2) ^ 1 such that:

(2.81)

Z
F
Dn;� dP � "=2

whenever F 2 F with P (F ) < � . Now by (2.80) and (2.81) we get:Z
Dn;� dP =

Z
fDn;���g

Dn;� dP +

Z
fDn;�>�g

Dn;� dP � � + "=2 < "

for all n � n� with some n� � 1 . Hence we obtain:

lim sup
n!1

Z �
sup

�(t0;t00)<�
j 1
n
Sn

�
f(t0)� f(t00)

� j dP = lim sup
n!1

Z
Dn;� dP < "

and (2.78.1) is proved. Using the same arguments as in the proof of Proposition 2.5 we easily get:

lim sup
n!1

Z �
sup

�(t0;t00)<r
j 1
n
Sn

�
f(t0)� f(t00)

� j dP
= inf

n�1

Z �
sup

�(t0;t00)<r
j 1
n
Sn

�
f(t0)� f(t00)

� j dP
for all r > 0 . Therefore the equivalence between (2.78.1) and (2.78.2) is obvious. The implications

(2.78.1) ) (2.79.1) and (2.78.2) ) (2.79.2) follow by applying Markov’s inequality for upper

integrals (see [62]). Since (2.79.1) implies (2.79.2) obviously, it is enough to show that (2.79.2)

implies (2.77). So, suppose that (2.79.2) holds. Then for given " > 0 there exists a totally

bounded pseudo-metric �" on T and r" > 0 satisfying (2.79.2). Since �" is totally bounded

we can cover the whole set T by finitely many �-balls B1; B2; . . . ; Bn of given radius r" .

Therefore putting " = f B1; B2; . . . ; Bn g we see that (2.74.4) is satisfied ( with 2" instead of

" ) and in this way we obtain (2.77). These facts complete the proof.

2.3 The uniform ergodic lemma

1. The proof of the uniform ergodic theorem in the next section relies upon a fact of independent

interest that is presented in Theorem 2.14 below. It is instructive to compare this result with the

Maximal Ergodic Lemma 1.4, and their roles in the proofs of the ergodic theorems. In Corollary 2.15

below we present its consequence which should be compared with the Maximal Ergodic Inequality
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1.5. We begin by introducing the notation and recalling some facts from the non-measurable

calculus needed in the sequel. For more details in this direction we refer to [1] and [62].

2. Given a linear operator T in L1(�) and f 2 L1(�) , we will denote:

(2.82) Sn(f) =
Pn�1

j=0 T
jf

(2.83) Mn(f) = max
1�j�n

Sj(f)

(2.84) Rn(f) = max
1�j�n

Sj(f)=j

for n � 1 . The operator T is said to be positive, if Tf � 0 whenever f � 0 . The operator

T is said to be a contraction in L1(�) , if
R jTf j d� � R jf j d� for all f 2 L1(�) . We shall

restrict our attention to the case where the underlying measure space (X;A; �) is �-finite, but we

remark that further extensions are possible. The symbols �� and �� denote the outer �-measure

and the inner �-measure respectively. The upper �-integral of an arbitrary function f from X
into �R is defined as follows

R �
f d� = inf f R g d� j g 2L1(�) ; f � g g , with the convention

inf ; = +1 . The lower �-integral of an arbitrary function f from X into �R is defined as

follows
R
� f d� = sup f R g d� j g 2L1(�) ; g � f g , with the convention sup ; = �1 . We

denote by f� the upper �-envelope of f . This means that f� is an A-measurable function

from X into �R satisfying f � f� , and if g is another A-measurable function from X into
�R satisfying f � g �-a.a., then f�� g �-a.a. We denote by f� the lower �-envelope of f .

This means that f� is an A-measurable function from X into �R satisfying f� � f , and if

g is another A-measurable function from X into �R satisfying g � f �-a.a., then g � f�
�-a.a. It should be noted that such envelopes exist under the assumption that � is �-finite. Recall

that we have
R �
f d� =

R
f� d� , whenever the integral on the right-hand side exists in �R , andR �

f d� = +1 otherwise. Similarly we have
R
� f d� =

R
f� d� , whenever the integral on the

right-hand side exists in �R , and
R
� f d� = �1 otherwise. To conclude the preliminary part of

the section, we clarify that
R �
A f d� stands for

R �
f �1A d� .

Theorem 2.14 (The uniform ergodic lemma 1993)

Let T be a positive contraction in L1(�) , and let f f� j � 2 � g be a family of functions

from L1(�) . Let us denote An = f sup�2�Mn(f�) > 0g and Bn = f (sup�2�Mn(f�))
� > 0g

for all n � 1 . Then we have:

(2.85)

Z �

An

sup
�2�

f� d� � 0

(2.86)

Z �

Bn

sup
�2�

f� d� � 0

for all n � 1 .

Proof. We shall first assume that sup�2� f� � g for some g 2 L1(�) . In this case we have

(sup�2� f�)� 2 L1(�) . Let n � 1 be given and fixed. By the monotonicity of T we get:

(2.87) Sj(f�) = f� + TSj�1(f�) � f� + T ((Mn(f�))
+)

for all j = 2; . . . ; n + 1 , and all � 2 � . Moreover, since T ((Mn(f�))
+) � 0 for all � 2 � ,
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we see that (2.87) is valid for j = 1 as well. Hence we find:

Mn(f�) � f� + T ((Mn(f�))
+)

for all � 2 � . Taking the supremum over all � 2 � we obtain:

(2.88) sup
�2�

Mn(f�) � sup
�2�

f� + sup
�2�

T ((Mn(f�))
+) .

Since f� � g for all � 2 � , we have sup�2� (Mn(f�))
+ � (Mn(g))

+ . Hence we see that

(sup�2� (Mn(f�))
+)� 2 L1(�) . Therefore by (2.88) and the monotonicity of T we get:

(2.89) sup
�2�

Mn(f�) � sup
�2�

f� + T
��

sup
�2�

(Mn(f�))
+
���

.

Multiplying both sides by 1An we obtain:

sup
�2�

(Mn(f�))
+ =

�
sup
�2�

Mn(f�))
�+

= sup
�2�

Mn(f�) � 1An

� sup
�2�

f� � 1An + T
��

sup
�2�

(Mn(f�))
+
��� � 1An

� sup
�2�

f� � 1An + T
��

sup
�2�

(Mn(f�))
+
���

.

Integrating both sides we get:R �
sup�2� (Mn(f�))

+ d�

� R �
An

sup�2� f� d� +
R
T ((sup�2� (Mn(f�))

+)�) d� .

This can be rewritten as follows:R �
sup�2� (Mn(f�))

+ d�� R
T ((sup�2� (Mn(f�))

+)�) d� � R �
An

sup�2� f� d�

and the proof of (2.85) follows from the contractibility of T .

Similarly, from (2.89) we get:�
sup
�2�

Mn(f�)
��

�
�
sup
�2�

f�

��
+ T

��
sup
�2�

(Mn(f�))
+
���

.

Multiplying both sides by 1Bn we obtain:�
sup
�2�

(Mn(f�))
+
��

=
��

sup
�2�

Mn(f�)
�+��

=
��

sup
�2�

Mn(f�)
���+

=
�
sup
�2�

Mn(f�)
��
� 1Bn

�
�
sup
�2�

f�

��
� 1Bn + T

��
sup
�2�

(Mn(f�))
+
��� � 1Bn �
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�
�
sup
�2�

f�

��
� 1Bn

+ T
��

sup
�2�

(Mn(f�))
+
���

.

Integrating both sides we get:R �
sup�2� (Mn(f�))

+ d�

� R �
Bn

sup�2� f� d� +
R
T ((sup�2� (Mn(f�))

+)�) d� .

Finally, as above, this can be rewritten as follows:R �
sup�2� (Mn(f�))

+ d�� R
T ((sup�2� (Mn(f�))

+)�) d� � R �
Bn

sup�2� f� d�

and the proof of (2.86) follows from the contractibility of T .

Next suppose that there is no g 2 L1(�) satisfying sup�2� f� � g . In this case we haveR �
sup�2� f� d� = +1 . Let n � 1 be given and fixed. Then by subadditivity we get:R �

sup�2� f� d� � R �
Cn

sup�2� f� d� +
R �
Cc
n
sup�2� f� d�

with Cn being equal either An or Bn . However, in either of the cases, on the set Cc
n we

evidently have sup�2� f� � sup�2�Mn(f�) � 0 . Therefore
R �
Cn

sup�2� f� d� = +1 , and

the proof of theorem is complete.

Corollary 2.15 (The uniform ergodic inequality 1993)

Under the hypotheses of Theorem 2.14 suppose moreover that � is finite, and that T (1) = 1 .

Let us denote An;t = f sup�2�Rn(f�) > t g and Bn;t = f (sup�2�Rn(f�))
� > t g for n � 1

and t > 0 . Then we have:

(2.90)

Z �

An;t

sup
�2�

(f� � t) d� � 0

(2.91) ��
n

sup
�2�

Rn(f�) > t
o
� 1

t

Z �

An;t

sup
�2�

f� d�

(2.92)

Z �

Bn;t

sup
�2�

(f� � t) d� � 0

(2.93) ��
n

sup
�2�

Rn(f�) > t
o
� 1

t

Z �

Bn;t

sup
�2�

f� d�

for all n � 1 and all t > 0 .

Proof. Let n � 1 and t > 0 be given and fixed. Consider g� = f� � t for � 2 � .

Since T (1) = 1 , then it is easily verified that An;t = f sup�2�Mn(g�) > 0 g and therefore

Bn;t = f (sup�2�Mn(g�))
� > 0 g. Hence by subadditivity and Theorem 2.14 we obtain:R �

Cn;t
sup�2� f� d� +

R �
Cn;t

(�t) d� � R �
Cn;t

sup�2� g� d� � 0

with Cn;t being equal either An;t or Bn;t . Thus the proof follows straightforwardly from the
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facts that
R �
An;t

(�t) d� = �t � ��(An;t) and
R �
Bn;t

(�t) d� = �t � �(Bn;t) .

Remark 2.16

Under the hypotheses of Theorem 2.14 and Corollary 2.15 respectively, suppose that (�;B)
is an analytic space (see [43] p.12). We point out that any polish space is an analytic metric space.

Suppose moreover that the map (x; �) 7! f�(x) from X�� into �R is measurable with respect

to the product �-algebra A � B and Borel �-algebra B( �R) . Then by the projection theorem

(see [43] p.13-14) we may conclude that the map x 7! sup�2� f�(x) is universally measurable

from X into �R , which means �-measurable with respect to any measure � on A . In this

way all upper �-integrals, outer and inner �-measures in Theorem 2.14 and Corollary 2.15 become

the ordinary ones (without stars). Moreover, then both Theorem 2.14 and Corollary 2.15 extend to

the case where the supremum in the definitions of functions M and R is taken over all integers.

We leave the precise formulation of these facts and remaining details to the reader.

2.4 The uniform ergodic theorem for dynamical systems

1. The main object under consideration in this section is the given ergodic dynamical system

(X;A; �; T ) . Thus (X;A; �) is a probability space, and T is an ergodic measure-preserving

transformation of X (see Paragraph 4 in Section 1.1). We further assume that a parameterized

family F = f f� j � 2 � g of measurable maps from X into R is given, such that:

(2.94)

Z �
sup
�2�

jf�j d� < 1 .

In particular, we see that each f� belongs to L1(�) , and therefore for all � 2 � by Birkhoff’s

Ergodic Theorem 1.6 we have:

(2.95)
1

n

n�1X
j=0

T j(f�) ! M(�) �-a.s.

as n !1 . The limit M is called the �-mean function of F , and we have M(�) =
R
f� d�

for all � 2 � . Hence we see that M belongs to B(�) whenever (2.94) is satisfied, where

B(�) denotes the set of all bounded real valued functions on � .

2. The purpose of this section is to present a solution to the following problem. Determine

conditions which are necessary and sufficient for the uniform convergence to be valid:

(2.96) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� ! 0

as n ! 1 . More precisely, we shall consider three convergence concepts in (2.96), and these

are the (a:s:)�-convergence, the (L1)�-convergence, and the (��)-convergence. Given a sequence

of arbitrary maps fZn j n � 1g from X into R , we recall that Zn ! 0 (a:s:)� if jZnj� ! 0
�-a.s., that Zn ! 0 (L1)� if jZnj� ! 0 in �-mean, and that Zn ! 0 (��) if jZnj� ! 0 in

�-measure. For more information in this direction see Paragraph 4 in Section 2.2 and recall (2.22).

It should be noted that if all the maps under consideration are measurable, then the convergence

concepts stated above coincide with the usual concepts of �-a.s. convergence, convergence in
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�-mean, and convergence in �-measure, respectively. This is true in quite a general setting as

described in Remark 2.16 above.

In order to handle measurability problems appearing in the sequel, we shall often assume that the

transformation T is �-perfect. This means that for every A 2 A there exists B 2 A satisfying

B � T (A) and �(AnT�1(B)) = 0 . We can require equivalently that ��(T�1(C)) = 1 whenever

C is a subset of X satisfying ��(C) = 1 . Under this assumption we have:

(2.97) (g � T )� = g� � T
(2.98)

R �
g � T d� =

R �
g d�

whenever g : X ! �R is an arbitrary map. For more details see [62].

The dynamical system (X;A; �; T ) is said to be perfect, if T is �-perfect. The best known

sufficient condition for the �-perfectness of T is the following:

(2.99) T (A) � A�

where A� denotes the �-completion of A . This condition is by the image theorem satisfied

whenever (X;A) is an analytic metric space (see [43] p.13). Moreover, if (X;A) is the countable

product (SN;BN) of copies of a measurable space (S;B) , then by the projection theorem we

see that condition (2.99) is satisfied whenever (S;B) is an analytic space (see [43] p.13). We

remind again that any polish space is an analytic metric space.

3. We return to the problem (2.96) by reminding that its meaning and applications are described

in Section 1.3 and Section 1.4. Motivated by the results from Section 2.2 we shall say that the

family F = f f� j � 2 � g is eventually totally bounded in �-mean with respect to T , if the

following condition is satisfied:

(2.100) For every " > 0 there exists " 2 �(�) such that:

inf
n�1

1

n

Z �
sup

�0;�002A

��� n�1X
j=0

T j(f�0�f�00)
��� d� < "

for all A 2 " .

This definition should be compared with definition (2.29). Here and in the sequel �(�) denotes

the family of all finite coverings of � . We recall that a finite covering of � is any family

 = fA1; . . . ; An g of non-empty subsets of � satisfying � = [n
j=1Aj with n � 1 .

4. Our next aim is to show that under (2.94), the condition (2.100) is equivalent to the uniform

convergence in (2.96), with respect to any of the convergence concepts stated above. It should be

noted that our method below in essence relies upon the uniform ergodic lemma (Theorem 2.14)

from the previous section. The first result is just a reformulation of Theorem 2.4 and is included

for the sake of completeness.

Theorem 2.17

Let (X;A; �; T ) be a perfect ergodic dynamical system, and let F = f f� j � 2 � g be

a parameterized family of measurable maps from X into R satisfying (2.94) above. If F is
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eventually totally bounded in �-mean with respect to T , then we have:

(2.101) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� ! 0 (a:s:)� & (L1)�

as n ! 1 , where M is the �-mean function of F .

Proof. Let " > 0 be given and fixed, then by our assumption there exists " 2 �(�) such that:

(2.102) inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� < "

for all A 2 " . Since M 2 B(�) , there is no restriction to assume that we also have:

(2.103) sup
�0;�002A

jM(�0)�M(�00)j < "

for all A 2 " . Choosing a point tA 2 A for every A 2 " , from (2.103) we get:

sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� = max

A2"
sup
�2A

��� 1
n

n�1X
j=0

T j(f�) �M(�)
���

� max
A2"

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� + ��� 1

n

n�1X
j=0

T j(f�A)�M(�A)
���

+ sup
�0;�002A

jM(�0)�M(�00)j
�
� max

A2"
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
���

+ max
A2"

��� 1
n

n�1X
j=0

T j(f�A)�M(�A)
��� + "

for all n � 1 . Hence by (2.95) we easily obtain:

lim sup
n!1

�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� ��

� max
A2"

lim sup
n!1

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� + "

From this inequality and (2.102) we see that the (a:s:)�-convergence in (2.101) will be established

as soon as we deduce the inequality:

(2.104) lim sup
n!1

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� � inf

n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d�

for all A � � . We leave this inequality to be established with some facts of independent interest

in the next proposition, and proceed with the (L1)�-convergence in (2.101). From (2.97) we get:
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�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �� � 1

n

n�1X
j=0

�
sup
�2�

�� T j(f�)
�� ��+ sup

�2�
jM(�)j

=
1

n

n�1X
j=0

T j
�
(sup
�2�

��f���)�� + sup
�2�

jM(�)j

for all n � 1 . Hence from (2.94) and (2.9)+(2.13) it follows that the sequence on the left-hand

side is uniformly integrable. Thus the (L1)�-convergence in (2.101) follows from the (a:s:)�-
convergence, and the proof is complete.

Proposition 2.18

Under the hypotheses of Theorem 2.17 we have:

(2.105) lim sup
n!1

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� = C �-a.s.

(2.106) C � inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d�

(2.107) inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� = lim sup

n!1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d�

where A is an arbitrary subset of � , and C is a real number depending on A .

Proof. Let A � � be given and fixed. Let us denote:

Zn(x) = sup
�0;�002A

�� 1
n

n�1X
j=0

T j(f�0�f�00)(x)
��

for all x 2 X and all n � 1 . Then the proof can be carried out respectively as follows.

(2.105): Since T is ergodic, it is enough to show that:

(2.108) lim sup
n!1

Z�n � T = lim sup
n!1

Z�n �-a.s.

For this it should be noted that we have:

Zn � T = sup�0;�002A
�� n+1

n � 1
n+1

Pn
j=0 T

j(f�0�f�00)� 1
n (f�0�f�00)

��
for all n � 1 . Hence we easily find:

n+1
n Zn+1 � 2

n sup�2� jf�j � Zn � T � n+1
n Zn+1 +

2
n sup�2� jf�j

for all n � 1 . Taking the upper �-envelopes on both sides we obtain:

n+1
n Z�

n+1 � 2
n

�
sup�2� jf�j

�� � (Zn � T
�� � n+1

n Z�
n+1 +

2
n

�
sup�2� jf�j

��
for all n � 1 . Letting n ! 1 and using (2.94)+(2.97), we obtain (2.108), and the proof of
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(2.105) is complete.

(2.106): Here we essentially use the uniform ergodic lemma (Theorem 2.14) from the last

section. For this we denote Sn(f) =
Pn�1

j=0 T
jf and Mn(f) = max1�j�n Sj(f) , whenever

f 2 L1(�) and n � 1 . Let us for fixed N;m � 1 and " > 0 consider the following set:

BN;m;" =
n �

sup
�0;�002A

Mm

� jSN (f�0�f�00)=N j � (C�") ���> 0
o

.

Then by Theorem 2.14 we may conclude:Z �

BN;m;"

sup
�0;�002A

� jSN (f�0�f�00)=N j � (C�") � d� � 0 .

Hence by subadditivity of the upper �-integral we obtain:Z �

BN;m;"

sup
�0;�002A

jSN (f�0�f�00)=N j d� � (C�") �(BN;m;") .

Therefore by the monotone convergence theorem for upper integrals (see [62]), in order to complete

the proof of (2.106), it is enough to show that �(BN;m;") " 1 as m ! 1 , with N � 1 and

" > 0 being fixed. We shall establish this fact by proving the following inequality:

(2.109)
�

sup
�0;�002A

jSn(f�0�f�00)=nj
��
�
�

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � ��

+
�

1
n sup�0;�002A

��P
N [n=N ]�j<n T

j(f�0�f�00)
�� ��

for all n � N . For this it should be noted that we have:

(2.110) jSn(f�0�f�00)=nj � jSN [n=N ](f�0�f�00)=nj + 1
n j

P
N [n=N ]�j<n T j(f�0�f�00) j

for all n � N and all �0; �00 2 A . Moreover, given n � N , taking m � 1 large enough we get:

Sm
� jSN (f�0�f�00)j� =

��PN�1
j=0 T j(f�0�f�00)

�� + ��PN
j=1 T

j(f�0�f�00)
�� + . . .

+
��P2N�1

j=N T j(f�0�f�00)
�� + . . .

� ��PN�1
j=0 T j(f�0�f�00)

��+ ��P2N�1
j=N T j(f�0�f�00)

��+. . .+
��PN [n=N ]�1

j=N([n=N ]�1)
T j(f�0�f�00)

��
� jSN [n=N ](f�0 �f�00)j

for all �0; �00 2 A . Hence we obtain:

(2.111) jSN [n=N ](f�0�f�00)=nj � Sm
� jSN (f�0�f�00)=nj) � Sm

� jSN (f�0�f�00)=N j)

with n;N;m � 1 as above. Thus (2.109) follows straightforwardly by (2.110) and (2.111). In

addition, for the last term in (2.109) we have:
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�
1
n sup�0;�002A

��P
N [n=N ]�j<n T j(f�0�f�00)

�� ��
� 2

n

P
N [n=N ]�j<n T

j
�
(sup�2A jf�j)�

�
= 2

�
1
nSn

�
(sup�2A jf�j)�

�� N [n=N ]
n � 1

N [n=N ] SN [n=N ]

�
(sup�2A jf�j)�

��
for all n � N . Since N [n=N ]=n ! 1 as n ! 1 , then by (2.94) and Birkhoff’s Ergodic

Theorem 1.6, the right-hand side tends to zero �-a.s. as n ! 1 . Letting n ! 1 in (2.109)

therefore we obtain:

(2.112) lim sup
n!1

�
sup

�0;�002A
jSn(f�0�f�00)=nj

��
�
�

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � ��

for all N � 1 . Finally, from (2.105) and (2.112) we get:

lim
m!1�(BN;m;") = lim

m!1�
�
n

sup
�0;�002A

Mm

� jSN (f�0�f�00)=N j � > (C�")
o

= ��
n

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � > (C�")

o
= �

n �
sup

�0;�002A
sup
m�1

Sm
� jSN (f�0�f�00)=N j � ��> (C�")

o
� �

n
lim sup
n!1

�
sup

�0;�002A
jSn(f�0�f�00)=nj

��
> (C�")

o
= 1 .

This fact completes the proof of (2.106).

(2.107): It should be noted that we have:�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� � 2

n

n�1X
j=0

T j
�
(sup
�2A

jf�j)�
�

for all n � 1 . Therefore by (2.94) and (2.9)+(2.13) it follows that the sequence on the left-hand

side is uniformly integrable. Thus by Fatou’s lemma we can conclude:

lim sup
n!1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� � C .

Hence (2.107) follows straightforwardly by (2.106). This fact completes the proof.

Remark 2.19

Under the hypotheses of Theorem 2.17 and Proposition 2.18 it is easily verified that in the

case when the map x 7! sup�0;�002A
��Pn�1

j=0 T
j(f�0�f�00)(x)

�� is �-measurable as a map from

X into R for all n � 1 and given A � � , the assumption of �-perfectness of T is not

needed for their conclusions remain valid.

Remark 2.20

Besides the given proof, there are at least two alternative proofs of the result in Proposition

2.18. First, we may note that if T is �-perfect, then T j�1 is �-perfect for all j � 1 . This fact

easily implies that the map x 7! (T 0(x); T 1(x); . . . ) is �-perfect as a map from (X;A) into
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(XN;AN) . Hence we see that if T is assumed to be �-perfect, then the hypotheses of Theorem

2.4 and Proposition 2.5 are satisfied with �j = T j�1 for j � 1 . The proof then could be carried

out in exactly the same way as the proof of Proposition 2.5.

Second, we shall note that the result of Proposition 2.18 could also be deduced by Kingman’s

Subadditive Ergodic Theorem 1.8. Indeed, let us in the notation of Proposition 2.18 denote:

(2.113) gn =
�

sup
�0;�002A

��� n�1X
j=0

T j(f�0�f�00)
��� ��

for all n � 1 , and let us assume that T is �-perfect. Then it is quite easily verified that the

sequence fgn j n � 1g is T -subadditive in L1(�) . Therefore (2.105)-(2.107) in Proposition 2.18

follow from Kingman’s Theorem 1.8. Moreover, although irrelevant for our purposes, it should be

noted that in this way we immediately obtain a more precise information: We have the equalities

in (2.105) and (2.106) with the limit in (2.105) instead of the limit superior.

In this context it may also be instructive to recall the classical fact that for a subadditive

sequence of real numbers f n j n � 1 g we have lim n!1 n=n = inf n�1 n=n . We shall

conclude this remark by expressing our belief that the method of proof presented in Proposition

2.18 above, relying upon the uniform ergodic lemma (Theorem 2.14) from the previous section,

may be useful in the investigation of similar problems in more general operator cases as well.

Remark 2.21

It should be noted that if we require the infimum in (2.100) to be attained for n = 1 , then we

obtain the Blum-DeHardt condition of Theorem 2.1, which is the best known sufficient condition

for the uniform law of large numbers (at least in the independent case). There is an example

(presented in Section 2.5.1 below) showing that a parameterized family could be eventually totally

bounded in the mean (with respect to a measure-preserving transformation) without satisfying the

Blum-DeHardt condition. This in fact is not surprising since we show in the next theorem that

the property of eventually totally bounded in the mean characterizes the uniform ergodic theorem

for dynamical systems, and thus the uniform laws of large numbers as well (see Section 1.3 and

Corollary 2.8). We may thus conclude that the condition (2.100) offers a characterization of the

uniform ergodic theorem for dynamical systems which contains the best known sufficient condition

as a particular case. In this context it is interesting to recall that the Blum-DeHardt law of large

numbers contains Mourier’s classic law of large numbers (see Corollary 2.3).

In order to state the next theorem we shall once again recall that B(�) denotes the Banach

space of all bounded real valued functions on � with respect to the sup-norm. We denote by

C(B(�)) the set of all bounded continuous functions from B(�) into R , and by K(B(�))
we denote the family of all compact subsets of B(�) . A pseudo-metric d on a set � is

said to be totally bounded, if � can be covered by finitely many d-balls of any given radius

" > 0 . A pseudo-metric d on a set � is said to be an ultra pseudo-metric, if it satisfies

d(�1; �2) � d(�1; �3) _ d(�3; �2) whenever �1; �2; �3 2 � .

Theorem 2.22

Let (X;A; �; T ) be a perfect ergodic dynamical system, let F = f f� j � 2 � g be a

parameterized family of measurable maps from X into R satisfying (2.94) above, and let M be
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the �-mean function of F . Then the following eight statements are equivalent:

(2.114) The family F is eventually totally bounded in �-mean with respect to T

(2.115) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� ! 0 (a:s:)�

(2.116) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� ! 0 (L1)�

(2.117) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� ! 0 (��)

(2.118)
1

n

n�1X
j=0

T j(f) ! M weakly in B(�) , that is:

lim
n!1

Z �
F
� 1
n

n�1X
j=0

T j(f)
�
d� = F (M)

for all F 2 C(B(�))

(2.119) The sequence
n 1

n

n�1X
j=0

T j(f) j n � 1
o

is eventually tight in B(�) , that is:

lim sup
n!1

Z �
F
� 1
n

n�1X
j=0

T j(f)
�
d� � "

for some K" 2 K(B(�)) , and for all F 2 C(B(�)) satisfying 0 � F � 1B(�)nK"
,

whenever " > 0

(2.120) There exists a totally bounded ultra pseudo-metric d on � such that the condition

is satisfied:

lim
r#0

inf
n�1

Z �
sup

d(�0;�00)<r

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� = 0

(2.121) For every " > 0 there exist a totally bounded pseudo-metric d" on � and r" > 0
such that:

inf
n�1 �

�
n

sup
d"(�;�0)<"

��� 1
n

n�1X
j=0

T j(f��f�0)
��� > "

o
< "

for all � 2 � .

Proof. Since T is �-perfect, then T j�1 is �-perfect for all j � 1 . This fact easily implies

that the map x 7! (T 0(x); T 1(x); . . . ) is �-perfect as a map from (X;A) into (XN;AN) .

Putting �j = T j�1 for j � 1 we see that the hypotheses of Theorem 2.7, Corollary 2.8, Theorem

2.10, Corollary 2.11 and Theorem 2.13 are satisfied. The result therefore follows from Corollary

2.8, Theorem 2.10, Corollary 2.11 and Theorem 2.13. These facts complete the proof.
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2.5 Examples and complements

This section contains examples and complementary facts which are aimed to support and clarify

the results from the previous four sections of this chapter.

2.5.1 Dudley’s counter-example. The example is from [18] and shows that the Blum-

DeHardt sufficient condition from Theorem 2.1 is generally not necessary for the uniform law of

large numbers. In other words, if the infimum in (2.29) and (2.100) is not attained for n = 1 , it

does not mean that the uniform ergodic theorem fails (see Theorem 2.4 and Theorem 2.17). In the

construction below we need the following lemma (see [18] p.14-16).

Lemma 2.23 (Chernoff 1952)

Let 0 � p = 1 � q � 1 and n � 1 be given. Then the estimates are valid:

(2.122)
Pn

j=k

�n
j

�
pjqn�j � (np=k)k(nq=(n�k))n�k

(2.123)
Pn

j=k

�n
j

�
pjqn�j � (np=k)k exp(k�np)

for all k � np .

Proof. Let the random variable X � B(n; p) be from the binomial distribution. Then by

Markov’s inequality we get:Pn
j=k

�n
j

�
pjqn�j = PfX � kg = Pfexp(�X) � exp(�k)g � exp(��k)E� exp(�X)

�
=

= exp(��k)Pn
j=0 exp(�j)

�n
j

�
pjqn�j = exp(��k) (pe� + q)n

for all � � 0 . Putting � = log(kq=(n�k)p) in the last expression, we obtain (2.122). Inserting

x � exp(x�1) in (2.122) with x = nq=(n�k) , we obtain (2.123). This completes the proof.

Example 2.24 (Dudley 1982)

Let f�jgj�1 be a sequence of independent and identically distributed random variables defined

on a probability space (
;F ; P ) with values in the measurable space (S;A) and common

distribution law � . Let fCm gm�1 be a sequence of independent sets in (S;A; �) with

�(Cm) = 1=m for all m � 1 . Then we have:

(2.124) sup
m�1

��� 1
n

nX
j=1

1Cm(�j) � �(Cm)
��� ! 0 P -a.s.

as n ! 1 .

For this, let " > 0 be given and fixed. Put m0 = [e="] , then by (3.3) below (with Corollary

2.8) it is enough to show:

(2.125) P̂
n

sup
m�m0

��� 1
n

nX
j=1

1Cm(�j) �"j
��� > "

o
! 0

as n ! 1 . Here P̂ = P 
 P" is the product probability, and f"jgj�1 is a Rademacher

sequence defined on the probability space (
";F"; P") , which is understood to be independent

from f�jgj�1 .
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For (2.125) we first note that e=m" < 1 for all m > m0 , and thus (e=m") [n"]+1� (e=m")2

for all n � 1=" . Using this fact, the subgaussian inequality (3.1), and (2.123), we obtain:

P̂
n

sup
m�m0

��� 1
n

nX
j=1

1Cm(�j) �"j
��� > "

o
�

X
m>m0

E
�
P"

n ��� nX
j=1

1Cm(�j) �"j
��� > n"

o�
�

X
m>m0

E

�
2 exp

��"2n2=2Pn
j=1 1Cm(�j)

� � 1�Pn
j=1 1Cm(�j) � [n"]+1

	�

=
X
m>m0

2
nX

j=[n"]+1

exp
��"2n2=2j� �nj� (1=m)j (1�1=m)n�j

� 2 exp
��"2n=2� X

m>m0

�
n=m([n"]+1)

�[n"]+1
exp

�
[n"]+1�n=m�

� 2 exp
��"2n=2� X

m>m0

�
e=m"

�[n"]+1
exp(�n=m)

� 2 exp
��"2n=2� e2

"2

X
m>m0

1

m2
� �2

3

e2

"2
exp

��"2n=2�
for all n � 1=" . Letting n!1 we obtain (2.125), and the proof of (2.124) is complete.

In addition, let us put C = f 1Cm j m � 1 g . Then we claim (in the notation of Section 2.1):

(2.126) N1["; C] = +1
for all 0 < " < 1 . Thus, the Blum-DeHardt sufficient condition from Theorem 2.1 is not fulfilled.

Otherwise, there would exist 0 < " < 1 and g1 � h1; . . . ; gN � hN in L1(�) such that:

(2.127) C � SN
k=1[gk; hk]

(2.128) max
1�k�N

Z
S
(hk�gk) d� < " .

From (2.127) and the fact
P1

m=1 �(Cm) = +1 , we see that there exists 1 � k � N such

that for the subsequence f 1Cmj j j � 1 g of C satisfying gk � 1Cmj � hk for all j � 1 ,

we have
P1

j=1 �(Cmj) = +1 . Let A = \1j=1Cmj and B = [1j=1Cmj . Then �(A) = 0
and �(B) = 1 , by Borel-Cantelli’s lemma (see Section 1.2). Moreover, we have gk � 1A and

1B � hk . Thus
R
gk d� � 0 and

R
hk d� � 1 . Hence

R
(hk�gk) d� � 1 , which contradicts

(2.128). The proof of (2.126) is complete.

2.5.2 Necessity of integrability. The purpose of this section is to show that the

integrability of the sup-norm is a necessary condition for the uniform law of large numbers to

hold in the i.i.d. case. The first result we present appears in [39] and [84].

1. Let (S;A; �) be a probability space, and let (
;F ; P ) be the countable product

(SN;AN; �N) . Let �j
�
(si)i�1

�
= sj be the j-th projection of SN onto S for (si)i�1 2 SN

and j � 1 . Then f�jgj�1 is a sequence of independent and identically distributed random

variables defined on (
;F ; P ) with values in (S;A) and common distribution law � . Let T
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be a set, and let f : S � T ! R be a given map. We denote Sn(f) =
Pn

j=1 f(�j) for all

n � 1 . In the sequel we adopt the notation from Section 2.2.

Theorem 2.25

Let f�jgj�1 be a sequence of independent and identically distributed random variables defined

on (
;F ; P ) as above. Let us assume that:

(2.129)
 1
nSn(f) �M


T
! 0 (a:s:)

as n ! 1 for M 2 B(T ) . Then we have:

(2.130)

Z �
kf(s)kT �(ds) < 1 .

Proof. The proof of this result is based upon the following three facts:

(2.131) Let (S;A; �) be a probability space, and let Cn be a subset of S satisfying ��(Cn) = 1
for all n � 1 . Then

�
�N

���Q1
n=1Cn

�
= 1 .

(2.132) Let f�ngn�1 be a sequence of independent and identically distributed random variables

satisfying lim supn!1 j�nj=n < 1 P -a.s. Then �1 2 L1(P ) .

(2.133) (The 0-1 law for the upper envelopes) Let (S;A; �) be a probability space, and let

f : S ! R+ be a given map. Then we have:

��
�ff � �g [ f�f � f�g� = 1

whenever � > 0 and � > 1 .

The arguments leading to (2.131)-(2.133) may be presented as follows.

(2.131): Put An = �(A[fCng) and define �n = tr�(�; Cn) for all n � 1 . In other words

�n is a probability measure defined on An by �n((A \ Cn) [ (B \ Cc
n)) = ��(A \ Cn) for

A;B 2 A and n � 1 . Consider the product (SN;
Q1

n=1An;
Q1

n=1 �n) , then we have:�Q1
n=1 �n

��Q1
n=1An

�
=
Q1

n=1 �n(An) =
Q1

n=1 �(An) =
�
�N
��Q1

n=1An

�
for all An 2 An with n � 1 . Hence we conclude r

�Q1
n=1 �n;AN

�
= �N , where r( � ; � )

denotes the restriction of a measure to the �-algebra. Thus for any A 2 AN with A � Q1
n=1Cn

we have:

�N(A) = r
�Q1

n=1 �n;AN
�
(A) � �Q1

n=1 �n
��Q1

n=1Cn

�
=
Q1

n=1 �n(Cn) = 1 .

This shows that
�
�N
���Q1

n=1Cn

�
= 1 , and the proof of (2.131) is complete.

(2.132): First recall that for any random variable X we have (see [19] p.206):

(2.134) EjXj � 1 +
P1

n=1 Pf jXj> n g .

Next, under our hypothesis we claim that:

(2.135)
P1

n=1 Pf j�1j > nM g < 1
for some M > 0 large enough. For otherwise, we would have:P1

n=1 Pf j�1j>nm g =
P1

n=1 Pf j�nj=n>m g = 1
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for all m � 1 . Hence by Borel-Cantelli’s lemma (see Section 1.2) we get:

P
�
lim supn!1

�j�nj=n > m
	�

= 1

for all m � 1 . This readily implies:

P
�T1

m=1

�
lim supn!1 j�nj=n > m

	�
= 1 .

It shows that lim supn!1 j�nj=n = +1 P -a.s., and contradicts our hypothesis. Thus (2.135) is

valid, and by (2.134) we get:

Ej�1=M j � 1 +
P1

n=1 Pf j�1=M j>n g < 1 .

The proof of (2.132) is complete.

(2.133): Since ��(C) + ��(Cc) = 1 for all C � S , it is enough to show that:

��f f < � ; �f < f� g = 0 .

For this, note that by definition of f� we have:

��f f <� ; �f <f� g � ��f f <� ^ (f�)=� g � ��f f �� ^ (f�)=�<f� g = 0

since � ^ (f�)=� is �-measurable. The proof of (2.133) is complete.

We now pass to the main proof. Let us first consider the set:

Cn = f kfkT � n g [ f 2 kfkT � kfk�T g
for n � 1 , where kfk�T denotes the upper �-envelope of kfkT as a map from S to �R . Then by

(2.133) we have ��(Cn) = 1 for all n � 1 . Thus by (2.132) we have
�
�N
���Q1

n=1Cn

�
= 1 .

Now, let us consider the set:

C = f (sn)n�1 2 SN j 1
n kf(sn)kT ! 0 g .

Since we have 1
nf(�n) =

1
n

Pn
j=1 f(�j) � n�1

n
1

n�1
Pn�1

j=1 f(�j) , then by our assumption (2.129)

we may clearly conclude 1
n kf(�n)kT ! 0 (a:s:) as n!1 . Hence we easily find:

(2.136)
�
�N
���

C \Q1
n=1Cn

�
= 1 .

Finally, let us take (sn)n�1 2 C \ Q1
n=1 Cn . Then 1

n kf(sn)kT ! 0 as n ! 1 , and

thus there exists n0 � 1 such that kf(sn)kT < n for all n � n0 . Since sn 2 Cn , then

kf(sn)k�T � 2kf(sn)kT for all n � n0 . This shows that 1
n kf(sn)k�T ! 0 as n ! 1 ,

for all (sn)n�1 2 C \Q1
n=1 Cn . Thus by (2.136) we may conclude 1

n kf(�n)k�T ! 0 P -a.s.,

as n ! 1 . ( It should be recalled that �n is P -perfect (see (2.144) below), which implies

kfk�T � �n = kf(�n)k�T for n � 1 .) Hence (2.130) follows by (2.132), and the proof is complete.

2. In the remaining part of this section we show that the map f , which is subject to a uniform

law of large numbers in the i.i.d. case, must be Gelfand �-integrable as a map from S into the

Banach space B(T ) . This is the second remarkable integrability consequence of the uniform law

of large numbers. The result is found in [40] and requires the following definitions.
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Let us for a moment assume that f is a map from S into a Banach space B with norm

k � k and dual spaces B� and B�� . (As above, we assume that (S;A; �) is a probability space.)

Then f is said to be weakly �-measurable, if � � f is �-measurable for all � 2 B� . The map

f is said to be weakly �-integrable, if � � f is �-integrable for all � 2 B� . In this case we

define the �-mean of f to be a linear functional �(f) on B� defined by:

�(f)(�) =
R
S �(f) d�

for all � 2 B� . It is easily verified that the linear operator P : B� ! L1(�) defined by

P� = �(f) has a closed graph. Thus by the closed graph theorem (see [17] p.57) we find that P
is bounded. It easily implies that �(f) 2 B�� . The map f is said to be Gelfand �-integrable,

if f is weakly �-integrable and �(f) belongs to B . ( As usual, we consider B as a closed

subspace of B��.) Thus, if f is Gelfand �-integrable, then there exists an element in B (denotedR
S f d� and called the Gelfand �-integral of f ) such that:R

S �(f) d� = �
� R

S f d�
�

for all � 2 B� .

The Banach space of interest for us here is the space B(T ) with the sup-norm k � kT . (As

before T is assumed to be an arbitrary set.) In this case it is easily verified that f : S ! B(T )
is Gelfand �-integrable if and only if the following three conditions are satisfied:

(2.137) t 7!M(t) =
R
S f(s; t) �(ds) exists as a map from T into R and belongs to B(T )

(2.138) s 7! R
T f(s; t) �(dt) is �-integrable as a map from S into R , for all � 2 ba(T )

(2.139)
R
S

� R
T f(s; t) �(dt)

�
�(ds) =

R
T

� R
S f(s; t) �(ds)

�
�(dt) for all � 2 ba(T ) .

It should be recalled that ba(T ) is the Banach space of all finitely additive real valued bounded

functions defined on 2T with the total variation on T as the norm. Moreover, it is well-known

that ba(T ) = B(T )� equals to the dual space of B(T ) (see [17]). The Gelfand �-integral of

f : S ! B(T ) equals to M in (2.137). We are now ready to state the final result.

Theorem 2.26

Under the hypotheses of Theorem 2.25, let us assume that (2.129) is satisfied as n ! 1 for

M 2 B(T ) . Then f : S ! B(T ) is Gelfand �-integrable. (Thus (2.137)-(2.139) are also valid.)

Proof. Let � 2 ba(T ) be given and fixed. By (2.129) there is a P -null set N 2 F such that:

(2.140)
 1
n

nX
j=1

f(�j(!)) �M

T
! 0

as n ! 1 , for all ! 2 
 n N . Now note that by Theorem 2.25 it is no restriction to assume

that f(�j(!)) 2 B(T ) for all ! 2 
 n N and all j � 1 . Thus, since � is continuous on

B(T ) , from (2.140) we get:

(2.141)
��� 1
n

nX
j=1

Z
T
f(�j(!); t) �(dt) �

Z
T
M(t) �(dt)

��� ! 0
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as n ! 1 , for all ! 2 
 n N .

We establish that � � f is �-measurable by showing that (� � f)� = (� � f)� . For this,

take any two �-measurable maps g ; h : S ! �R satisfying (� � f)� = g = h = (� � f)� on

f (��f)� = (��f)� g , and (��f)� < g < h < (��f)� on f (��f)� < (��f)� g . By definition

of the �-envelopes we get ��f g < � � f g � ��f (� � f)� < g � � � f g = 0 and ��f � � f <
h g � ��f� � f � h < (� � f)� g = 0 . Hence we see that ��fg � � � fg = ��f� � f � hg = 1 .

Denote L = 
 nN , and put L0 = L \ fg � � � fgN and L1 = L \ f� � f � hgN . Then by

(2.131) we find P �(L0) = P �(L1) = 1 . Now, first by definition of L0 and (2.141) we get:

lim inf
n!1

1

n

nX
j=1

g(�j(!)) �
Z
T
M(t) �(dt)

for all ! 2 L0 . Second, by definition of L1 and (2.141) we get:Z
T
M(t) �(dt) � lim sup

n!1
1

n

nX
j=1

h(�j(!))

for all ! 2 L1 . Since the maps appearing in the last two inequalities are P -measurable, then

these inequalities hold P -a.s. In other words, we obtain:

lim
n!1

1

n

nX
j=1

g(�j(!)) = lim
n!1

1

n

nX
j=1

h(�j(!)) =

Z
T
M(t) �(dt) P -a.s.

Hence from (2.132) we obtain g ; h 2 L1(�) , and thus by Kolmogorov’s Law 1.9 it follows:

(2.142)

Z
S
g(s) �(ds) =

Z
S
h(s) �(ds) =

Z
T
M(t) �(dt) .

Since g � h , this implies g = h �-a.s. Moreover, since g < h on f (� � f)� < (� � f)� g , it

follows (� � f)� = (� � f)� . Thus � � f is �-measurable.

Finally, since g = h = � � f �-a.s., from (2.142) we get:Z
S
(� � f) d� =

Z
T

� Z
S
f(s; t) �(ds)

�
�(dt) = �

�Z
S
f d�

�
.

This shows that f : S ! B(T ) is Gelfand �-integrable. The proof is complete.

2.5.3 Necessity of measurability. The purpose of this section is to show that a

measurability of the underlying map f is a necessary condition for the uniform law of large

numbers to hold in the i.i.d. case. The result appears in [1] and is due to Talagrand [84].

Let (S;A; �) be a probability space, and let (
;F ; P ) be the countable product

(SN;AN; �N) . Let �j
�
(si)i�1

�
= sj be the j-th projection of SN onto S for (si)i�1 2 SN

and j � 1 . Then f�jgj�1 is a sequence of independent and identically distributed random

variables defined on (
;F ; P ) with values in (S;A) and common distribution law � . Let

T be a set, and let f : S � T ! R be a given map. We denote Sn(f) =
Pn

j=1 f(�j) for

all n � 1 . In the sequel we adopt the notation from Section 2.2. The main result of this section

may now be stated as follows.

60



Theorem 2.27

Let f�jgj�1 be a sequence of independent and identically distributed random variables defined

on (
;F ; P ) as above. Let us assume that:

(2.143)
 1
nSn(f) �M


T
! 0 (P �)

as n ! 1 for M 2 B(T ) . Then s 7! f(s; t) is �-measurable for all t 2 T , as a map

from S into R .

Proof. The proof is based upon the following two facts:

(2.144) Each �n is �-perfect, and thus f(�n; t)
� = f( � ; t)� � �n for all n � 1 and all t 2 T

(2.145) We have
�Pn

j=1 f(�j; t)
��

=
Pn

j=1 f(�j; t)
� for all n � 1 and all t 2 T .

The arguments leading to (2.144)-(2.145) may be presented as follows.

(2.144): According to the classic characterization of perfectness (see [62]), it is enough to show

that ��(A) = 1 implies
�
�N

��
(S1� . . .�Sn�1�A�Sn+1� . . . ) = 1 with Sj = S for j � 1

and A 2 A . This fact follows clearly from (2.131), and the proof of (2.144) is complete.

(2.145): We will assume that n = 2 . It is easily verified that the same arguments apply in

the general case as well. Let t 2 T be given and fixed. Note that gn " g implies g�n " g� ,

and therefore it is no restriction to assume that f( � ; t) is bounded from above by a constant.

Thus f( � ; t)� < 1 , and f( � ; t)� � " is a well-defined function for all " > 0 . The proof is

essentially based on the following fact:

(2.146) If for some C 2 A
A we have (� 
 �)(C) > 0 , then �f s 2 S j �(Cs) > 0 g > 0

where Cs = f u 2 S j (s; u) 2 C g denotes the section of C at s 2 S . It follows from the

well-known formula on the product measures (� 
 �)(C) =
R
S �(Cs) �(ds) (see [19]).

Now we pass to the proof itself. First, note that by definition of the upper envelope we get:�
f(�1; t) + f(�2; t)

�� � f(�1; t)
� + f(�2; t)

� .

Thus by (2.144) it is enough to show that:

(2.147)
�
f(�1; t) + f(�2; t)

��
(s1; s2) � f(s1; t)

� + f(s2; t)
�

for (� 
 �)-a.s. (s1; s2) 2 S 
 S . (To be more precise, it should be noted that here we use the

fact that (�1; �2) : SN ! S 
 S is (� 
 �)-perfect, which is easily seen as for (1.144) via an

easy generalization of (2.131) where the product space may consist of different factors. This is the

reason for which the upper �N-envelope on the left hand side in (2.147) depends only upon the first

two coordinates.) For (2.147) put M(s1; s2) =
�
f(�1; t)+f(�2; t)

��
(s1; s2) for (s1; s2) 2 S
S ,

and suppose that there exist n;m � 1 such that:

(2.148) (� 
 �)
�
(s1; s2) 2 S 
 S jM(s1; s2) < (f(s1; t)

� � 2�n) + (f(s2; t)
� � 2�m)

	
> 0 .

It is no restriction to assume that M � f(�1; t) + f(�2; t) on S 
 S . Then by (2.146) we have:

(2.149) �
�
s1 2 S j �f s2 2 S jM(s1; s2) < (f(s1; t)

�� 2�n) + (f(s2; t)
�� 2�m)g > 0

	
> 0 .
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Denote by A the set of all s1 2 S appearing in (2.149). Then there exists ŝ1 2 A such that:

(2.150) f(ŝ1; t)
� � 2�n < f(ŝ1; t) .

For otherwise, we would have A � f s1 2 S j f(s1; t) � f(s1; t)
� � 2�n < f(s1; t)

� g , and

thus �(A) = 0 by definition of the upper envelope. It contradicts (2.149), and thus (2.150) holds.

Finally, for ŝ1 2 S from (2.150) we get:

0 < ��f s2 2 S j f(ŝ1; t) + f(s2; t) � M(ŝ1; s2) < (f(ŝ1; t)
� � 2�n) + (f(s2; t)

� � 2�m) g
� ��f s2 2 S j f(s2; t) � f(s2; t)

� � 2�m < f(s2; t)
� g .

This is not possible by definition of the upper envelope. Thus (2.148) fails for all n;m � 1 , and

from this fact we easily obtain (2.147). The proof of (2.145) is complete.

We turn to the main proof. First we recall the following well-known technical facts:

(2.151) P �fg > "g = Pfg� > "g
(2.152) j g��h� j � j g � h j�
(2.153) j g��h� j � j g � h j�

where the objects are self-explained, and provided that the left-hand sides in (2.152) and (2.153)

are well-defined. Now by (2.143), (2.144), (2.145), (2.151), (2.152) and (2.153) we find:

(2.154)
1

n

nX
j=1

f( � ; t)� � �j ! M(t) in P -probability

(2.155)
1

n

nX
j=1

f( � ; t)� � �j ! M(t) in P -probability

as n!1 . Hence we get �f jf( � ; t)�j = +1g = �f jf( � ; t)�j = +1g = 0 , and thus:

(2.156)
1

n

nX
j=1

�
f( � ; t)��f( � ; t)�

� � �j �! 0 in P -probability

as n!1 . The sequence
�
(f( � ; t)��f( � ; t)�) � �j

	
j�1 is an i.i.d. sequence of non-negative

random variables. Thus from (2.156) by Kolmogorov’s Law 1.9 we get:

1

n

nX
j=1

��
f( � ; t)��f( � ; t)�

� � �j� ^ N �! 0 P -a.s.

as n ! 1 , for all N � 1 . It moreover implies that:Z
SN

��
f( � ; t)��f( � ; t)�

� � �1� ^ N d
�
�N

�
= 0

for all N � 1 . Letting N ! 1 we obtain:Z
SN

��
f( � ; t)��f( � ; t)�

� � �1� d
�
�N

�
=

Z
S

�
f(s; t)� � f(s; t)�

�
�(ds) = 0 .
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Thus f( � ; t)� = f( � ; t)� �-a.s., and the proof is complete.

2.5.4 Gerstenhaber’s counter-example. In this section we present a counter-example

of M. Gerstenhaber (as recorded in [36] p.32) which shows that Theorem 2.25 and Theorem 2.27

(from the previous two sections) may fail in the general stationary ergodic case. The method is

well-known and has wide applications in the construction of various examples in ergodic theory.

We first explain the meaning of the result in more detail.

First, let us mention that the index set T will consist of a single point. Second, note that

from (2.132) we get �1 2 L1(P ) whenever f�jgj�1 is a sequence of independent and identically

distributed random variables defined on (
;F ; P ) satisfying:

(2.157)
1

n

nX
j=1

�j ! C P -a.s.

as n!1 . This follows readily from the fact that 1
n j�nj = j 1n

Pn
j=1 �j� n�1

n
1

n�1
Pn�1

j=1 �j j ! 0
P -a.s. for n ! 1 . Third, this fact extends to the stationary ergodic case if �j’s are assumed

to be non-negative. Indeed, if f�jgj�1 is stationary and ergodic satisfying (2.157) with �j � 0
P -a.s. for j � 1 , then by (2.10)-(2.12) we get:

1

n

nX
j=1

(�j ^ N) ! E(�1 ^ N) P -a.s.

as n ! 1 , for all N � 1 . Since �j ^ N � �j for all j � 1 , we get from (2.157) that

E(�1 ^ N) � C for all N � 1 . Letting N ! 1 we obtain �1 2 L1(P ) . Fourth, this result

obviously extends to the case where we know that either �+1 2 L1(P ) or ��1 2 L1(P ) . Finally,

the next example shows that the result may fail in general. In other words, we show that (2.157)

can be valid ( with C = 0 ) even though �1 =2 L1(P ) ( actually E(�+1 ) = E(��1 ) = +1 ) .

Furthermore, a slight modification of the example will show that Theorem 2.27 may fail in the

stationary ergodic case. More precisely, we show that:

(2.158)
1

n

nX
j=1

f(�j) ! C (a:s:)�

as n!1 , even though f is not �-measurable. (As usual � denotes the distribution law of �1 :)

Example 2.28 (Gerstenhaber)

Let �0 be an invertible ergodic (measure-preserving) transformation of X0 = [0; 1[ , equipped

with the Borel �-algebra B(X0) and Lebesgue measure � . (For instance, the transformation �0

could be an irrational rotation in [0; 1[ defined by �0(x) = x+� (mod 1) for some � 2 [0; 1[nQ
with x 2 X0 . For more details see Section 1.1.) Let fajgj�0 be a sequence of real numbers

satisfying 1 = a0 � a1 � . . . � 0 , let Xn = [0; an[�fng for all n � 0 , and let X = [1n=0Xn .

The �-algebra B on X will consist of those B � X which satisfy p1(B \Xn) 2 B(X0) for

all n � 0 . ( Here p1 : R2 ! R denotes the projection onto the first coordinate. ) The measure

� on B is defined by �(B) =
P1

n=0 �(p1(B \ Xn)) for all B 2 B . The transformation

� of X is defined by �(x; y) = (x; y + 1) if x < ay+1 , and �(x; y) = (�0(x); 0) if

x � ay+1 , whenever (x; y) 2 X . Then it is easily verified that � is an invertible ergodic

(measure-preserving) transformation in the measure space (X;B; �) .
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Now we choose the sequence fajgj�0 in a particular way described by the conditions:

(2.159) a1 = a2 , a3 = a4 , a5 = a6 , . . .

(2.160)
P1

n=1 a2n < 1
(2.161)

P1
n=1

p
n a2n = 1 .

( For instance, the choice a2n = n�3=2 for n � 1 suffices. ) Note that from (2.159)+(2.160)

we have �(X) =
P1

n=0 an < 1 .

Next we define a map F : X ! R . We put F (z) = 0 for z 2 X0 , F (z) = �pn for

z 2 X2n�1 , and F (z) =
p
n for z 2 X2n , whenever n � 1 . Then by construction it is

easily verified that we have:

(2.162)
��� n�1X
j=0

F (�j)
��� � pn=2

for all n � 1 . Putting �j = F (�j�1) for j � 1 , we find by (2.9) that f�jgj�1 is stationary and

ergodic. Moreover, by (2.159)+(2.161) we clearly have E(��1 ) =
R
X F�d� = +1 . Finally, from

(2.162) we obtain 1
n

Pn
j=1 �j ! 0 everywhere on X , as n ! 1 . Thus (2.157) is satisfied,

and our first claim stated above is complete.

We turn to the second claim by modifying definition of the map F . Namely, if we take any

set C � [0; a1[ which is not �-measurable, and define f(z) = F (z) � 1C�fng(z) for all z 2 Xn

and all n � 0 , then as for (2.162) we get:

(2.163)
��� nX
j=1

f(�j)
��� � pn=2

for all n � 1 , where �j = �j�1 for j � 1 . By (2.9) we know that f�jgj�1 is stationary

and ergodic. Moreover, from (2.163) we get (2.158) with the null-set being empty. Finally, it is

obvious that f : X ! R is not �-measurable ( for example f�1(f�1g) = C � f1g =2 B� ) .

These facts complete the second claim stated above.

2.5.5 A uniform ergodic theorem over the orbit – Weyl’s theorem. In the next

example we show that if the unit ball of a Banach space (which appears in the Yosida-Kakutani

uniform ergodic theorem in Section 1.3) has been replaced by a smaller family of vectors, the

uniform ergodic theorem is much easier established, but still of considerable interest.

Example 2.29 ( A uniform ergodic theorem over the orbit – Weyl’s theorem )

Consider the d-dimensional torus X = [0; 1[d equipped with the d-dimensional Lebesgue

measure � = �d for some d � 1 . Then X is a compact group with respect to the coordinatewise

addition mod 1. Take a point � = (�1; . . . ; �d) in X such that �1; . . . ; �d and 1 are

rationally independent, which means if
Pd

i=1 ki�i is an integer for some integers k1; . . . ; kd ,

then k1 = . . . = kd = 0 . Under this condition the translation T (x) = x + � is an ergodic

(measure-preserving) transformation of X , and the orbit O(x) = f T j(x) j j � 0 g is dense

in X for every x 2 X (see [52] p.12). Let f : X ! R be a continuous function, and let

O(f) = fT j(f) j j � 0 g be the orbit of f under T . Then the uniform ergodic theorem (1.1)
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over the orbit F = O(f) as n ! 1 is stated as follows:

(2.164) sup
g2O(f)

��� 1
n

n�1X
j=0

T j(g) �
Z
f d�

��� ! 0

To verify its validity, we shall first note that (2.164) is equivalently written as follows:

(2.165) sup
i�0

��� 1
n

n�1X
j=0

T i+j(f) �
Z
f d�

��� ! 0

for n !1 . Then, by the continuity of f and the denseness of O(x) for every x 2 X , we

see that (2.165) is equivalent to the following fact:

(2.166) sup
x2X

��� 1
n

n�1X
j=0

T j(f)(x) �
Z
f d�

��� ! 0

for n!1 . However, this is precisely the content of Weyl’s theorem [91] on uniform distribution

mod 1 (see [52] p.13), and thus the uniform ergodic theorem (2.164) is established.

The Weyl’s result extends to general compact metric spaces: If T is an ergodic isometry of

a compact metric space X , then T is uniquely ergodic ( there is exactly one T -invariant Borel

probability measure on X ) if and only if, for every continuous real valued map f on X , the

ergodic averages of f converge uniformly to a constant (see [70] p.137-139 and [52] p.12-13).

From this general fact one can derive a number of corollaries (such as a uniform ergodic theorem

for any family f f � S j S is an ergodic isometry of X g where f is a continuous real valued

map on X ). This kind of example also raises the question about general connections between

uniform ergodic theorems and uniqueness of certain invariant linear functionals on the linear span

of the relevant family of functions F . These aspects are to a certain extent well described in the

literature, and the interested reader is referred to [70] (p.135-150) where more details can be found

(a connection with almost periodic sequences for instance).

2.5.6 Metric entropy and majorizing measure type conditions. In this section we

present several (unsuccessful) trials to apply metric entropy and majorizing measure type conditions

(which emerged in the study of regularity (boundedness and continuity) of random processes) for

obtaining the uniform law of large numbers. In this process we realize that the main obstacle to

a more successful application of these conditions (which are known to be sharp in many ways)

towards the uniform law of large numbers relies upon the fact that they imply a continuity of

the underlying process (actually sequence of processes), while the uniform law of large numbers

requires (and is actually equivalent to) an asymptotic continuity. (A more detailed explanation

of this phenomenon will not be given here.) We start by explaining the main observation which

motivated our attempts mentioned above.

1. Throughout we assume that � = f �j j j � 1g is a sequence of independent and identically

distributed random variables defined on a probability space (
;F ; P ) with values in a measurable

space (S;A) (which will mostly be just the real line with Borel �-algebra) and the common

distribution law � . We suppose that a set T is given, as well as a map f : S � T ! R
such that s 7! f(s; t) is �-measurable for every t 2 T . We put M(t) =

R
S f(s; t) �(ds) to
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denote the �-mean function of f for t 2 T . In this context our main concern is the uniform

law of large numbers which states:

(2.167) sup
t2T

���� 1n
nX

j=1

f(�j ; t) �M(t)

���� ! 0 (a:s:)� & (L1)�

as n!1 . By Corollary 2.8 we know that (2.167) is equivalent (provided that kfkT 2 L<1>(�)
and � : 
 ! SN is P -perfect) to the fact that f is eventually totally bounded in �-mean,

which according to (2.29) means:

(2.168) 8" > 0 , 9" 2 �(T ) such that:

inf
n�1

1

n

Z �
sup

t0;t002A

��Sn�f(t0)�f(t00)��� dP < "

for all A 2 " .

(We recall that �(T ) denotes the family of all finite coverings of the set T .) Thus, the main task

in verifying (2.168) (and thus (2.167) as well) is to estimate the expression:

(2.169)

Z �
sup
t0;t002A

�� 1
nSn

�
f(t0) �f(t00)��� dP

for A � T and n � 1 . Putting Xn
t = 1

nSn
�
f(t)

�
for t 2 T and n � 1 (and passing over

measurability problems) we come to the problem of estimating the expression:

(2.170) E sup
s;t2A

jXn
s �Xn

t j

for A � T and n � 1 .

2. On the other hand in the study of regularity of random processes (under metric entropy

conditions) we have the following basic result (see [54] p.300):

Theorem A. Let X = (Xt)t2T be a random process in L (P ) satisfying the condition:

(2.171) kXs�Xtk � d(s; t)

for all s; t 2 T . Then we have:

(2.172) E sup
s;t2T

jXs�Xtj � 8

Z D

0
 �1

�
N(T; d; ")

�
d" .

Here  denotes a Young function (  : R+ ! R+ is convex, increasing, and satisfies

 (0) = 0 and  (+1) = +1 ), and L (P ) denotes the Orlicz space associated with  ( it

consists of random variables Z on (
;F ; P ) satisfying kZk < 1 , where k � k is the

Orlicz norm associated with  defined by kZk = inf f c > 0 j E (jZj=c) � 1 g ). The letter

d denotes a pseudo-metric on T , and D is the diameter of (T; d) . The symbol N(T; d; ")
denotes the entropy number, which is the smallest number of open balls of radius " > 0 in the

pseudo-metric d needed to cover T (see Definition in the beginning of this chapter). Note that

without loss of generality the set T is assumed to be finite (countable).
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It is moreover well-known that condition (2.171) in Theorem A (with  (x) = xp for 1 < p <
1 ) may be equivalently replaced by the seemingly weaker condition:

(2.173) kXs�Xtkp;1 � d(s; t)

for all s; t 2 T . Here k � kp;1 denotes the weak Lp-norm defined as follows kZkp;1 =
supt>0 (t

pPf jZj>t g)1=p whenever Z is a random variable on (
;F ; P ) .

Finally, in the study of regularity of random processes (under majorizing measure conditions)

we have the following basic result (see [54] p.316):

Theorem B. Let X = (Xt)t2T be a random process in L (P ) satisfying condition (2.171).

Assume moreover that  satisfies  �1(xy) � C ( �1(x) +  �1(y)) for all x; y > 0 with some

C > 0 , and
R 1
0  

�1(x�1) dx < 1 . (For instance  (x) = exp(xp) �1 with 1 � p < 1 is

of that type.) Then we have:

(2.174) E sup
s;t2T

jXs�Xtj � K � sup
t2T

Z D

0
 �1

�
1

m(Bd(t; "))

�
d"

for any probability measure m on (T; d) . (Here K is a numerical constant, and Bd(t; ")
denotes the ball with center at t 2 T and radius " > 0 in the pseudo-metric d .)

3. Now, having in mind estimates (2.172) and (2.174), one may naturally ask if we could use

these to bound the expression in (2.170) in such a way that the integrals involved are finite. This

would clearly lead to (2.168) ( by splitting T into finitely many subsets of small diameters which

would make the integrals involved desirably small). Actually, it should be noted that in the case

where we apply (2.174) to bound (2.170) towards (2.168), we need the following stronger condition:

lim
�#0

sup
t2T

Z �

0
 �1

�
1

m(Bd(t; "))

�
d" = 0 .

This requirement turns out to distinguish the continuity from the boundedness of (a version of) the

process X = (Xt)t2T under majorizing measure conditions (see [54]).

4. Thus, the procedure of applying (2.172) and (2.174) to (2.170) may now be described more

precisely as follows. First, we should have fulfilled a separability assumption on the process

(Xn
t )t2T for every n � 1 , which would reduce the supremum in (2.170) over a countable set.

Second, we consider the incremental condition:

(2.175) kXn
s �Xn

t k � dn(s; t)

for all s; t 2 T and all n � 1 , where dn is a pseudo-metric on T for n � 1 . In the case

where  (x) = xp for 1 < p < 1 , we can relax (2.175) to the condition:

(2.176) kXn
s �Xn

t kp;1 � dn(s; t)

for all s; t 2 T and all n � 1 . Finally, we look at the integrals involved and require:

(2.177) inf
n�1

Z Dn

0
 �1

�
N(T; dn; ")

�
d" < 1
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where Dn is the diameter of (T; dn) for n � 1 . Similarly, we require:

(2.178) lim
�#0

sup
t2T

Z �

0
 �1

�
1

m(Bdn(t; "))

�
d" = 0

for some n � 1 and some probability measure m on (T; dn) .

From the arguments and results presented above we see that either (2.177) or (2.178) is sufficient

for (2.168), and thus for (2.167) as well. However, although the procedure just described seems

reliable at first sight, as a matter of fact, it does not work. Our main aim in this section is to

illustrate this fact by means of various examples in which this procedure has been unsuccessfully

repeated. We postpone to clarify this interesting phenomenon in more detail elsewhere (through

the concept of an asymptotic continuity of random processes which we realize to be the key point).

5. The examples below make use of the notation which appears throughout the whole section.

Common to them is the i.i.d. sequence f�j j j � 1g defined on (
;F ; P ) with values in R and

distribution law � . The set T equals to R , and the map f is given by f(s; t) = 1<�1;t ](s)

for all (s; t) 2 R2 . We moreover have:

Xn
t =

1

n

nX
j=1

1f�j�tg

for t 2 T and n � 1 . Hence we find:

jXn
s �Xn

t j � 1
nB(n; jF (s)�F (t)j)

for all s; t 2 T and all n � 1 . Here F (t) = Pf�1 � tg is the distribution function of �1 ,

and B(n; p) denotes the binomial distribution with parameters n � 1 and p 2 [0; 1] . Below we

denote G(s; t) = jF (s)�F (t)j for s; t 2 T . We first direct our attention to the condition (2.177).

Example 2.30

The example consists of five cases as follows.

1� Let  (x) = x for x � 0 . Then we have kXn
s �Xn

t k = jF (s)�F (t)j := dn(s; t) , and

thus N(T; dn; ") � N([0; 1]; j � j; ") � 1
" . Since  �1(y) = y , hence we get:Z Dn

0
 �1

�
N(T; dn; ")

�
d" =

Z 1

0

1

"
d" = +1

for all n � 1 . Thus (2.177) fails in this case.

2� Let  (x) = x2 for x � 0 . Then we have kXn
s�Xn

t k =
�
1
nG(s; t)+(1� 1

n)G(s; t)2
�1=2

:=

dn(s; t) � ( 1n G(s; t))1=2 := �n(s; t) . Thus N(T; dn; ") � N(T; �n; ") � N([0; 1]; ( 1n j � j)1=2; ") �
1
n"2 . Since  �1(y) =

p
y , hence we get:Z Dn

0
 �1

�
N(T; dn; ")

�
d" �

Z 1p
n

0
 �1

�
N(T; �n; ")

�
d"

=

Z 1p
n

0
 �1

� 1

n"2

�
d" =

1p
n

Z 1p
n

0

1

"
d" = +1

for all n � 1 . Thus (2.177) fails in this case.
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3� Let  (x) = exp(x2) �1 for x � 0 , and let n = 1 . Then we have kX1
s �X1

t k =

1=
p

log (1+1=G(s; t)) := d1(s; t) . Thus we get N(T; d1; ") � N([0; 1]; j � j; 1=(exp(1="2)�1)) �
exp(1="2)�1 . Since  �1(y) =

p
log (1+y) , hence we get:Z D1

0
 �1

�
N(T; d1; ")

�
d" =

Z 1=
p

log 2

0

1

"
d" = +1 .

Thus (2.177) fails in this case with the infimum being attained for n = 1 .

4� Let  (x) = exp(x)�1 for x � 0 . Then in order to compute kXn
s �Xn

t k , we look at

E exp(jXj=C) , where X � B(n; p) with p = G(s; t) . We have:

E exp(jXj=C) =
nX
k=0

exp(k=C)

�
n

k

�
pk(1�p)n�k

=
nX
k=0

�
n

k

��
p�exp(1=C)

�k
(1�p)n�k =

�
p�exp(1=C) + (1�p)�n = 2

if and only if C = 1= log(1+(2n�1)=G(s; t)) . Thus kXn
s�Xn

t k = 1=(n log(1+(2n�1)=G(s; t)))
:= dn(s; t) , and therefore N(T; dn; ") � N([0; 1]; j � j; (2n�1)=(exp(1=n")�1)) � (exp(1=n")�
1)=(2n�1) . Since  �1(y) = log(1+y) , hence we get:Z Dn

0
 �1

�
N(T; dn; ")

�
d" =

Z Dn

0
log

�
1+

1

2n�1

�
exp(1=n")�1

��
d"

�
Z Dn

0
log

� 1

2n�1

�
exp(1=n")�1

��
d" =

Z Dn

0

� 1

n"
� log

� 1

2n�1

��
d"

=
1

n

Z Dn

0

1

"
d" � Dn log

� 1

2n�1

�
= +1

for all n � 1 . Thus (2.177) fails in this case.

5� Let  (x) = xp for x � 0 with 1 < p <1 , and let n = 1 . Then kX1
s�X1

t kp;1 =
G(s; t)1=p := d1(s; t) . Thus N(T; d1; ") � N([0; 1]; j � j; "p) � 1

"p . Since  �1(y) = y1=p , we get:Z D1

0
 �1

�
N(T; d1; ")

�
d" =

Z 1

0

1

"
d" = +1 .

Thus (2.177) fails in this case with the infimum being attained for n = 1 .

Now we turn to the condition (2.178). Again, we denote G(s; t) = jF (s)�F (t)j for s; t 2 T .

Example 2.31

The example consists of two cases as follows.

1� Let  (x) = exp(x2) � 1 for x � 0 , and let n = 1 . Then we have kX1
s�X1

t k =

1=
p

log (1 + 1=G(s; t)) := d1(s; t) . Let F � U(0; 1) be the function of uniform distribution on

[0; 1] . Thus F (t) = t for t 2 [0; 1] , F (t) = 0 for t � 0 , and F (t) = 1 for t � 1 . Then

T � [0; 1] , and we have Bd1(t; ") = f s 2 [0; 1] j t�R" < s < t+R" g for t 2 T and " > 0 ,

where R" = 1=(exp(1="2) �1) . Let m be a probability measure on (T; d1) for which the

distribution function H(t) = m([0; t ]) with t 2 [0; 1] satisfies H 2 C1[0; 1] . Then there exists

t" 2 ] t�R"; t+R" [ such that H(t+R")�H(t�R") = 2R"H
0(t") where t 2 ]0; 1[ is given
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and fixed. Since  �1(y) =
p

log (1+y) , hence we get:Z D1

0
 �1

�
1

m(Bd1(t; "))

�
d" =

Z D1

0
 �1

�
1

H(t+R")�H(t�R")

�
d"

�
Z D1

0
 �1

�
1

2R"H 0(t")

�
d" =

Z 1

0

s
log

�
1 +

1

2H 0(t")R"

�
d"

=

Z 1

0

s
log

�
1 +

exp(1="2)�1

2H 0(t")

�
d" :=  .

Now, if 2H 0(t") � 1 then  � R 1
0

1
" d" = +1 . If 2H 0(t") > 1 , then we have:

 =

Z 1

0

s
log

�
2H 0(t") + exp(1="2)�1

2H 0(t")

�
d" �

Z 1

0

r
1

"2
� log (2H 0(t")) d" = +1 .

Thus, in any case we get  = +1 . Hence we find:Z D1

0
 �1

�
1

m(Bd1(t; "))

�
d" = +1 .

Thus (2.178) fails for n = 1 and any probability measure m on (T; d1) with distribution

function from C1(R) . The general case could be treated similarly.

2� Let  (x) = exp(x)�1 for x � 0 . Then kXn
s�Xn

t k = 1=(n log(1+(2n�1)=G(s; t))) :=
dn(s; t) . Let F � U(0; 1) and m with H be as in 1� above. Put R" = (2n�1)=(exp(1=n")�1) ,

then by the same arguments as in 1� above we obtain:Z Dn

0
 �1

�
1

m(Bdn(t; "))

�
d" =

Z Dn

0
 �1

�
1

H(t+R")�H(t�R")
�
d"

�
Z Dn

0
 �1

�
1

2H 0(t")R"

�
d" =

Z Dn

0
log

�
1+

exp (1=n")�1

2 (2n�1)H 0(t")

�
d" = +1

for all n � 1 and all t 2 ]0; 1[ � T . Thus (2.178) fails for all n � 1 and any probability measure

m on (T; dn) with distribution function from C1(R) . The general case could be treated similarly.
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3. The Vapnik-Chervonenkis Approach
In this chapter we present the Vapnik-Chervonenkis approach towards uniform laws of large

numbers which appeared in [89] and [90], and its extension to completely regular dynamical systems

which is from [68]. The first section presents the classical subgaussian inequality for Rademacher

series. It is a cornerstone in the sufficiency part of the VC theorem in the fourth section (obtained

through the intervention of Rademacher randomization given in the third section). The second

section presents Sudakov’s minoration [83] (via Slepian’s lemma [78]) which is a cornerstone in

the necessity part of the VC theorem in the fourth section (obtained through the intervention of

Gaussian randomization given in the third section). The fifth section is devoted to the VC classes

of sets, which provide the best known examples satisfying the VC theorem. The sixth section

presents a lemma of Eberlein (see [23]) which is at the basis of the extension of the VC theorem to

completely regular dynamical systems. Such a theorem is given in the seventh section and is taken

from [68]. In the eighth section we present its extension to semi-flows and (non-linear) operators

(from [68] as well). The ninth section deals with a special problem in this context on uniformity

over factorizations (this is also taken from [68]). The tenth section is reserved for examples and

complements. Counter-examples of Weber and Nobel given there indicate that the VC random

entropy numbers approach is essentially linked with dynamical systems which posses a mixing

property (thus being far from the general stationary ergodic case for example). Completely regular

dynamical systems seem to be somewhere around the border of its successful applicability.

3.1 The subgaussian inequality for Rademacher series

The sufficiency part of the VC theorem (in Section 3.4 below) follows essentially from the

next classic inequality (after performing a Rademacher randomization as explained in Section 3.3

below). This inequality is known to be extremely useful in many other contexts as well. We recall

that a sequence of random variables f"jgj�1 defined on the probability space (
;F ; P ) is said

to be a Rademacher sequence, if "j’s are independent and Pf"j = �1g = 1=2 for j � 1 .

Theorem 3.1 (The subgaussian inequality)

Let f"jgj�1 be a Rademacher sequence, and let fajgj�1 be a sequence of real numbers.

Denote Sn =
Pn

j=1 aj"j and An =
Pn

j=1 jaj j2 for n � 1 . Then we have:

(3.1) Pf jSnj> t g � 2 exp

�
� t2

2An

�
for all t > 0 and all n � 1 .

Proof. Let t > 0 and n � 1 be given and fixed. Since cosh(x) � exp(x2=2) for x 2 R ,

then by symmetry, Markov’s inequality and independence we get:

Pf jSnj> t g = 2Pf Sn> t g = 2Pf exp(�Sn)> exp(�t) g
� 2 exp(��t) E exp(�Sn) = 2 exp(��t) EQn

j=1exp(�aj"j)

= 2 exp(��t) Qn
j=1E exp(�aj"j) = 2 exp(��t) Qn

j=1cosh(�aj)

� 2 exp(��t) Qn
j=1exp

�
�2jajj2=2

�
= 2 exp

�
�2An=2 ��t

�
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for all � > 0 . Minimizing the right-hand side over � > 0 , we obtain � = t=An . Inserting this

� into the inequality just obtained, we get (3.1). The proof is complete.

3.2 Slepian’s lemma and Sudakov’s minoration

The necessity part of the VC theorem (in Section 3.4 below) relies essentially upon Sudakov’s

minoration [83] (after performing a Gaussian randomization as explained in Section 3.3 below).

The result is presented in Theorem 3.5 below, and is based on a comparison fact from Corollary

3.3 (which in turn relies upon Slepian’s lemma [78] from Theorem 3.2) and a classical Gaussian

estimate from Lemma 3.4. Our exposition of these results follows the approach taken in [54].

We clarify that when we speak of a Gaussian random variable, we always mean a centered

Gaussian variable (its expectation is zero). A Gaussian random variable is called standard, if its

variance equals one. A random vector X = (X1; . . . ; Xn) with values in Rn is said to be

Gaussian, if
Pn

i=1 �iXi is a Gaussian random variable for all �1; . . . ; �n 2 R . A real valued

random process X = (Xt)t2T indexed by a set T is said to be Gaussian, if
Pn

i=1 �iXti is a

Gaussian random variable for all �1; . . . ; �n 2 R , all t1; . . . ; tn 2 T , and all n � 1 .

Theorem 3.2 (Slepian’s lemma 1962)

Let X = (X1; . . . ; Xn) and Y = (Y1; . . . ; Yn) be Gaussian random vectors satisfying:

(3.2) E(XiXj)�E(YiYj) 8 i 6= j 2 f1; . . . ; ng
(3.3) E(X2

i ) = E(Y 2
i ) 8 i= 1; . . . ; n .

Then the following inequality is satisfied:

(3.4) E
�
max
1�i�n

Yi

�
� E

�
max
1�i�n

Xi

�
.

Proof. We may and do assume that X and Y are independent. Define the process in Rn by:

Z(t) = (
p
1�t )X + (

p
t ) Y

for t 2 [0; 1] . Put M(x) = max fx1; . . . ; xng for x = (x1; . . . ; xn) 2 Rn . Consider the map:

G(t) = E
�
M
�
Z(t)

��
for t 2 [0; 1] . The proof consists of showing that G is decreasing on [0; 1] . This fact implies

G(1) � G(0) , which is precisely (3.4).

To show that G is decreasing, we compute its derivative:

G0(t) =
nX

i=1

E
�@M
@xi

�
Z(t)

� �Z0
i(t)

�
for all t 2 [0; 1] . ( It should be noted that @M=@xi is well-defined outside the union of the

hyperplanes f x 2 Rn j xj = xk g in Rn for 1 � i; j; k � n , which is a nullset with respect

to the Gaussian measure.) In order to show that G0(t) � 0 for t 2 [0; 1] (which implies that

G is decreasing), we will establish the inequality:
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(3.5) E
�@M
@xi

�
Z(t)

� �Z 0
i(t)

�
� 0

for all 1 � i � n and all t 2 [0; 1] . For this, let us fix 1 � i � n and t 2 [0; 1] , let us put

�
j = E

�
Zj(t)Z

0
i(t)

�
=E

�
Z 0
i(t)

�2
, and let the vector W = (W1; . . . ;Wn) be given by the equation:

Zj(t) = �
j Z

0
i(t) + Wj

for all 1 � j � n . Now, first note that E
�
Zj(t)Z

0
i(t)

�
= E(YiYj�XiXj)=2 which is by (3.2) and

(3.3) non-negative. Thus �
j � 0 for all 1 � j � n , and �

i = 0 . Next, let us consider the map:

H() = E

�
@M

@xi

�
1Z

0
i(t)+W1; . . . ; nZ

0
i(t)+Wn

�
� Z 0

i(t)

�
for  = (1; . . . ; n) 2 Rn

+ . Since @M=@xi is decreasing in each component different from the

i-th one, it is easily verified that H is so as well. Moreover, by the choice of j’s we may

easily verify that E(WjZ
0
i(t)) = 0 for all 1 � j � n . Since Wj and Z 0

i(t) are Gaussian

variables, then they are independent for all 1 � j � n . Thus W and Z 0
i(t) are independent, and

therefore E
�
(@M=@xi)(W ) � Z 0

i(t)
�
= 0 . This shows H(0) = 0 , which together with the fact

that H is decreasing in each component different from the i-th one implies H(�
1 ; . . . ; 

�
n) � 0 .

This establishes (3.5), and the proof is complete.

Corollary 3.3

Let X = (X1; . . . ; Xn) and Y = (Y1; . . . ; Yn) be Gaussian random vectors satisfying:

(3.6) EjYi�Yj j2 � EjXi�Xj j2

for all 1 � i; j � n . Then the following inequality is satisfied:

(3.7) E
�
max
1�i�n

Yi

�
� 2E

�
max
1�i�n

Xi

�
.

Proof. It is no restriction to assume that X1 = Y1 = 0 . (Otherwise we could replace X and Y
by (X1�X1; . . . ; Xn�X1) and (Y1�Y1; . . . ; Yn�Y1) respectively.) Put �2 = max1�i�nEjXij2 ,

and consider the Gaussian random variables:

X̂i = Xi +
q�

�2+EjYij2�EjXij2
� � g and Ŷi = Yi + � � g

for 1 � i � n , where g is a standard Gaussian variable which is independent from X and Y .

We verify that the Gaussian vectors X̂ = (X̂1; . . . ; X̂n) and Ŷ = (Ŷ1; . . . ; Ŷn) satisfy (3.2)

and (3.3) from Theorem 3.2. For this, first note that EjX̂ij2 = EjŶij2 = �2 + EjYij2 for all

1 � i � n . Thus (3.3) is satisfied. Next, note that by (3.6) we get:

EjŶi�Ŷj j2 = EjYi�Yj j2 � EjXi�Xj j2 � EjX̂i�X̂j j2

for all 1 � i; j � n . Hence E(X̂iX̂j)� E(ŶiŶj) for all i 6= j 2 f1; . . . ; ng . Thus (3.2) is

satisfied. Applying Theorem 3.2 we obtain:

(3.8) E
�
max
1�i�n

Ŷi

�
� E

�
max
1�i�n

X̂i

�
.
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It is clear that we have:

(3.9) E
�
max
1�i�n

Ŷi

�
= E

�
max
1�i�n

Yi

�
.

Moreover, since by assumption X1 = Y1 = 0 , then by (3.6) we have EjYij2�EjXij2 for all

1 � i � n . Hence we get:

(3.10) E
�
max
1�i�n

X̂i

�
� E

�
max
1�i�n

Xi

�
+ �E(g+) .

Finally, since X1 = 0 we easily conclude by symmetry:

(3.11) � = max
1�i�n

q
EjXij2 = 1

Ejgj max
1�i�n

EjXij � 1

Ejgj E
�

max
1�i;j�n

jXi�Xj j
�

=
2

Ejgj E
�
max
1�i�n

Xi

�
=

1

E(g+)
E
�
max
1�i�n

Xi

�
.

Now (3.7) follows from (3.8)-(3.11), and the proof is complete.

Lemma 3.4

Let X = (X1; . . . ; Xn) be a Gaussian random vector, and let g1; . . . ; gn be independent

standard Gaussian random variables. Then the inequalities are satisfied:

(3.12) E
�
max
1�i�n

jXij
�
� 3

p
log n max

1�i�n

q
EjXij2

(3.13)
1

K

p
log n � E

�
max
1�i�n

gi
�
� K �

p
log n

with a constant K > 0 not dependent on n > 1 .

Proof. (3.12): It is no restriction to assume that max1�i�n

p
EjXij2 = 1 . From integration

by parts we easily find:

(3.14) E
�
max
1�i�n

jXij
�
=

Z 1
0

P
n

max
1�i�n

jXij>t
o
dt � � + n

Z 1
�

Pf jgj>t g dt

where g is a standard Gaussian random variable. We recall the classic estimate:

(3.15) Pfg > tg � 1
2 exp(�t2=2)

being valid for all t > 0 . Applying (3.15) twice in (3.14) we get:

E
�
max
1�i�n

jXij
�
� � + n

p
�=2 exp(��2=2)

which is valid for all � > 0 . Taking � =
p
2 log n we obtain:

E
�
max
1�i�n

jXij
�
�
p
2 logn +

p
�=2 � 3

p
log n

whenever n � 2 . This completes the proof of (3.12).

(3.13): We only prove the first inequality, since the second inequality follows straightforwardly

from (3.12). Integration by parts, independence and identical distribution yield:
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(3.16) E
�
max
1�i�n

jgij
�
�
Z �

0

�
1�(1�Pfjgj>tg)n� dt � �

�
1�(1�Pfjgj>�g)n�

for all � > 0 , where g is a standard Gaussian random variable. Further, we find:

Pfjgj>�g =
2p
2�

Z 1
�

exp(�t2=2) dt � 2p
2�

exp(�(�+1)2=2)

for all � > 0 . Taking � =
p
log n with n � n0 large enough so that Pfjgj>�g � 1=n ,

from (3.16) we obtain:

(3.17) E
�
max
1�i�n

jgij
�
�
p
logn

�
1��1� 1

n

�n� � p
log n

�
1� 1

e

�
.

Now, by the triangle inequality and symmetric distribution we find:

(3.18) E
�
max
1�i�n

jgij
�
� E

�
max

1�i;j�n
jgi�gj j

�
+ Ejgj = 2E

�
max
1�i�n

gi

�
+
p
2=�

for n � 1 . Combining (3.17) and (3.18) we get E
�
max1�i�n gi

� � 1=2
�p

log n (1� 1
e )�

p
2=�

�
for all n � n0 . Letting K to be large enough, we obtain (3.13) and complete the proof.

Given a pseudo-metric space (T; d) , we denote by N(T; d; ") the entropy numbers associated

with the pseudo-metric d on the set T for " > 0 . We recall that N(T; d; ") is the smallest

number of open balls of radius " > 0 in the pseudo-metric d needed to cover the set T (see

the Definition in the beginning of Chapter 2).

Theorem 3.5 (Sudakov’s minoration 1971)

Let X =(Xt)t2T be a Gaussian process indexed by a set T with its intrinsic pseudo-metric

dX(s; t) = kXs�Xtk2 for s; t 2 T . Then there exists a constant C > 0 such that:

(3.19) "
q

logN
�
T; dX ; "

� � C E
�
sup
t2T

Xt

�
being valid for all " > 0 .

Proof. Given " > 0 , let N = N(T; dX ; ") . Then there exists a finite set F � T with

card (F ) = N such that dX(s; t) > " for all s; t 2 F , s 6= t . Let G = (gt)t2F be a family of

independent standard Gaussian random variables indexed by F , and let us put ĝt = ("=
p
2) gt

for t 2 F . Then we have:

kĝs�ĝtk2 = ("=
p
2) kgs�gtk2 = " < dX(s; t) = kXs�Xtk2

for all s; t 2 F . Thus by Corollary 3.3 we get:

E
�
sup
t2F

ĝt

�
� 2E

�
sup
t2F

Xt

�
.

Finally, by Lemma 3.4 we have:

E
�
sup
t2F

ĝt

�
� "p

2

1

K

q
log
�
card (F )

�
=

"

K
p
2

p
logN .

The last two inequalities complete the proof.
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Remark 3.6

The proof shows that the supremum appearing in (3.19) should be understood as follows:

E
�
sup
t2T

Xt

�
= sup

n
E
�
sup
t2F

Xt

� �� F � T is finite
o

.

Thus, in general, we could replace E
�
supt2T Xt

�
in (3.19) by E��supt2T Xt

�
.

Remark 3.7

The proof shows that the constant C > 0 appearing in (3.19) does not depend on the Gaussian

process X=(Xt)t2T itself. Actually, we have C = 2
p
2K , where K is the constant appearing

in the first inequality in (3.13).

3.3 Rademacher and Gaussian randomization

Our main aim in this section is to describe the procedures of Rademacher and Gaussian

randomization in the context of the uniform law of large numbers. These procedures play the

most important role in the approach of Vapnik and Chervonenkis (at least from the modern point

of view of the theory today). The exposition is inspired by [32], and the credits for the rather

classical facts given below may be found there.

1. Throughout we consider a sequence of independent and identically distributed random

variables � = f �j j j � 1 g defined on the probability space (
;F ; P ) with values in the

measurable space (S;A) and a common distribution law � . We suppose that a set T is given,

as well as a map f : S � T ! R such that s 7! f(s; t) is �-measurable for all t 2 T .

We denote M(t) =
R
S f(s; t) �(ds) for t 2 T . Through the whole section we assume that the

structure of f and T is flexible enough, such that supremums over T which involve f define

measurable maps. (We recall that this assumption is not restrictive and can be supported in quite

a general setting by using theory of analytic spaces as explained in Paragraph 5 of Introduction.)

In order to perform the Rademacher randomization we suppose that a Rademacher sequence

" = f"j j j � 1g is given (see Section 3.1), which is defined on the probability space (
";F"; P") .

Whenever the sequences � and " appear together, we assume that they are both defined on

the product probability space (
 
 
";F
F"; P 
P") , and thus may be understood mutually

independent. Similarly, in order to perform the Gaussian randomization we suppose that a standard

Gaussian sequence g = fgj j j � 1g is given, meaning that gj for j � 1 are independent standard

Gaussian variables (see Section 3.2), which is defined on the probability space (
g;Fg; Pg) . Also,

whenever the sequences � and g appear together, we assume that they are both defined on

the product probability space (
 
 
g;F
Fg; P
Pg) , and thus may be understood mutually

independent. Finally, whenever the three sequences � , " and g appear together, we assume that

they are all defined on the product probability space (
 
 
"

g;F 
 F"
Fg; P 
 P"
Pg) ,

and thus may be understood mutually independent.

2. We are primarily interested in the asymptotic behaviour of the expression:

(3.20) sup
t2T

���� 1n
nX

j=1

f(�j; t) �M(t)

����
as n!1 . The Rademacher randomization consists of forming ( by " randomized ) expression:
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(3.21) sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
����

and comparing it with the expression in (3.20) as n!1 . The Gaussian randomization consists

of forming ( by g randomized ) expression:

(3.22) sup
t2T

���� 1n
nX

j=1

gj �f(�j; t)
����

and comparing it with the expression in (3.20) as n ! 1 . The main purpose of this section is

to show that the expressions in (3.20), (3.21) and (3.22) have the same asymptotic behaviour for

n!1 . The main gain of this relies upon the facts that the process (!0; t) 7!Pn
j=1 "j(!

0)f(�j; t)
is subgaussian (recall Theorem 3.1) and the process (!00; t) 7! Pn

j=1 gj(!
00)f(�j; t) is Gaussian

(recall Theorem 3.5). Thus, by Rademacher and Gaussian randomization we imbed the problem

of the asymptotic behaviour of the expression in (3.20) into theory of Gaussian (subgaussian)

processes. The result just indicated may be stated more precisely as follows.

Theorem 3.8

Let � = f�j j j � 1g be a sequence of independent and identically distributed random variables

with values in the measurable space (S;A) and a common distribution law � , let " = f"j j j � 1g
be a Rademacher sequence, and let g = f gj j j � 1 g be a standard Gaussian sequence. Let T
be a set, and let f : S � T ! R be a function such that s 7! f(s; t) is �-measurable for all

t 2 T , and such that all supremums over T taken below are measurable (possibly with respect

to the completed �-algebras). Suppose moreover that k f kT 2 L1(�) . Then the following three

convergence statements are equivalent:

(3.23) E

�
sup
t2T

���� 1n
nX

j=1

f(�j; t) �M(t)

���� � �! 0

(3.24) E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j ; t)
���� � �! 0

(3.25) E

�
sup
t2T

���� 1n
nX

j=1

gj �f(�j ; t)
���� � �! 0

as n ! 1 . ( We clarify that the symbol E in (3.23) denotes the P -integral, the symbol E
in (3.24) denotes the P
P"-integral, and the symbol E in (3.25) denotes the P
Pg-integral.)

Moreover, the mean convergence in either of (3.23)-(3.25) may be equivalently replaced by either

almost sure convergence or convergence in probability.

Proof. We first remark that the last statement of the theorem follows from Corollary 2.8.

In this context we clarify that for (3.24) one should consider S0 = S � f�1; 1g and the map

F : S0 � T ! R defined by F ((s; s0); t) = s0f(s; t) , while for (3.25) one should consider

S00 = S � R and the map G : S00 � T ! R defined by G((s; s00); t) = s00f(s; t) . Then the

claim is easily verified.

We turn to the equivalence between (3.23)-(3.25). First we consider the case (3.23)-(3.24).
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Lemma 3.9

Under the hypotheses in Theorem 3.8 we have:

(3.26) E

�
sup
t2T

���� 1n
nX

j=1

f(�j ; t)�M(t)

���� � � 2E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� �

(3.27) E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
����� � 4 max

1�k�n
E

�
sup
t2T

���� 1n
kX

j=1

f(�j; t)�M(t)

���� �+
+ kMkT � E

��� 1
n

nX
j=1

"j

���
for all n � 1 .

Proof of Lemma 3.9. (3.26): Let �0 = f �0j j j � 1 g be an independent copy of � =
f �j j j � 1 g defined on (
0;F 0; P 0) . Then we have:

E

�
sup
t2T

���� 1n
nX

j=1

f(�j; t) �M(t)

���� � = E

�
sup
t2T

���� 1n
nX

j=1

f(�j; t) �E0f(�0j; t)
���� �

� EE0
�
sup
t2T

���� 1n
nX

j=1

f(�j; t)�f(�0j; t)
����� = EE0

�
sup
t2T

���� 1n
nX

j=1

"j
�
f(�j; t)�f(�0j; t)

������
� 2E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� �

for any given and fixed (numbers) "1; . . . ; "n with n � 1 . The inequality follows by taking

the P"-integral on both sides.

(3.27): Replacing f(s; t) by f(s; t)�M(t) , and using jx�yj � jxj�jyj , we may and do

assume that M(t) = 0 for all t 2 T . Thus the inequality to be proved is as follows:

(3.28) E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j ; t)
���� � � 4 max

1�k�n
E

�
sup
t2T

���� 1n
kX

j=1

f(�j; t)

���� �
for n � 1 being fixed. For this, note that we have:

P 
P"

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� > x

�
=

1

2n

X
("1;...;"n)2f�1;1gn

P

�
sup
t2T

���� 1n X
"j=1

f(�j; t) � 1

n

X
"j=�1

f(�j ; t)

���� > x

�
� 1

2n

X
("1;...;"n)2f�1;1gn

�
P

�
sup
t2T

���� 1n X
"j=1

f(�j; t)

���� > x

2

�
+P

�
sup
t2T

���� 1n X
"j=�1

f(�j ; t)

���� > x

2

��

for all x > 0 . Taking the integral on both sides, we obtain by integration by parts:

E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� � =

Z 1

0
P
P"

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� > x

�
dx �
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� 1

2n

X
("1;...;"n)2f�1;1gn

2 max
1�k�n

Z 1

0
P

�
sup
t2T

���� 1n
kX

j=1

f(�j; t)

���� > x

2

�
dx

= 4 max
1�k�n

Z 1

0
P

�
sup
t2T

���� 1n
kX

j=1

f(�j; t)

���� >x

�
dx = 4 max

1�k�n
E

�
sup
t2T

���� 1n
kX

j=1

f(�j; t)

���� � .

Thus (3.28) is valid, and (3.27) follows as well. The proof of Lemma 3.9 is complete.

3. We now show how to use Lemma 3.9 to establish the equivalence between (3.23) and (3.24).

First, if (3.24) is valid, then we get (3.23) straightforwardly from (3.26). Second, suppose that (3.23)

is satisfied. Since E j (1=n)Pn
j=1 "j j = o(1) for n!1 , by (3.27) it is enough to show that:

(3.29) max
1�k�n

E

�
sup
t2T

���� 1n
kX

j=1

f(�j ; t) �M(t)

���� � �! 0

as n ! 1 . For this, note that we have:

max
1�k�n

E

�
sup
t2T

���� 1n
kX

j=1

f(�j; t) �M(t)

���� �

� max
1�k�n0

k

n
E

�
sup
t2T

���� 1k
kX

j=1

f(�j; t)�M(t)

�����+ max
n0<k�n

k

n
E

�
sup
t2T

���� 1k
kX

j=1

f(�j; t)�M(t)

�����

� n0
n
E

�
sup
t2T

��� f(�1; t)�M(t)
��� � + max

n0<k�n
E

�
sup
t2T

���� 1k
kX

j=1

f(�j; t)�M(t)

���� �
for all n � n0 � 1 . Now, given " > 0 , take n0 � 1 such that the last expression is less than " .

Then take the limit superior on both sides as n!1 . Since (n0=n)E
�
supt2T jf(�1; t)�M(t)j�!

0 as n!1 , we obtain (3.29). This completes the proof of the equivalence (3.23)-(3.24).

Next we turn to the equivalence between (3.24) and (3.25).

Lemma 3.10

Under the hypotheses in Theorem 3.8 we have:

(3.30) E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
����� �

r
�

2
E

�
sup
t2T

���� 1n
nX

j=1

gj �f(�j; t)
�����

(3.31) E

�
sup
t2T

���� 1n
nX

j=n0

gj �f(�j; t)
����� �

r
2

�
max

n0�k�n
E

�
sup
t2T

���� 1k
kX

j=n0

"j �f(�j; t)
�����

for all n � n0 � 1 .

Proof of Lemma 3.10. (3.30): We have:

E

�
sup
t2T

���� 1n
nX

j=1

gj �f(�j; t)
���� � = E

�
sup
t2T

���� 1n
nX

j=1

"j �jgjj�f(�j; t)
���� �

=

Z



Z

"

Z

g

�
sup
t2T

���� 1n
nX

j=1

"j �jgj j�f(�j; t)
���� � dP dP" dPg �
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�
Z



Z

"

�
sup
t2T

���� Z

g

�
1

n

nX
j=1

"j �jgj j�f(�j ; t)
�
dPg

���� � dP dP"

=

Z



Z

"

�
sup
t2T

���� 1n
nX

j=1

"j�Ejg1j�f(�j; t)
�����dP dP" =

r
2

�
E

�
sup
t2T

���� 1n
nX

j=1

"j�f(�j; t)
�����

for all n � 1 . This establishes (3.30) and completes the first part of the proof.

(3.31): Let n � n0 � 1 be given and fixed, and let jg1j� � jg2j� � . . . � jgnj� � jgn+1j� := 0
be the non-increasing rearrangement of the sequence

� jgij �1�i�n
. Then we have:

E

�
sup
t2T

���� nX
j=n0

gj �f(�j; t)
���� �

= E

�
sup
t2T

���� nX
j=n0

jgj j�"j �f(�j; t)
���� � = E

�
sup
t2T

���� nX
j=n0

jgjj� �"j �f(�j; t)
���� �

= E

�
sup
t2T

���� nX
k=n0

�jgkj��jgk+1j�
� � kX
j=n0

"j �f(�j; t)
���� �

� E

���� nX
k=n0

k
�jgkj��jgk+1j�

����� � max
n0�k�n

E

�
sup
t2T

���� 1k
kX

j=n0

"j �f(�j; t)
���� �

� E

���� nX
k=1

k
�jgkj��jgk+1j�

����� � max
n0�k�n

E

�
sup
t2T

���� 1k
kX

j=n0

"j �f(�j; t)
���� �

= E

� nX
k=1

jgkj�
�
� max
n0�k�n

E

�
sup
t2T

���� 1k
kX

j=n0

"j �f(�j; t)
���� �

= nEjg1j � max
n0�k�n

E

�
sup
t2T

���� 1k
kX

j=n0

"j �f(�j; t)
���� � .

Since Ejg1j =
p
2=� , this finishes the proof of (3.31). The proof of Lemma 3.10 is complete.

4. We now show how to use Lemma 3.10 to establish the equivalence between (3.24) and

(3.25). First, if (3.25) is valid, then we get (3.24) straightforwardly from (3.30). Second, suppose

that (3.24) is satisfied. Then by (3.31) we find:

E

�
sup
t2T

���� 1n
nX

j=1

gj �f(�j; t)
���� �

� E

�
sup
t2T

���� 1n
n0�1X
j=1

gj �f(�j; t)
���� � +

r
2

�
max

n0�k�n
E

�
sup
t2T

���� 1k
kX

j=n0

"j �f(�j; t)
���� �

� (n0�1)

n
�Ejg1j�E

�
sup
t2T

��f(�1; t)�� �+r2

�
max

n0�k�n
E

�
sup
t2T

���� 1k
kX

j=1

"j �f(�j; t)
���� �+
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+

r
2

�
max

n0�k�n
E

�
sup
t2T

���� 1k
n0�1X
j=1

"j �f(�j; t)
���� �

� (n0�1)
n

�
r

2

�
� E
�
sup
t2T

��f(�1; t)�� � +r2

�
max

n0�k�n
E

�
sup
t2T

���� 1k
kX

j=1

"j �f(�j; t)
���� �

+

r
2

�
E

�
sup
t2T

���� 1

n0�1
n0�1X
j=1

"j �f(�j; t)
���� �

for all n � n0 � 1 . Now, given " > 0 , take n0 � 1 such that the last two expressions are less

than " . Then take the limit superior on both sides as n ! 1 . This clearly establishes (3.25)

and finishes the proof of the equivalence (3.24)-(3.25). The proof of Theorem 3.8 is complete.

3.4 The VC law of large numbers

The main purpose of this section is to prove the theorem of Vapnik and Chervonenkis which

appeared in [89] and [90]. The theorem characterizes the uniform law of large numbers in terms

of the asymptotic behaviour of the random entropy numbers. The sufficiency part of the proof is

based on Rademacher randomization (presented in Section 3.3) and subgaussian inequality (3.1). We

learned it from [98]. The necessity part of the proof relies upon Gaussian randomization (presented

in Section 3.3) and Sudakov’s minoration (3.19) (via an argument due to Talagrand which is based

on Stirling’s formula as recorded in [22]). The elements of this part are found in [32] and [22].

The results of this section will be extended and generalized in Sections 3.7–3.9 below.

1. Throughout we consider a sequence of independent and identically distributed random

variables � = f �j j j � 1 g defined on the probability space (
;F ; P ) with values in the

measurable space (S;A) and a common distribution law � . We suppose that a set T is given,

as well as a map f : S � T ! R such that s 7! f(s; t) is �-measurable for all t 2 T . We

moreover assume that jf(s; t)j � 1 for all (s; t) 2 S � T , and put M(t) =
R
S f(s; t) �(ds)

for t 2 T . (This assumption will later be extended to more general cases in Remark 3.13 below.)

Through the whole section we suppose that the structure of f and T is flexible enough, such that

we have as much measurability as needed. (We recall that this approach can be supported in quite

a general setting by using theory of analytic spaces as explained in Paragraph 5 of Introduction.)

2. In order to perform the Rademacher randomization we suppose that a Rademacher sequence

" = f"j j j � 1g is given (see Section 3.1), which is defined on the probability space (
";F"; P") .

Whenever the sequences � and " appear together, we assume that they are both defined on

the product probability space (
 
 
";F
F"; P 
P") , and thus may be understood mutually

independent. Similarly, in order to perform the Gaussian randomization we suppose that a standard

Gaussian sequence g = fgj j j � 1g is given, meaning that gj for j � 1 are independent standard

Gaussian variables (see Section 3.2), which is defined on the probability space (
g;Fg; Pg) . Also,

whenever the sequences � and g appear together, we assume that they are both defined on

the product probability space (
 
 
g;F
Fg; P
Pg) , and thus may be understood mutually

independent. Finally, whenever the three sequences � , " and g appear together, we assume that

they are all defined on the product probability space (
 
 
"

g;F 
 F"
Fg; P 
 P"
Pg) ,

and thus may be understood mutually independent.
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3. The key novel concept in this section is the concept of a random entropy number. Setting

F = f f( � ; t) j t 2 T g we define the random entropy number Nn(";F) associated with �
through F as the smallest number of open balls of radius " > 0 in the sup-metric of Rn needed

to cover the set Fn = f �f(�1; t); . . . ; f(�n; t)� j t 2 T g with n � 1 . Since Fn is a random

set in the cube [�1; 1]n , then Nn(";F) is a random variable, bounded above by the constant

([1="]+1)n for n � 1 and " > 0 (recall the Definition in the beginning of Chapter 2). We are

now ready to state the main result of this section.

Theorem 3.11 (Vapnik and Chervonenkis 1981)

Let � = f �j j j � 1 g be a sequence of independent and identically distributed random

variables. Then the uniform law of large numbers is valid:

(3.32) sup
t2T

���� 1n
nX

j=1

f(�j ; t) �M(t)

���� �! 0 P -a.s.

as n ! 1 , if and only if the condition is satisfied:

(3.33) lim
n!1

E
�
logNn(";F)

�
n

= 0

for all " > 0 .

Proof. Sufficiency: Suppose that (3.33) is satisfied. Then by Corollary 2.8 and Theorem 3.8

it is enough to show that:

(3.34) sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� �! 0 in P
P"-probability

as n ! 1 . For this, put N = Nn(";F) for n � 1 and " > 0 given and fixed. Then

by definition of N there exist vectors Z1 = (Z1;1; . . . ; Z1;n); . . . ; ZN = (ZN;1; . . . ; ZN;n) in

[�1; 1]n and a map i : T ! f1; . . . ; N g such that:

sup
t2T

max
1�j�n

��f(�j; t)�Zi(t);j

�� < " .

Hence by the subgaussian inequality (3.1) we obtain:

(3.35) P"

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j ; t)
���� > 2"

�
� P"

�
sup
t2T

���� 1n
nX

j=1

"j
�
f(�j; t)�Zi(t);j

� ����> "

�
+ P"

�
sup
t2T

���� 1n
nX

j=1

"j �Zi(t);j

����> "

�
� N max

1�i�N
P"

� ���� nX
j=1

"j �Zi;j

����> n"

�
� 2N max

1�i�N
exp

� �n2"2
2
Pn

j=1 jZi;j j2
�

� 2N exp

��n "2
2

�
.

Now, put A =
�
supt2T

�� 1
n

Pn
j=1 "j f(�j; t)

��>2"
	

, then by (3.35) and Markov’s inequality we get:
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P
P"
�
sup
t2T

���� 1n
nX
j=1

"j �f(�j ; t)
����> 2"

�
= (P
P")(A) =

Z


P"(A!) P (d!)

=

Z
f logN�n"2=4 g

P"(A!) P (d!) +

Z
f logN>n"2=4 g

P"(A!) P (d!)

� 2 exp

��n "2
4

�
+ P

�
logN> n "2=4

	 � 2 exp

��n "2
4

�
+

4

"2
1

n
E
�
logN

�
.

Letting n!1 we obtain (3.34) from (3.33), and the proof of sufficiency is complete.

Necessity: Consider the process:

Xt;n =
1p
n

nX
j=1

gj �f(�j; t)

in t 2 T for n � 1 given and fixed. Then Xn =
�
Xt;n

�
t2T is a Gaussian process on

(
g;Fg; Pg) with the intrinsic pseudo-metric given by:

dXn
(t0; t00) =

1p
n

� nX
j=1

��f(�j; t0)�f(�j ; t
00)
��2�1=2

for t0; t00 2 T . By Sudakov’s minoration estimate (3.19) in Theorem 3.5 we have:

"
q

logN
�
T; dXn

; "
� � C

1p
n
Eg

�
sup
t2T

���� nX
j=1

gj �f(�j; t)
���� �

for " > 0 given and fixed. Integrating both sides with respect to P , we get:

" E

�r
1

n
logN

�
T; dXn

; "
�� � C E

�
sup
t2T

���� 1n
nX

j=1

gj �f(�j; t)
���� � .

Hence, if (3.32) is satisfied, then by Corollary 2.8 and Theorem 3.8 we get:

(3.36) E

�r
1

n
logN

�
T; dXn

; "
� � �! 0

as n!1 . Since dXn
(t0; t00) � max1�j�n jf(�j; t0)�f(�j ; t

00)j , then we have N(T; dXn
; ") �

Nn(";F) � ([1="]+1)n , and thus 1
n logN(T; dXn

; ") � log([1="]+1) for all n � 1 . This

fact shows that the sequence of random variables f 1
n logN(T; dXn

; ") j n � 1 g is uniformly

integrable, and therefore (3.36) implies:

(3.37)
1

n
E
�
logN

�
T; dXn

; "
�� �! 0

as n !1 . The proof will be completed as soon as we show that (3.37) implies (3.33).

For this, let 0 < � < " < 1=2 and n � 1 be given and fixed. By definition of

N = N(T; dXn
;�"=2) , there is a map � : T ! T such that dXn

(t; �(t)) < �"=2 for all

t 2 T , and such that card f �(t) j t 2 T g = N . We recall that F = f f( � ; t) j t 2 T g ,

and let G = f f( � ; t)�f( � ; �(t)) j t 2 T g . Since for t0; t00 2 T with �(t0) = �(t00) we have

f( � ; t0)�f( � ; t00) =
�
f( � ; t0)�f( � ; �(t0))���

f( � ; t00)�f( � ; �(t00))� which is a difference of two
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elements from G , it is clear that we have:

(3.38) Nn(";F) � N(T; dXn
; ") � Nn(";G) .

In addition, we want to estimate Nn(";G) . For this, note if g( � ; t) = f( � ; t)�f( � ; �(t)) is from G
for some t 2 T , then by Jensen’s inequality we get 1

n

Pn
j=1 jg(�j; t)j � ( 1n

Pn
j=1 jg(�j; t)j2)1=2 =

dXn
(t; �(t))<�"=2 . Thus there are at most m = [�n] members j from f1; . . . ; ng for which

jg(�j; t)j�"=2 . This fact motives us to define H as the family of all functions from f�1; . . . ; �ng
into R which are zero at n�m points �k for which jg(�k; t)j<"=2 , and which take values

k"=2 at the remaining m points for k 2 Z with jkj � 4=" . Then we clearly get:

min
h2H

max
1�j�n

��g(�j; t)�h(�j)
�� � "=2 .

It shows that Nn(";G) � card (H) , from which by counting the number of elements in H we find:

(3.39) Nn(";G) �
�
n

m

��
1 +

8

"

�m
.

Now, by Stirling’s formula ( n ! = �n
p
2� nn+1=2e�n with exp(1=12n+1)< �n<exp(1=12n)

for all n � 1 ) one can easily verify the following fact:

(3.40) lim sup
n!1

1

n
log

�
n

m

�
� � j log� j + (1��) j log(1��) j

for all 0 < � < 1 , where m = [�n] . Combining (3.37)-(3.40) we conclude:

lim sup
n!1

1

n
E
�
Nn(";F)

�
� � j log� j + (1��) j log(1��) j + � log

�
1 +

8

"

�
which is valid for all 0 < � < " < 1=2 . Letting � # 0 , we obtain (3.33) and complete the proof.

Remark 3.12

In the notation of Theorem 3.11 we could observe from the proof (see (3.37)) that the following

two statements are equivalent (to the uniform law of large numbers (3.32)):

(3.41) lim
n!1

E
�
logNn(";F)

�
n

= 0

(3.42) lim
n!1

E
�
logN(T; dXn

; "
�

n
= 0

for all " > 0 . Simple comparison arguments based on Jensen’s inequality and the uniform

boundedness of F shows that the pseudo-metric dXn
( which appears naturally in the proof as

the intrinsic pseudo-metric of the Gaussian process obtained by the procedure of randomization)

may be equivalently replaced in (3.42) by any of the pseudo-metrics:

dXn;p(t
0; t00) =

�
1

n

nX
j=1

��f(�j; t0)�f(�j ; t
00)
��p�1^1=p

for t0; t00 2 T with 0 < p < 1 and n � 1 . It is the approach taken in [32] and [22]. Other
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pseudo-metrics with similar purposes appear in the literature as well.

Remark 3.13

It is assumed in Theorem 3.11 that jf(s; t)j � 1 for all (s; t) 2 S � T . The result extends

to the case where the integrability condition is satisfied:

(3.43) sup
t2T

jf( � ; t)j 2 L1(�) .

To see this, let us define the map FT (s) = sup t2T jf(s; t)j for s2S , and put:

fR(s; t) = f(s; t) � 1fFT �Rg(s)

for (s; t)2S � T and R > 0 . Then by Markov’s inequality we find:

P 
P"

�
sup
t2T

���� 1n
nX
j=1

"j �f(�j ; t)
����> "

�
� P
P"

�
sup
t2T

���� 1n
nX
j=1

"j �f(�j; t) �1fFT �Rg(�j)
����> "

2

�
+ P
P"

�
sup
t2T

���� 1n
nX
j=1

"j �f(�j; t) �1fFT >Rg(�j)
����> "

2

�
� P
P"

�
sup
t2T

���� 1n
nX
j=1

"j �fR(�j; t)
����> "

2

�
+

2

"
E
�
jFT j � 1fFT >Rg

�
for all n � 1 , all " > 0 , and all R > 0 . Since by (3.43) the last term tends to zero as R!1 ,

we see by Corollary 2.8 and Theorem 3.8 that F = f f( � ; t) j t 2 T g satisfies the uniform law

of large numbers (3.32), if and only if FR = f fR( � ; t) j t 2 T g does so for all R > 0 .

Thus, if we define the entropy numbers Nn;R(";F) := Nn(";FR) as in Paragraph 3 above

(note that the unit cube [�1; 1]n in the definition may be replaced by the cube [�R;R ]n without

any problem), then we see that under (3.43) the uniform law of large numbers (3.32) holds if and

only if the condition is satisfied:

(3.44) lim
n!1

E
�
logNn;R(";F)

�
n

= 0

for all " > 0 and all R > 0 . This completes the claim of the remark.

The VC Theorem 3.11 has also been extended to more general U -statistics of i.i.d. sequences

in [2]. We emphasize that U -statistics are the most important example of reversed martingales.

They are also treated by a different method in the Supplement.

3.5 The VC classes of sets

The purpose of this section is to present the concept of VC class of sets, which provide the

best known (and investigated) examples satisfying the VC theorem (Theorem 3.11).

Let S be a set, and let C � 2S be a family of subsets of S . Let us put:

�C(A) = card
�
A \ C�
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whenever A � S is finite, where we set A \ C = fA \ C j C 2 C g . We say that C shatters

A , if �C(A) = 2 card (A) . Let us define:

mC(n) = max
�
�C(A) j A � S , card (A) = n

	
for n � 1 . Finally, let us put:

V (C) = inf
�
n � 1 j mC(n) < 2n

	
with inf(;) = +1 . The family C is called a VC class of sets, if V (C) <+1 .

Note that if V (C) <+1 , then mC(n) < 2n for all n � V (C) . Thus, the map mC(n)
is not of the (strict) exponential growth 2n as n ! 1 . But then, as it is shown in the next

theorem, it must be of a polynomial growth. This is the most striking fact about the VC classes

of sets. The proof below is taken and adapted from [54].

Theorem 3.14

If C is a VC class of sets, then we have:

(3.45) mC(n) � nV(C)

for all n � V (C) .

Proof. Below we will prove a more general fact which implies:

(3.46) card
�
A \ C� � card

�
B �A j card (B)< V (C) 	

whenever A � S is finite. Applying (3.46) to A � S with card(A) = n � V (C) , we easily find:

(3.47) �C(A) �
�
n

0

�
+

�
n

1

�
+ . . . +

�
n

V (C)�1

�
� 1 + nV(C)�1 .

This clearly establishes (3.45). In order to prove (3.46) we will show:

(3.48) card
�D� � card

�
B �A j D shatters B

	
which is valid for any family D � 2A . It should be noted that (3.46) follows from (3.48) by

taking D = A \ C .

To prove (3.48) we define a map Tx : D ! 2A for x 2 A as follows. We put Tx(D) = Dnfxg
if D n fxg =2 D , and we put Tx(D) = D otherwise. First, we observe that Tx is one-to-one on

D . For this, let Tx(D1) = Tx(D2) . If Tx(D1) 2 D , then Tx(D1) = D1 = Tx(D2) 2 D and

thus Tx(D2) = D2 . If Tx(D1) =2 D , then Tx(D1) = D1 n fxg = Tx(D2) =2 D and x 2 D1 .

Thus Tx(D2) = D2 n fxg and x 2 D2 . In both cases it follows D1 = D2 , and the first claim

is proved. Consequently, we have:

(3.49) card
�
Tx(D)

�
= card (D)

for any x 2 A . Second, we verify the fact:

(3.50) If Tx(D) shatters given B � A , then D shatters B as well.
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For this, let C � B be given. Then there exists D 2 D such that C = B \ Tx(D) . If x =2 B ,

then B \ Tx(D) = B \D . If x 2 C , then Tx(D) = D . Finally, if x 2 B n C , then there

exists E 2 D such that C [ fxg = B \ Tx(E) . Thus Tx(E) = E and therefore E n fxg 2 D .

Moreover C = B \ (E n fxg) , and (3.50) follows. Third, we define w(E) = PE2E card (E)
whenever E � 2A , and note that Tx(D) 6= D implies w(Tx(D)) < w(D) . Thus applying

inductively Tx to D with x 2 A we obtain D0 � 2A with w(D0) being minimal. In other

words if D 2 D0 , then D n fxg 2 D0 for all x 2 A . Thus if D 2 D0 and C � D , then

C 2 D0 as well. Hence D0 shatters each of its own elements, and thus (3.48) is obvious for D0 .

Moreover by (3.49) we have card (D) = card (D0) . Finally, by (3.50) we see that D shatters

more sets than D0 . Thus (3.48) follows for D as well, and the proof is complete.

Remark 3.15

It is easily observed that in the notation of the VC theorem (Theorem 3.11) we have:

Nn(";FC) � mC(n)

for all n � 1 and all " > 0 , where C is any family of subsets of the set S and where we denote

FC = f1C j C 2 C g . Combining this fact with (3.45), we see that the entropy numbers Nn(";FC)
associated with a VC class C are of a polynomial growth when n!1 for every " > 0 .

Corollary 3.16 (Extended GC Theorem 1.10)

Let � = f �j j j � 1 g be a sequence of independent and identically distributed random

variables defined on the probability space (
;F ; P ) with values in the measurable space (S;A) .

If C � 2S is a VC class of sets, then the uniform law of large numbers is valid:

sup
C2C

���� 1n
nX

j=1

1f�j2Cg�Pf �1 2C g
���� �! 0 P -a.s.

as n ! 1 .

Proof. By Theorem 3.14 and Remark 3.15 we have:

0 � 1

n
E
�
logNn(";FC)

�
� V (C) logn

n
! 0

as n!1 , where FC = f 1C j C 2 C g . Thus the claim follows from Theorem 3.11.

The examples of VC classes will be given in Section 3.10.1 below.

3.6 The Eberlein lemma

In order to generalize and extend the VC law of large numbers to stationary random variables

in the next section, we will use a lemma due to Eberlein in [23], which may be interpreted as a

decoupling inequality with an error term. The present section is devoted to its statement and proof.

Lemma 3.17 (Eberlein 1984)

Let X = fXj j j � 1 g be a sequence of random variables defined on the probability space

(
;F ; P ) with values in the measurable space (S;A) , and let Y = fYj j j � 1g be a sequence

of random variables defined on a probability space (
0;F 0; P 0) with values in (S;A) which is
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coupled to the sequence X by the relation:

L�Y1; . . . ; Y�nwn� = L�X1; . . . ; Xwn

� 
 L�X2wn+1; . . .X3wn

�

 . . . 
 L�X(2�n�2)wn+1; . . . ; X(2�n�1)wn

�
for �n ; wn � 1 with n � 1 . Let us put �l1 = �(X1; . . . ; Xl) and �1l = �(Xl+1; Xl+2; . . . )
for l � 1 , and let us define the numbers:

�k = sup
�PI

i=1

PJ
j=1 jP (Ai \ Bj) � P (Ai)P (Bj) j :

(Ai)
I
i=1 is any finite partition in �l1 , and

(Bj)
J
j=1 is any finite partition in �1k+l for I; J; l � 1

	
for k � 1 . Then the following estimate is valid:

(3.51)
���P� (X1; . . . ; Xwn ; X2wn+1; . . . ; X3wn ; . . . ; X(2�n�2)wn+1; . . . ; X(2�n�1)wn) 2 B

	
�P 0

�
(Y1; . . . ; Ywn; Y2wn+1; . . . ; Y3wn; . . . ; Y(2�n�2)wn+1; . . . ; Y(2�n�1)wn) 2 B

	 ���
� (�n�1) �wn

for all measurable sets B 2 A�nwn with n � 1 .

Proof. The proof is carried out by induction in i = 1; . . . ; �n where n � 1 is given and fixed.

For �n = 2 , we denote U1 = (X1; . . . ; Xwn) , U2 = (X2wn+1; . . . ; X3wn) , V1 = (Y1; . . . ; Ywn)
and V2 = (Y2wn+1; . . . ; Y3wn) . Then we claim that:

(3.52)
�� Pf (U1; U2)2A g�P 0f (V1; V2)2A g

�� � �wn

for all A 2 A2wn .

To prove (3.52), let G denote the family of all sets A 2 A2wn satisfying (3.52), and let H
be the family of all sets from A2wn of the form [Ni=1B1

i �B2
i with B1

i �B2
i 2 Awn
 Awn

being disjoint for i = 1; . . . ; N and N � 1 . Then G is a monotone class of sets, and H
is an algebra of sets. Thus by the monotone class lemma (see 19]) we have �(G) = M(H) .

Hence, it is enough to show H � G . For this, notice that any element A from H allows

the representation A = [Ni=1 [Mi

j=1 B
1
i �B2

kj
where B1

i 2 Awn are disjoint for i = 1; . . . ; N ,

and where B2
kj
2 Awn are disjoint for j = 1; . . . ;M with Mi � M for all i = 1; . . . ; N .

Hence, by independence of V1 and V2 , the facts V1 � U1 , V2 � U2 , fU1 2B1
i g 2 �wn

1 and

fU2 2 B2
kj
g 2 �12wn

, and the definition of �wn , we get:�� Pf (U1; U2) 2 A g�P 0f (V1; V2) 2 A g
��

�
NX
i=1

MiX
j=1

��PfU12B1
i ; U22B2

kjg�PfU12B1
i g � PfU22B2

kjg
�� � �wn .

Thus, the proof of (3.52) is complete.

In addition, for �n = 3 , consider U3 = (X4wn+1; . . . ; X5wn) and V3 = (Y4wn+1; . . . ; Y5wn) .

Then we claim that:
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(3.53)
�� Pf (U1; U2; U3)2A g�P 0f (V1; V2; V3)2A g �� � 2�wn

for all A 2 A3wn .

To prove (3.53), again, by the monotone class lemma it is enough to show (3.53) for

A = [Ni=1[Mi

j=1B
1
i�B2

kj
where B1

i 2 Awn are disjoint for i = 1; . . . ; N , and where B2
kj
2 A2wn

are disjoint for j = 1; . . . ;M with Mi � M for all i = 1; . . . ; N . For this, first note that

(3.52) holds as well (the arguments in the proof remain unchanged) if (U1; U2) is replaced by

(U2; U3) , and (V1; V2) is replaced by (V2; V3) . By this fact, independence and equal distribution,

and the definition of �wn , we get:�� Pf (U1; U2; U3) 2 A g�P 0f (V1; V2; V3) 2 A g ��
=

���� NX
i=1

MiX
j=1

PfU12B1
i ; (U2; U3) 2B2

kjg�PfU12B1
i g � Pf (U2; U3) 2B2

kjg

+PfU12B1
i g � Pf (U2; U3) 2B2

kjg � PfU12B1
i g � P 0f (V2; V3) 2B2

kjg
����

�
NX
i=1

MiX
j=1

���PfU12B1
i ; (U2; U3) 2B2

kjg�PfU12B1
i g � Pf (U2; U3) 2B2

kjg
���+

+
NX
i=1

PfU12B1
i g�
���P�(U2; U3) 2 SMi

j=1B
2
kj

	�P 0�(V2; V3) 2 SMi

j=1B
2
kj

	���� � 2�wn .

Thus, the proof of (3.53) is complete.

From (3.52) and (3.53) we see that (3.51) is valid for �n being 2 and 3. It is moreover clear

that the procedure of passing from (3.52) to (3.53) could be inductively repeated as many times as

one wishes, and in this way we can reach any given number �n . This fact completes the proof.

Remark 3.18

Note that our proof above shows that the sequence X = fXj j j � 1 g in Lemma 3.17 may

be arbitrary, thus not necessarily from the identical distribution.

3.7 The uniform ergodic theorem for absolutely regular dynamical systems

The aim of this section is to generalize and extend the VC law of large numbers (Theorem

3.11) to dynamical systems (see Paragraph 4 in Section 1.1). It turns out that this extension is

possible for absolutely regular dynamical systems (defined below). The method of proof relies

upon a blocking technique (which goes back to Bernstein [5]), a decoupling inequality due to

Eberlein (Lemma 3.17), Rademacher randomization (Section 3.3) and the subgaussian inequality

for Rademacher averages (Theorem 3.1). The result is generalized and extended to semi-flows and

(non-linear) operators in the next section. All of this material is taken from [68].

1. Throughout, let fXigi�1 be a stationary sequence of random variables defined on the

probability space (
;F ; P ) , with values in the measurable space (S;A) and a common distribution

law � , and with distribution law � in (SN;AN) . More precisely, this means that:

(Xn1 ; . . . ; Xnk) � (Xn1+p; . . . ; Xnk+p)

for all 1 � n1 < . . . < nk and all p � 1 (see Paragraph 1 in Section 2.2). We recall that the
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stationary sequence fXi gi�1 is called ergodic, if the unilateral shift � : SN ! SN defined by:

�(s1; s2; s3; . . . ) = (s2; s3; . . . )

is ergodic with respect to � (see Paragraph 2 in Section 2.2).

2. For every l � 1 introduce the �-algebras:

�l1 = �(X1; . . . ; Xl) & �1l = �(Xl+1; Xl+2; . . . ) .

Define the �-mixing coefficient of the sequence fXi gi�1 by:

(3.54) �k = �k
�fXi gi�1

�
= sup

l�1

Z
sup

A2�1
k+l

jP (A j �l
1) �P (A)j dP

for all k � 1 . Equivalently, the �-mixing coefficients may be defined as follows (see [10]):

(3.55) �k = sup
�PI

i=1

PJ
j=1 jP (Ai \ Bj) � P (Ai)�P (Bj) j :

(Ai)
I
i=1 is any finite partition in �l

1 , and

(Bj)
J
j=1 is any finite partition in �1k+l for I; J; l � 1

	
for all k � 1 . The sequence fXi gi�1 is called absolutely regular (�-mixing), if �k ! 0 as

k ! 1 . The concept of absolute regularity was first studied by Volkonskii and Rozanov [92]-

[93] who attribute it to Kolmogorov. Conditions for the absolute regularity of Gaussian stationary

processes can be found in [76] p.180-190.

3. It is well-known that if the sequence fXi gi�1 is absolutely regular, then it is strongly

mixing, and therefore ergodic (see Section 2.2). Thus, by Birkhoff’s Theorem 1.6, or equivalently

(2.12) above, if X1 2 L1(P ) then the following strong law of large numbers (SLLN) holds:

1

n

nX
i=1

�
Xi�EXi

� ! 0 P -a:s:

as n!1 . It should be noticed that since the sequence fXigi�1 is assumed to be stationary, then

all random variables Xi are identically distributed for i � 1 , and therefore we have EXi = EX1

for all i � 1 . By the same argument (see (2.9) above) it follows that, if f 2 L1(�) then we have:

1

n

nX
i=1

�
f(Xi)�Ef(Xi)

� ! 0 P -a:s:

as n ! 1 , with Ef(Xi) = Ef(X1) for all i � 1 .

Our wish is to extend this SLLN and obtain a uniform SLLN over a class F of real valued

functions on S . Although the uniform SLLN in the general setting of stationarity is characterized

in Section 2.2, our goal here is to provide an analog of the classic VC law of large numbers

(Theorem 3.11) in the setting of absolute regularity. This approach involves conditions on the

entropy number for F . Recall that (see Paragraph 3 in Section 3.4) by entropy number we mean

NX
n (";F) , which denotes the smallest number of open balls in the sup-metric of radius " > 0

which form a covering of the set of all vectors in Rn of the form
�
f(X1); . . . ; f(Xn)

�
where

f ranges over F , and where n � 1 is given and fixed.
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4. The main result of this section may now be stated as follows. In Section 3.8 below we will

see (by deriving a uniform ergodic theorem for non-linear operators) that a P -probability version

of the next theorem holds for sequences of random variables which are not stationary. Throughout

we denote an = o(bn) to indicate that an=bn ! 0 as n ! 1 .

Theorem 3.19

Let fXi gi�1 be an absolutely regular sequence of random variables satisfying the condition:

(3.56)
�wn
wn

= o(n�1)

for some sequence wn = o(n) . If F is a uniformly bounded class of functions satisfying:

(3.57) lim
n!1 wn

E logNX
n (";F)

n
= 0

for all " > 0 , then F satisfies the uniform strong law of large numbers:

(3.58) sup
f2F

��� 1
n

nX
i=1

�
f(Xi)�Ef(Xi)

� ��� �! 0 P -a:s:

as n ! 1 .

Remark 3.20

It is easily verified that condition (3.56) with some sequence wn = o(n) is equivalent to

the following condition:

(3.59) n
2 � wn < �nwn � n

2 & �n�wn ! 0

where �n = [n=2wn ] for n � 1 . It turns out that (3.59) is precisely a version of condition

(3.56) which will be used in the proof below. When Xi’s are i.i.d., we may take wn = 1 for all

n � 1 , and since in this case �k = 0 for all k � 1 , we see that (3.56) is satisfied. Moreover,

the weighted entropy condition (3.57) in this case reduces to the classical VC entropy condition.

In this way we recover the sufficiency part of the VC theorem (Theorem 3.11). Finally, since the

sequence f �k gk�1 is decreasing, it is no restriction to assume in Theorem 3.19 that wn !1 ,

for otherwise the �-mixing coefficients �k are eventually identically zero, so we are in the setting

of the classic VC theorem. To see this, assume that wn does not tend to infinity as n ! 1 .

Then there exist a subsequence fwnk gk�1 of fwn gn�1 and N � 1 such that wnk � N for

all k � 1 . Suppose that (3.56) holds. Then we have:

nk
�N
N

� nk
�nk
wnk

! 0

as k ! 1 . Therefore �n = 0 for all n � N , and the claim follows.

Remark 3.21

When F consists of the indicators of sets from a VC class, by Remark 3.15 we see that the

conclusion (3.58) of Theorem 3.19 holds whenever there exists a sequence wn = o(n) , such that:

(3.60) n
�wn
wn

! 0 & wn
log n

n
! 0

91



as n!1 . For example, consider the case when the mixing rate r� is strictly positive, where

we recall that r� = sup f r � 0 j fnr�ngn�1 is bounded g . Then nr�n ! 0 for some r > 0 .

Put wn = n1=(1+r) for n � 1 . Then we clearly have:

n
�wn
wn

= wr
n �wn ! 0 & wn

log n

n
! 0

as n!1 . Thus, when F consists of the indicators of sets from a VC class, then the uniform

SLLN holds whenever the mixing rate is strictly positive.

5. Before proving Theorem 3.19 we shall establish some preliminary facts. The proof is centered

around the blocking technique which is described as follows. Setting �n = [n=2wn] for n � 1 ,

divide the sequence (X1; . . . ; Xn) into 2�n blocks of length wn , leaving a remainder block

of length n�2�nwn . Define blocks:

Bj = f i j 2(j�1) wn + 1 � i � (2j�1) wn g
B̂j = f i j (2j�1) wn + 1 � i � 2jwn g
R = f i j 2�nwn + 1 � i � n g

for all 1 � j � �n . Using these blocks, define a sequence f Yi gi�1 of random variables on

a probability space (�;G; Q) with values in the measurable space (S;A) and coupled to the

sequence f Xi gi�1 by the relation:

L(Y1; . . . ; Y�nwn) =
�nO
1

L(X1; . . . ; Xwn)

for all n � 1 . Then the Eberlein lemma (Lemma 3.17) compares the original sequence fXigi�1
with the coupled block sequence fYigi�1 . This lemma, which may be interpreted as a decoupling

inequality with an error term, plays a central role in the sequel. It easily implies that for any

bounded measurable function g : S�nwn! R we have the decoupling estimate:

(3.61)
���Eg (X1; . . . ; Xwn; X2wn+1; . . . ; X3wn ; . . . ; X(2�n�2)wn+1; . . . ; X(2�n�1)wn)

�Eg (Y1; . . . ; Ywn; Y2wn+1; . . . ; Y3wn; . . . ; Y(2�n�2)wn+1; . . . ; Y(2�n�1)wn)
���

� (�n�1) � �wn � kg k1
for all n � 1 .

6. We now provide a proof of Theorem 3.19. As shown in the next section, the method of

proof is flexible and admits a generalization to the non-stationary setting.

Proof of Theorem 3.19: By Corollary 2.8, it is enough to show convergence in P -probability

in (3.58). Centering, if necessary, we may and do assume that the elements f 2 F have the

�-mean zero. The proof is carried out in two steps as follows.

Step 1. We first use the Eberlein lemma (Lemma 3.17) to show that the entropy hypothesis

(3.57) implies an entropy result for F with respect to the coupled block sequence f Yi gi�1 .

For this, the following definition is needed.
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Definition. Let N̂X
�n(";F) denote the smallest number of open balls in the sup-metric of

radius " > 0 which form a covering of the set of all vectors in R�n with coordinates f(Xi)
for i = 1; 2wn+1; 4wn+1 . . . ; (2�n�2)wn+1 formed by f 2 F . Define N̂Y

�n(";F) in a

similar way by replacing Xi with Yi .

We now show that the entropy condition:

(3.62) lim
n!1

� 1

�n
E log N̂X

�n(";F)
�

= 0

is equivalent to the following analogous condition for the coupled block sequence fYi gi�1 :

(3.63) lim
n!1

� 1

�n
E log N̂Y

�n(";F)
�

= 0

with " > 0 being given and fixed.

To verify that these are indeed equivalent entropy conditions, notice that for all n � 1 we have:

1

�n
log N̂Z

�n(";F) � 1

�n
log

�
C="

��n = log
�
C="

�
where Z equals X or Y , respectively. Therefore with n � 1 fixed, there exists a bounded

function g : S�n ! R such that:

Eg (Z1; Z2wn+1; Z4wn+1; . . . ; Z(2�n�2)wn+1)

=
1

�n
E log N̂Z

�n(";F)

where Z equals X or Y , respectively. Moreover kgk1 � log
�
C="

�
, and thus by (3.59)

and (3.61) we obtain:��� 1

�n
E log N̂X

�n(";F)� 1

�n
E log N̂Y

�n(";F)
��� � (�n�1) �wn log

�
C="

� ! 0

as n ! 1 . This shows the desired equivalence of (3.62) and (3.63).

Moreover, we note that (3.57) trivially implies (3.62), and therefore the entropy condition (3.57)

implies the entropy condition (3.63). We will use this heavily in the next step.

Step 2. In this step we use the Eberlein lemma (Lemma 3.17) and condition (3.63) to show

that the discrepancy supf2F j n�1Pn
i=1f(Xi) j becomes small as n increases.

Indeed, note that we have:

P
n
sup
f2F

��� 1
n

nX
i=1

f(Xi)
��� > "

o
� P

n
sup
f2F

��� 1
n

2�nwnX
i=1

f(Xi)
��� > "=2

o
+ P

n
sup
f2F

��� 1
n

nX
i=2�nwn+1

f(Xi)
��� > "=2

o
= P

n
sup
f2F

��� 1
n

2�nwnX
i=1

f(Xi)
��� > "=2

o
+ o(1)
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for all " > 0 , and all n � 1 . For the last equality above we use (3.59) from which we obtain:

sup
f2F

��� 1

n

nX
i=2�nwn+1

f(Xi)
��� � C

�n�2�nwn

n

�
! 0

as n ! 1 . Hence by stationarity and decoupling (Lemma 3.17), we obtain:

(3.64) P
n
sup
f2F

��� 1
n

nX
i=1

f(Xi)
��� > "

o
� 2 P

n
sup
f2F

��� 1
n

�nX
j=1

X
i2Bj

f(Xi)
���> "=4

o
+ o(1)

� 2Q
n
sup
f2F

��� 1
n

�nX
j=1

X
i2Bj

f(Yi)
���> "=4

o
+ o(1)

for all " > 0 and all n � 1 , since (�n�1) �wn = o(1) by (3.59).

To conclude, it suffices to show that the last term in (3.64) becomes small as n increases. Since

the random variables
P

i2Bj
f(Yi) are independent (and identically distributed) for 1 � j � �n ,

it is enough to show that the symmetrized version of the last term in (3.64) becomes arbitrarily

small when n increases. Thus by standard symmetrization lemmas (Corollary 2.8 and Theorem

3.8) it is enough to show that for " > 0 given and fixed, there exists n" � 1 such that:

(3.65) (Q
Q")
n
sup
f2F

��� 1
n

�nX
j=1

"j �
X
i2Bj

f(Yi)
��� > "

o
� "

for all n � n" , where f "j gj�1 is a Rademacher sequence defined on a probability space

(�";G"; Q") and understood to be independent of the sequence f Yi gi�1 , and therefore of the

sequence fPi2Bj
f(Yi)gj�1 as well.

Note that from Markov’s inequality and definition of the coupled sequence fYi gi�1 we get:

(Q
Q")
n

sup
f2F

��� 1
n

�nX
j=1

"j �
X
i2Bj

f(Yi)
��� > "

o
� 1

"
EQ
Q"

�
sup
f2F

��� 1
n

�nX
j=1

"j �
X
i2Bj

f(Yi)
��� �

� 1

" n
� wn EQ
Q"

�
sup
f2F

��� �nX
j=1

"jf(Y(2j�2)wn+1)
��� �

� 1

2"
EQ
Q"

�
sup
f2F

��� 1

�n

�nX
j=1

"jf(Y(2j�2)wn+1)
��� � .

Since convergence in probability for a uniformly bounded sequence of random variables implies

convergence in mean, it is enough to show that there exists n" � 1 such that:

(3.66) (Q
Q")
n
sup
f2F

��� 1

�n

�nX
j=1

"jf(Y(2j�2)wn+1)
��� > 2"

o
< 2"

for all n � n" .
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To show (3.66), proceed as in the necessity part of the proof of Theorem 3.11. Assume without

loss of generality that F has the uniform bound 1 . Let A denote the event:

sup
f2F

��� 1

�n

�nX
j=1

"j f(Y(2j�2)wn+1)
��� > 2"

with " > 0 and n � 1 fixed. Observe that (3.63) implies the existence of n" � 1 such that:

E log N̂Y
�n(";F) � "4�n

exp
�
�n"

2("�1=2)
� � "=2

for all n � n" with " < 1=2 .

By the definition of the entropy number N = N̂Y
�n(";F) , there are vectors xl in [�1 ; 1 ]n

for 1 � l � N with coordinates xl;i for i = 1; 2wn+1; 4wn+1; . . . ; (2�n�2)wn+1 , such

that for all f 2 F we have:

inf
1�l�N

max
i

�� f(Yi) � xl;i
�� < "

where the max runs over all indices 1; 2wn+1; 4wn+1; . . . ; (2�n�2)wn+1 . By the triangle

inequality we have:

(3.67) (Q
Q")(A) � (Q
Q")
n
sup
f2F

1

�n

��� �nX
j=1

"j f(Y(2j�2)wn+1)

�
�nX
j=1

"j xl(f);(2j�2)wn+1
��� > "

o
+ (Q
Q")

n
max
1�l�N

1

�n

��� �nX
j=1

"j xl;(2j�2)wn+1
��� > "

o
where xl(f) denotes the vector with coordinates xl(f);i satisfying:

max
i

�� f(Yi) � xl(f);i
�� < "

with the max as above. The first term on the right-hand side of inequality (3.67) is zero, by choice

of xl(f) . Applying the subgaussian inequality (Theorem 3.1) to the second term yields:

(3.68) (Q
Q")
n

max
1�l�N

1

�n

��� �nX
j=1

"j xl;(2j�2)wn+1
��� > "

o
� 2N � exp

���2n "2
2 �n

�
= 2N � exp

���n "2
2

�
.

Note that for all n � n" , Markov’s inequality implies:

(3.69) Q
n
logN � �n"

3
o
� " .

Finally, combining (3.67)–(3.69), the left hand side of (3.66) becomes:

(Q
Q")(A) =

Z
A
1fN�exp(�n"3)gd(Q
Q") +

Z
A
1fN<exp(�n"3)gd(Q
Q")

� " + 2 � exp
�
�n"

3
�
� exp

���n"2
2

�
� 2"
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for all n � n" . This completes Step 2 and the proof of Theorem 3.19.

7. In the remainder of this section we first extend Theorem 3.19 to the unbounded case. Since

this approach follows in a straightforward way along the lines of Remark 3.13, we will not provide

all details. After this, we formulate Theorem 3.19 in terms of dynamical systems.

It is assumed in Theorem 3.19 that the elements f 2 F satisfy kfk1�C , for some C > 0 .

To handle the more general case, assume that the envelope FF (s) = supf2F j f(s) j of F for

s 2 S , belongs to L1(�) , where � is the law of X1 . Given R > 0 , define the truncated

versions of elements of F by:

fR(s) = f(s) � 1fFF�Rg(s)

for s 2 S . Let Nn;R(";F) denote the cardinality of the minimal set of open balls in the

sup-metric of radius " > 0 , which form a covering of the set of vectors in Rn of the form�
fR(X1); . . . ; fR(Xn)

�
when f ranges over F , and where n � 1 is given and fixed. With

this notation, we may now state a generalization of Theorem 3.19 as follows.

Theorem 3.22

Let fXi gi�1 be an absolutely regular sequence of random variables satisfying the condition:

�wn
wn

= o(n�1)

for some sequence wn = o(n) . Let F be class of functions with envelope FF 2 L1(�) , where

� is the law of X1 . If F satisfies the entropy condition:

lim
n!1 wn

E logNn;R(";F)

n
= 0

for all " > 0 and all R > 0 , then F satisfies the uniform strong law of large numbers (3.58).

Proof. Follow the proof of Theorem 3.19. In Step 2 observe that by Chebyshev’s inequality:

P
n
sup
f2F

��� 1
n

nX
i=1

f(Xi)
��� > "

o
� P

n
sup
f2F

��� 1
n

nX
i=1

f(Xi) � 1fFF�Rg(Xi)
��� > "=2

o
+P

n
sup
f2F

��� 1
n

nX
i=1

f(Xi) � 1fFF>Rg(Xi)
��� > "=2

o
� P

n
sup
f2F

��� 1
n

nX
i=1

fR(Xi)
��� > "=2

o
+

2

"
E
�jFF j�1fFF>Rg�

for all R > 0 and all n � 1 . Letting n!1 , Theorem 3.19 shows that the first term after the

last inequality sign may be made arbitrarily small. Letting R!1 , it is clear that the hypothesis

FF 2 L1(�) implies that the second term may also be made arbitrarily small.

8. Finally, we formulate the result of Theorem 3.19 in terms of dynamical systems. Throughout,

let (
;F ; �; T ) be a given dynamical system. Thus (
;F ; �) is a probability space, and T
is a measure-preserving transformation of 
 (see Paragraph 4 in Section 1.1). Let � : 
 ! S
be a measurable function, where (S;A) is a measurable space. For every l � 1 introduce

96



the �-algebras:

�l1 = �l1(�) = �(�; � � T 1; . . . ; � � T l�1)

�1l = �1l (�) = �(� � T l; � � T l+1; . . . ) .

The (�; �)-mixing coefficient of T (or the �-mixing coefficient of T through � ) is defined by:

(3.70) �k = �k(�) = sup
l�1

Z
sup

A2�1
k+l

j �(A j �l1) ��(A) j d�

for all k � 1 . The dynamical system (
;F ; �; T ) is said to be absolutely regular through �
(or (�; �)-mixing), if �k ! 0 as k ! 1 .

Notice that the sequence of random variables �; � � T 1; � � T 2; . . . is stationary and, when

�k ! 0 as k ! 1 , it is also ergodic. Therefore, as noted in the beginning of this section, we

have for every f 2 L1(�) with � being the law of � , the usual pointwise ergodic theorem:��� 1
n

n�1X
i=0

f(� � T i) �
Z


f(�(!)) �(d!)

��� �! 0 �-a.s. ! 2 


as n ! 1.

We wish to extend this ergodic theorem and obtain a uniform ergodic theorem over a class F
of real valued functions on S . The class F is said to satisfy the uniform ergodic theorem for

T with respect to the factorization � , if we have:

sup
f2F

��� 1
n

n�1X
i=0

f(� � T i) �
Z


f(�(!)) �(d!)

��� �! 0 �-a.s. ! 2 


as n!1 . In this case we write F 2 UET (�) . This approach involves conditions on the entropy

number Nn(";F ; �) of F associated with T through the factorization � . By Nn(";F ; �) we

denote the cardinality of the minimal set of open balls in the sup-metric of radius " > 0 which

form a covering of the set of all vectors in Rn of the form
�
f(�); f(� � T ); . . . ; f(� � T n�1)

�
formed by f 2 F , where n � 1 is given and fixed. The next result shows that a weighted VC

entropy condition insures that F 2 UET (�) .

Theorem 3.23

Let (
;F ; �; T ) be an absolutely regular dynamical system through a factorization � : 
! S
satisfying the condition:

�wn(�)

wn
= o(n�1)

for some sequence wn = o(n) . If F is a uniformly bounded class of functions on S satisfying:

lim
n!1 wn

E logNn(";F ; �)
n

= 0

for all " > 0 , then F 2 UET (�) .

Proof. The claim follows from Theorem 3.19 upon identifying the random variables Xi with

� � T i�1 for i � 1 . This completes the proof.
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From Theorem 3.22 it clearly follows that Theorem 3.23 admits an extension to the case of

unbounded F , the details of which are left to the reader. Clearly, there are also other ways to

extend and generalize Theorem 3.19 (or Theorem 3.23). The blocking and decoupling techniques

described here may also treat the case of stationary sequences of random variables which have a

weak dependence structure, but not necessarily a �-mixing structure. A review of similar results

obtained for �-mixing and �-mixing sequences is found in [97]. With a little more care one can

also obtain rates of convergence in Theorem 3.19 (see [97] for such results).

3.8 Extension to semi-flows and (non-linear) operators

In the first part of this section we extend the basic Theorem 3.19 to one-parameter semi-flows

(Theorem 3.24), and in the second part we extend it to (non-linear) operators (Theorem 3.25).

1. By a one-parameter semi-flow f Tt gt�0 defined on the probability space (
;F ; �) , we

mean a group of measurable transformations Tt : 
! 
 with T0 = identity, and Ts+t = Ts �Tt

for all s; t � 0 . The semi-flow fTt gt�0 is called measurable if the map (!; t) 7! Tt(!) from


� [0;1) into 
 is �
 �-measurable. Note that (1.10) is then well-defined �-a.s. by Fubini’s

theorem (see [19]). Henceforth we will assume that the semi-flow fTtgt�0 is measure-preserving,

that is, each Tt is measure-preserving for t � 0 (see Section 1.1).

As above, let (S;A) be a measurable space, let � : 
 ! S be a measurable function, and

let F be a class of real valued measurable functions defined on S . The class F is said to

satisfy the uniform ergodic theorem for fTt gt�0 with respect to the factorization � , whenever:

(3.71) sup
f2F

��� 1

�

Z �

0
f(� � Tt) dt �

Z


f(�(!)) �(d!)

��� �! 0 �-a.s. ! 2 


as �!1 . In order to apply the above results, we will assume here and henceforth and without

further mention that � satisfies the following regularity condition:

(3.72) �(!0) = �(!00) )
Z 1

0
f
�
� � Tt(!

0)
�
dt =

Z 1

0
f
�
� � Tt(!

00)) dt

whenever !0; !00 2 
 and f 2 F . Under assumption (3.72) we define a measurable map

F : S � F ! R satisfying:

F (�(!); f) =

Z 1

0
f
�
� � Tt(!)

�
dt .

Following the previous definitions, let Nn(";F ; �) denote the smallest number of open balls

in the sup-metric of radius " > 0 which form a covering of the subset of Rn of the form�
F (�; f); F (� � T1; f); . . . ; F (� � Tn�1; f)

�
formed by f 2 F , where n � 1 is given and

fixed. The numbers Nn(";F ; �) are called the entropy numbers of f associated with fTt gt�0
through the factorization � . Setting T := T1 , the (�; �)-mixing coefficient �k := �k(�) of

T for k � 1 is defined as in (3.70). The semi-flow f Tt gt�0 is said to be (�; �)-mixing, if

�k := �k(�) ! 0 as k !1 . We may now state a uniform ergodic theorem for flows.

Theorem 3.24

Let fTtgt�0 be a measurable measure-preserving semi-flow of the probability space (
;F ; �) ,

let (S;A) be a measurable space, let � : 
 ! S be a measurable function, and let F be a
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uniformly bounded class of functions on S . Suppose that fTt gt�0 satisfies the mixing condition:

(3.73)
�wn(�)

wn
= o(n�1)

for some sequence wn = o(n) . If F satisfies the weighted entropy condition:

lim
n!1 wn

E logNn(";F ; �)
n

= 0

for all " > 0 , then F satisfies the uniform ergodic theorem (3.71).

Proof. Recalling the reduction principle (1.10)-(1.11), the claim follows from Theorem 3.23

together with the following two facts:

(3.74)
1

N

Z N�1

0
f
�
� � Tt(!)

�
dt =

1

N

N�1X
i=0

F (� � T i(!); f) for all ! 2 


(3.75) sup
f2F

��� 1

N

Z N�1

0
f
�
� � Tt(!)

�
dt � 1

�

Z �

0
f
�
� � Tt(!)

�
dt
��� �! 0 for all ! 2 


as N := [�] ! 1 . This completes the proof.

It is clear that Theorem 3.24 admits an extension to the case of unbounded F having an

envelope belonging to L1(�) (see Theorem 3.22). We will not pursue this, but instead consider an

extension of Theorem 3.19 to (non-linear) operators. In the process we will see that a convergence

in probability version of Theorem 3.19 actually holds for sequences of random variables which are

neither identically distributed nor stationary.

2. Throughout, let (
;F ; �) denote a probability space, and T a linear operator in L1(�) .

For g 2 L1(�) , let T i(g)(!) :=
�
T i(g)

�
(!) for all ! 2 
 . Given g 2 L1(�) and a function

class F of maps from R into R , we wish to find conditions for the uniform convergence:

(3.76) lim
n!1 sup

f2F

��� 1
n

n�1X
i=0

�
f
�
T i(g)(!)

��Z


f
�
T i(g)(!)

�
�(d!)

� ��� = 0

in �-probability, as n ! 1 . This result may be interpreted as a pointwise uniform ergodic

theorem for the operator T (see Section 2.5.5).

We note that if the operator T is induced by means of a measure-preserving transformation,

then (3.76) reduces to the setting considered in Theorem 3.23 above. More precisely, letting the

operator T be the composition with a measure-preserving transformation � of 
 , namely�
Tg
�
(!) = g

�
�(!)

�
for ! 2 
 , we may recover our previous results. In this way the results of

this section generalize and extend Theorem 3.19 and Theorem 3.23.

Before stating the main result we introduce some notation. Let g 2 L1(�) be fixed. For

every l � 1 introduce the �-algebras:

�l
1 = �l

1(g) = �(g; T 1(g); . . . ; T l�1(g))

�1l = �1l (g) = �(T l(g); T l+1(g); . . . ) .

The �-mixing coefficient for the operator T with respect to g is defined as follows:
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�k = �k(g) = sup
l�1

Z
sup

A2�1
k+l

j �(A j �l1) ��(A) j d�

for all k � 1 . The measure space (
;F ; �) together with the operator T is said to be

(�; g)-mixing, if �k ! 0 as k!1 . Finally, the class F is said to satisfy the uniform ergodic

theorem for T with respect to g , if (3.76) holds. In this case we write F 2 UET (g) .

It turns out that the methods employed in Section 3.7, which hold for stationary sequences of

random variables, may be generalized to treat the non-stationary case. In this way we will find

sufficient conditions for F 2 UET (g) . As before, the approach involves conditions on the entropy

number Nn(";F ; g) of F with respect to T and g . Recall that Nn(";F ; g) denotes the

cardinality of the minimal set of open balls in the sup-metric of radius " > 0 which form a

covering of the set of all vectors in Rn of the form
�
f(g); f(T (g)); . . . ; f(T n�1(g))

�
where f

ranges over F , and where n � 1 is given and fixed. The main result shows that a weighted

VC entropy condition implies that F 2 UET (g) .

Theorem 3.25

Suppose that the measure space (
;F ; �) and the operator T in L1(�) are (�; g)-mixing,

where g 2 L1(�) is fixed. Suppose that the �-mixing coefficients for T with respect to g satisfy:

(3.77) �wn(g) = o(n�1)

for some sequence wn = o(n) . If F is a uniformly bounded class of functions on R satisfying:

(3.78) lim
n!1 wn

E logNn(";F ; g)
n

= 0

for all " > 0 , then F 2 UET (g) .

Remark 3.26

As the next proof shows, T can be a non-linear operator as well, that is, any map from

L1(�) into L1(�) .

Proof of Theorem 3.25. As already noted, the random variables:

X1 = g , X2 = T (g) , X3 = T 2(g) , . . .

do not form a stationary sequence, so Theorem 3.25 is not immediate from Theorem 3.19.

Additionally, it does not seem possible to apply Corollary 2.8 to deduce the �-a.s. convergence.

Nonetheless, we may prove convergence to zero in �-probability by adapting the methods used

to prove Theorem 3.19. This is done as follows.

First, by Remark 3.18 we know that the Eberlein lemma (Lemma 3.17) holds for arbitrary

sequences of random variables, thus for those which are not identically distributed as well.

Therefore, letting f Yi gi�1 be a sequence of random variables defined on a probability space

(�;G; �) with independent blocks satisfying:

L(Y1; . . . ; Y2�nwn) = L�g; T (g); . . . ; Twn�1(g)
�
 L�Twn(g); Twn+1(g); . . . ; T 2wn�1(g)

�

 . . . 
 L�T (2�n�1)wn(g); T (2�n�1)wn+1(g); . . . ; T 2�nwn�1(g)

�
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with �n = [n=2wn] for n � 1 , we may modify the proof of Step 1 of Theorem 3.19 as follows.

Definition. Let N̂X
�nwn(";F) denote the smallest number of open balls in the sup-metric of

radius " > 0 which form a covering of the set of all vectors in R�nwn with coordinates f(Xi)
for i = 1; . . . ; wn; 2wn+1; . . . ; 3wn; . . . ; (2�n�2)wn+1; . . . ; (2�n�1)wn formed by f 2 F .

Define N̂Y
�nwn(";F) in a similar way by replacing Xi with Yi .

We now show that the entropy condition:

(3.79) lim
n!1

� wn
n

E log N̂X
�nwn(";F)

�
= 0

is equivalent to the following analogous condition for the coupled block sequence fYi gi�1 :

(3.80) lim
n!1

� wn
n

E log N̂Y
�nwn(";F)

�
= 0

with " > 0 being given and fixed.

To verify that these are indeed equivalent entropy conditions, notice that for all n � 1 we have:

wn
n

logNZ
n (";F) � wn

n
log

�
C="

��nwn � wn log
�
C="

�1=2
where Z equals X or Y , respectively. Therefore with n � 1 fixed, there exists a bounded

function g : S�nwn ! R such that:

Eg (Z1; . . . ; Zwn; Z2wn+1; . . . ; Z3wn ; . . . ; Z(2�n�2)wn+1; . . . ; Z(2�n�1)wn)

=
wn
n

E log N̂Z
�nwn(";F)

where Z equals X or Y , respectively. Moreover kgk1 � wn log
�
C="

�1=2
, and thus by

(3.61) and (3.77) we obtain:��� wn
n
E log N̂X

�nwn(";F)� wn
n
E log N̂Y

�nwn(";F)
��� � (�n�1) �wn wn log(C="

�1=2
� n �wn log(C="

�1=2 ! 0

as n ! 1 . This shows the desired equivalence of (3.79) and (3.80).

Moreover, we note that (3.78) trivially implies (3.79), and therefore the entropy condition (3.78)

implies the entropy condition (3.80). We will use this heavily in the next step.

Concerning Step 2 of the proof of Theorem 3.19, we need to make the following modifications

to the decoupling arguments:

�
n

sup
f2F

��� 1
n

2�nwn�1X
i=0

�
f
�
T i(g)

� �Z


f
�
T i(g)(!)

�
�(d!)

���� > "=2
o

� �
n

sup
f2F

��� 1
n

�nX
j=1

X
i2Bj

�
f
�
T i�1(g)

��Z


f
�
T i�1(g)(!)

�
�(d!)

���� > "=4
o

+ �
n

sup
f2F

��� 1
n

�nX
j=1

X
i2B̂j

�
f
�
T i�1(g)

��Z


f
�
T i�1(g)(!)

�
�(d!)

���� > "=4
o
�
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(3.81) � �
n

sup
f2F

��� 1
n

�nX
j=1

X
i2Bj

�
f(Yi) �Ef(Yi)

� ��� > "=4
o

+ �
n

sup
f2F

��� 1
n

�nX
j=1

X
i2B̂j

�
f(Yi)�Ef(Yi)

� ��� > "=4
o
+ 2(�n�1) �wn

for all n � 1 , where the last inequality follows by the Eberlein lemma (Lemma 3.17). Clearly,

as Bj and B̂j play symmetric roles, the first two terms in (3.81) have an identical form and it

suffices to bound the first term by " . Since the random variables
P

i2Bj
(f(Yi) �Ef(Yi)) are

independent for 1 � j � �n , by standard symmetrization lemmas (explore the proof of (3.26)

and observe that it does not use the identical distribution of the underlying sequence but only the

independence) it is enough to show that for " > 0 given and fixed, there exists n" � 1 such that:

(3.82) (�
�")
n
sup
f2F

��� 1
n

�nX
j=1

"j �
X
i2Bj

f(Yi)
��� > 2"

o
� 2"

for all n � n" , where f "j gj�1 is a Rademacher sequence defined on a probability space

(�";G"; �") and understood to be independent of the sequence f Yi gi�1 , and therefore of the

sequence fPi2Bj
(f(Yi) �Ef(Yi)) gj�1 as well.

To show (3.82), proceed as in Step 2 of the proof of Theorem 3.19. Assume without loss of

generality that F has the uniform bound 1 . Let A denote the event:

sup
f2F

��� 1
n

�nX
j=1

"j �
X
i2Bj

f(Yi)
��� > 2"

with " > 0 and n � 1 fixed. Observe that (3.80) implies the existence of n" � 1 such that:

wn E log N̂Y
�nwn

(";F) � "4n

exp
�
n"2("�1)=wn

� � "=2

for all n � n" with " < 1 .

By the definition of the entropy number N = N̂Y
�nwn

(";F) , there are vectors xl in [�1 ; 1 ]n

for 1 � l � N with coordinates xl;i for i = 1; . . . ; wn; 2wn+1; . . . ; 3wn; . . . ; (2�n�2)wn+
1; . . . ; (2�n�1)wn , such that for all f 2 F we have:

inf
1�l�N

max
i

�� f(Yi) � xl;i
�� < "

where the max runs over all indices 1; . . . ; wn; 2wn + 1; . . . ; 3wn; . . . ; (2�n � 2)wn + 1; . . . ;
(2�n � 1)wn. By the triangle inequality we have:

(3.83) (�
�")(A) � (�
�")
n

sup
f2F

1

n

��� �nX
j=1

"j �
X
i2Bj

f(Yi) �
�nX
j=1

"j �
X
i2Bj

xl(f);i

��� > "
o

+ (�
�")
n

max
1�l�N

1

n

��� �nX
j=1

"j �
X
i2Bj

xl;i

��� > "
o
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where xl(f) denotes the vector with coordinates xl(f);i satisfying:

max
i

�� f(Yi) � xl(f);i
�� < "

with the max as above. The first term on the right-hand side of inequality (3.83) is zero, by choice

of xl(f) . Applying the subgaussian inequality (Theorem 3.1) to the second term yields:

(3.84) (�
�")
n

max
1�l�N

1

n

��� �nX
j=1

"j �
X
i2Bj

xl;i

��� > "
o

� 2N max
1�l�N

exp
� �n2"2

2

� �nX
j=1

�X
i2Bj

xl;i

�2 ��1 �
� 2N exp

� �n2"2
2�nw2

n

�
� 2N exp

� �n "2
wn

�
.

Note that for all n � n" , Markov’s inequality implies:

(3.85) �
n
logN � n"3

wn

o
� " .

Finally, combining (3.83)–(3.85), the left hand side of (3.82) becomes:

(�
�")(A) =
Z
A
1fN�exp(n"3=wn)gd(�
�") +

Z
A
1fN<exp(n"3=wn)gd(�
�")

� " + 2 exp
� n "3

wn

�
exp

� �n "2
wn

�
� 2"

for all n � n" . This proves the desired convergence in �-probability.

It is clear that Theorem 3.25 admits an extension to the case of unbounded F having an

envelope belonging to L1(�) (see Theorem 3.22). We will not pursue this in more detail, but

instead pass to the problem of uniformity over factorizations in the next section.

3.9 Uniformity over factorizations

In this section we consider extensions of Theorem 3.23 and Theorem 3.24 to dynamical systems

equipped with a family K of factorizations � : 
 ! S . We also consider a generalization of

Theorem 3.25 which holds uniformly over a class G of functions from L1(�) . Thus we adopt the

notation from these theorems and present the results in Theorem 3.27, Theorem 3.28 and Theorem

3.29 below, respectively. (For applications of Theorem 3.27 and Theorem 3.29 see Example 3.37

and Example 3.38 below.) This material is taken from [68].

Theorem 3.27

Let (
;F ; �; T ) be a dynamical system, let (S;A) be a measurable space, and let K = f� :

 ! S g be a family of measurable functions (factorizations) satisfying the condition:

(3.86) sup
�2K

�
�wn(�)

wn

�
= o(n�1)

for some sequence wn = o(n) . If F is a uniformly bounded class of functions on S satisfying
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the uniform weighted entropy condition:

(3.87) lim
n!1 sup

�2K

�
wn

E logNn(";F ; �)
n

�
= 0

for all " > 0 , then we have:

(3.88) sup
�2K

�
n

sup
f2F

��� 1
n

n�1X
i=0

f(� � T i) �
Z


f(�(!))�(d!)

��� > "
o
�! 0

(3.89) sup
�2K

E sup
f2F

��� 1
n

n�1X
i=0

f(� � T i) �
Z


f(�(!))�(d!)

��� �! 0

for all " > 0 , as n ! 1 .

Proof. The proof is essentially a modification of the proof of Theorem 3.19. First, given T ,

construct an associated coupled block sequence of random variables f �i gi�1 on a probability

space (�;G; �) with values in 
 and with the property:

L(�1; . . . ; ��nwn ) =
�nO
1

L(T 0; T 1; . . . ; Twn�1)

where �n = [n=2wn ] for n � 1 . Next, given � 2 K , write:

X�
i = � � T i�1 and Y �

i = � � �i .

for all i � 1 . Then we evidently have:

L(Y �
1 ; . . . ; Y

�
�nwn) =

�nO
1

L(X�
1 ; . . . ; X

�
wn)

for all n � 1 . Following the argument in the proof of Theorem 3.19, we obtain the decoupled

inequality as follows:

sup
�2K

�
n

sup
f2F

��� 1
n

nX
i=1

�
f(X�

i ) �
Z


f(X�

i (!)) �(d!)
� ��� > "

o
(3.90) � 2 sup

�2K
�
n

sup
f2F

��� 1
n

�nX
j=1

X
i2Bj

�
f(Y �

i )�
Z
�
f(Y �

i (�)) �(d�)
� ��� > "=4

o
+ o(1) + sup

�2K
(�n�1)�wn(�)

for all n � 1 . The last term in (3.90) is clearly o(1) by hypothesis (3.86). The first term

in (3.90) converges to zero as n ! 1 by the methods of the proof of Theorem 3.19, together

with the uniform entropy hypothesis (3.87), and the fact that the centering terms drop out when

we randomize. This completes the proof of (3.88).

Finally, (3.89) follows by the integration by parts formula EW =
R1
0 �fW > t g dt for

the expectation of the random variable W = supf2F
�� 1
n

Pn�1
i=0 f(� � T i) � R


 f(�(!)) �(d!)
�� ,

together with Lebesgue’s dominated convergence theorem. This completes the proof.
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Theorem 3.28

Let fTtgt�0 be a measurable measure-preserving semi-flow of the probability space (
;F ; �) ,

let (S;A) be a measurable space, and let K be a family of measurable functions (factorizations)
� : 
 ! S satisfying the condition:

sup
�2K

�
�wn(�)

wn

�
= o(n�1)

for some sequence wn = o(n) . If the uniformly bounded class F of functions on S satisfies

the weighted entropy condition:

lim
n!1 sup

�2K

�
wn

E logNn(";F ; �)
n

�
= 0

for all " > 0 , then we have:

sup
�2K

�
n
! 2 
 j sup

f2F

��� 1
Z

Z Z

0
f(� � Tt(!)) dt �

Z


f(�(!)) �(d!)

��� > "
o
�! 0

sup
�2K

Z



sup
f2F

��� 1
Z

Z Z

0
f(� � Tt(!)) dt �

Z


f(�(!)) �(d!)

��� �(d!) �! 0

as Z ! 1 .

Proof. This follows along the lines of Theorem 3.24 using the uniform approach of Theorem

3.27. We also make use of (3.74) and a uniformized version of (3.75) as follows:

sup
�2K

Z



sup
f2F

��� 1

N

Z N�1

0
f
�
� � Tt(!)

�
dt � 1

�

Z �

0
f
�
� � Tt(!)

�
dt

��� �(d!) �! 0

as N := [�] ! 1 . This completes the proof.

Finally, we consider a generalization of Theorem 3.25 which holds uniformly over a class G
of functions from L1(�) . Again, as the following proof shows, T can be a non-linear operator,

that is, an arbitrary map from L1(�) into L1(�) . The result is stated as follows.

Theorem 3.29

Let T be a linear operator in L1(�) , where (
;F ; �) is a probability space. Let G be a

family of functions from L1(�) satisfying the condition:

(3.91) sup
g2G

�wn(g) = o(n�1)

for some sequence wn = o(n) . If F is a uniformly bounded class of functions on R satisfying

the uniform weighted entropy condition:

(3.92) lim
n!1 sup

g2G

�
wn

E logNn(";F ; g)
n

�
= 0

for all " > 0 , then we have:
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(3.93) sup
g2G

�
n

sup
f2F

��� 1
n

n�1X
i=0

�
f(T i(g))�

Z


f(T i(g)(!))�(d!)

� ��� > "
o
�! 0

(3.94) sup
g2G

E sup
f2F

��� 1
n

n�1X
i=0

�
f(T i(g)) �

Z


f(T i(g)(!))�(d!)

� ��� �! 0

for all " > 0 , as n ! 1 .

Proof. This follows along the lines of the proof of Theorem 3.27. The lack of stationarity may

be overcome as in the proof of Theorem 3.25. This completes the proof.

3.10 Examples and complements

This section contains examples and complementary facts which are aimed to support and clarify

the results from the previous sections of this chapter.

3.10.1 Examples of VC classes of sets. In this section we present some typical examples

of VC classes of sets. The first example stated below is classical and goes back to [34] and [13].

The second one is found in [28]. The third one is a consequence of the second one, and is initially

due to Dudley (see [28]). The fourth one is from [73], and is due to Steele and Dudley. The last

fact in this section (Proposition 3.34) helps us to build new VC classes from the existing ones.

We begin by recalling some notation from Section 3.5. Let S be a set, and let C � 2S

be a family of subsets of S . For A � S finite, we denote A \ C = f A \ C j C 2 C g
and put �C(A) = card

�
A \ C� . We say that C shatters A , if �C(A) = 2 card (A) .

We put mC(n) = max
�
�C(A) j A � S , card (A) = n

	
for n � 1 , and denote

V (C) = inf
�
n � 1 j mC(n) < 2n

	
with inf (;) = +1 . The family C is called a VC

class of sets, if V (C) < +1 (see Corollary 3.16).

Example 3.30

Let S = Rn for n � 1 , and let C = f 1 ]�1 ;x ] j x 2 Rn g . Then C is a VC class of

sets with V (C) = 2. It follows by a straightforward verification.

Example 3.31

Let S = Rn for n � 1 , and let D � B(Rn) be a family of Borel sets satisfying the

following separation property:

(3.95) co (D1nD2) \ co (D2nD1) = ;
for all D1 , D2 2 D . Then D is a VC class of sets with V (D) � n+2 . ( We clarify that

co ( �) denotes the convex hull of a set.)

Indeed, we shall show that D does not shatter any A � Rn with card (A) = n+2 . Let

A be such a set. Then by Radon’s theorem (see [87]), there exist disjoint sets A1 and A2 in

Rn , such that A = A1 [ A2 and co (A1) \ co (A2) 6= ; . So, if D does shatter A , then

we can select D1 and D2 from D , such that A1 = A \ D1 and A2 = A \ D2 . Clearly

A1 �D1 nD2 and A2 � D2nD1 . Hence we get:

co (D1nD2) \ co (D2nD1) � co (A1) \ co (A2) 6= ; .
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This contradicts hypothesis (3.95), and the proof of the claim is complete.

Example 3.32

Let S = Rn for n � 1 , and let B be the family of all closed balls in Rn . Then B is

a VC class of sets with V (B) = n+2 . It follows from Example 3.31 together with the fact that

there exists A � Rn with card (A) = n+1 which is shattered by B .

Example 3.33

Let F be a finite dimensional vector space of real valued functions on the set S . Then

C = f ff � 0g j f 2F g is a VC class of sets with V (C) � 1 + dim (F ) .

Put d = dim (F ) , and let S0 = fs1; . . . ; sd+1g � S be the set consisting of d+1 arbitrary

points from S . We show that C does not shatter S0 . For this, define the linear operator

T : F ! Rd+1 by T (f) =
�
f(s1); f(s2); . . . ; f(sd+1)

�
for f 2 F . Then dim

�
T (F )

� � d ,

and thus there exists a non-zero � = (�1; . . . ; �d+1) 2 Rd+1 such that:

(3.96)


T (f); �

�
= 0

for all f 2 F . Let P = f si 2 S0 j �i � 0 g and N = f si 2 S0 j �i < 0 g . Replacing � by

�� if needed, we may and do assume that N 6= ; . Then from (3.96) we get:

(3.97)
P

si2P �if(si) =
P

si2N (��i)f(si)
where by definition the left-hand side reads zero if P is empty. Suppose now that C shatters

S0 . Then there exists f 2 F such that P = S0 \ ff � 0g . Inserting this fact into (3.97) we

obtain a contradiction. This completes the proof of the claim.

Proposition 3.34

Let S and T be sets, and let C , D � 2S and E � 2T be VC classes of sets. Then

Cc = fCc j C 2 C g , C [ D = fC [D j C 2 C , D 2 D g , C \ D = fC \D j C 2 C , D 2 D g
and C � E = f C�E j C 2 C , E 2 E g are VC classes of sets.

Proof. It follows straightforwardly by definition.

3.10.2 Weber’s counter-example. The example is from [67] and shows that the inequality

(3.26) may fail if the underlying sequence � = f �j j j � 1g is only known to be strongly mixing

(thus stationary and ergodic as well). It indicates that the Rademacher randomization, which appears

as a straightforward tool in the proof of the VC theorem (Theorem 3.11), is not applicable to the

strongly mixing case (thus not to the stationary and ergodic either). It is in accordance with our

results from Section 3.7 which are valid for absolutely regular (�-mixing) sequences, thus being

somewhere in between the i.i.d. case and the strongly mixing case. To describe more precisely this

border of applicability appears worthy of consideration.

Example 3.35 (Weber 1993)

We show that the inequality (3.26) may fail if the underlying sequence f �j j j�1 g is only

assumed to be stationary and ergodic. For this we shall consider a simple case where T consists of

a single point, and where f equals the identity map on the real line. The sequence f �j j j � 1g
itself is for a moment only assumed to be stationary and Gaussian. Thus our question reduces to

verify the following inequality:
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(3.98) E
��� 1
n

nX
j=1

�j

��� � C �E
��� 1
n

nX
j=1

"j ��j
���

for all n � 1 with some constant C > 0 , where f "j j j � 1 g is a Rademacher sequence

independent of f �j j j � 1 g . Let us first consider the right-hand side of this inequality. For this

denote by k � k	2
the Orlicz norm induced by the function 	2(x) = exp(x2)� 1 for x 2 R .

Then it is easily verified that we have kXk1 � 6=5 kXk	2
whenever X is a random variable.

Hence by Kahane-Khintchine’s inequality for k � k	2
(see [64]) and Jensen’s inequality we get:

(3.99) E
��� 1
n

nX
j=1

"j ��j
��� = E� E"

��� 1
n

nX
j=1

"j ��j
��� � 6

5
� 1
n
� E�

 nX
j=1

"j ��j

 2;"

� 6

5
�
r

8

3
� 1
n
� E�

� nX
j=1

j�jj2
�1=2

� 2 � 1
n

q
nEj�1j2 =

2p
n
�
q
Ej�1j2

for all n � 1 . On the other hand since n�1
Pn

j=1 �j is Gaussian, then:

(3.100)
�
E
��� 1
n

nX
j=1

�j

���2 �1=2 � D �E
��� 1
n

nX
j=1

�j

���
for some constant D > 0 and all n � 1 . Inserting (3.99) and (3.100) into (3.98) we obtain:

(3.101) E
��� nX
j=1

�j

���2 � G � n � Ej�1j2

for all n � 1 with G =
p
2CD . Thus it is enough to show that (3.101) may fail in general.

Since f �j j j � 1 g is stationary, then we have E(�i�j) = R(i�j) for all i; j � 1 . Moreover,

it is easily verified that the left-hand side in (3.101) may be written as follows:

(3.102) E
��� nX
j=1

�j

���2= nX
i=1

nX
j=1

E(�i�j) =
nX

i=1

nX
j=1

R(i�j) = nR(0) +
n�1X
k=1

2 (n�k)R(k)

for all n � 1 . Let us in addition consider a particular case by putting R(k) = 1=(k+1) for all

k � 0 . Then R is a convex function satisfying R(0) = 1 and limn!1R(n) = 0 , and therefore

by Polya’s theorem (combine [11] p.241 with [56] p.70-71 & p.83) it is the covariance function of

a centered stationary Gaussian sequence f �j j j � 1g . Moreover, since limn!1R(n) = 0 then

by Maruyama’s theorem [57] (see [14] p.369) this sequence is strongly mixing, and thus ergodic

as well. Finally, from (3.102) we easily obtain:

E
��� nX
j=1

�j

���2= n + 2
n�1X
k=1

n�k
k+1

= 2 (n+1)
n�1X
k=1

1

k+1
� n + 2

� 2 (n+1)

Z n

1

1

x+ 1
dx � n + 2

= 2 (n+1) log (n+1) � (1 + log 4) (n+1) + 3 � n logn

for all n � 1 . This inequality contradicts (3.101), and therefore (3.98) is false in this case as well.
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3.10.3 Talagrand’s condition and Nobel’s counter-example. In this section we first

present Talagrand’s necessary and sufficient condition for the uniform law of large numbers [84]

(see also [85]), and then a counter-example due to Nobel [61] which shows that both the VC theorem

(Theorem 3.11) and Talagrand’s theorem may simultaneously fail in the stationary ergodic case.

1. Throughout we consider a sequence of independent and identically distributed random

variables � = f �j j j � 1 g defined on the probability space (
;F ; P ) with values in the

measurable space (S;A) and a common distribution law � . We suppose that a family C � 2S

is given, and we consider the uniform law of large numbers over C as follows:

(3.103) sup
C2C

���� 1n
nX

j=1

1f�j2C g�Pf�1 2Cg
���� �! 0 P -a.s.

as n ! 1 . Recall that �C(A) = card (A \ C) with A \ C = fA \ C j C 2 C g whenever

A � S is finite, and C is said to shatter A , if �C(A) = 2 card (A) . Moreover, if A is arbitrary

(infinite) subset of S , then C is said to shatter A , if it shatters each finite subset of A .

Theorem A (Talagrand 1987) The uniform law of large numbers (3.103) fails to hold, if and

only if the condition is satisfied:

(3.104) There exists A 2 A with �(A) > 0 for which the trace of � to A is non-atomic,

such that C shatters the set f �nk j k � 1g consisting of those �j’s that lie in A , for

P -almost every realization of the sequence � = f �j j j � 1 g .

Another observation of interest in this section is that in the notation of Sections 3.4-3.5 we

have the following identity:

(3.105) �C
�f�1; . . . ; �ng� = Nn(";FC)

for all n � 1 and all 0 < " < 1=2 , where FC = f 1C j C 2 C g . Thus, in the present case,

the VC theorem (Theorem 3.11) may be reformulated as follows.

Theorem B (Vapnik and Chervonenkis 1971/81) The uniform law of large numbers (3. 103)

holds, if and only if the condition is satisfied:

(3.106) lim
n!1

E
�
log�C

�f�1; . . . ; �ng��
n

= 0 .

2. In the construction of Nobel’s example below we make use of the Kakutani-Rokhlin lemma

which is described as follows (see [36]). We consider a dynamical system (X;B; �; T ) where

(X;B; �) is supposed to be a Lebesgue space ( meaning that it is isomorphic (mod 0) to the

ordinary Lebesgue space ([0; 1];L([0; 1]); �) , which in turn means that there exist sets of measure

zero Z1 � X and Z2 � [0; 1] , and a measurable bijection  : X n Z1 ! [0; 1] n Z2 , such

that the inverse  �1 is measurable, and � = � ), and T is supposed to be an aperiodic

(measure-preserving) transformation (which means that �f x 2 X j Tn(x) = x g = 0 for all

n � 1 ). It should be noted that every one-to-one ergodic (measure-preserving) transformation T
of the Lebesgue space X is aperiodic. (This fact is, however, not true in general.)

(3.107) (Kakutani-Rokhlin lemma) If T is an aperiodic (measure-preserving) transformation

of the Lebesgue space (X;B; �) , then for every " > 0 and every n � 1 there exists
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a set A 2 B such that the sets A , T�1(A) ; . . . ; T�(n�1)(A) are disjoint, and such

that we have:

�
�
A [ T�1(A) [ . . . [ T�(n�1)(A)

�
> 1�" .

In this context, it is instructive to explore the dynamics of the trajectory T i(x) for x 2 T�j(A)
with i � 1 and 0 � j � n�1 .

Example 3.36 (Nobel 1992)

The example shows that there exists a stationary ergodic sequence � = f �j j j � 1 g and a

family of sets C for which the uniform law of large numbers (3.103) fails to hold, even though

(3.104) fails as well, while (3.106) is fulfilled. The construction may be presented as follows.

Take any dynamical system (X;B; �; T ) where (X;B; �) is a Lebesgue space ( isomorphic

(mod 0) to [0; 1] ), and where T is an one-to-one ergodic (measure-preserving) transformation of

X . Then T is aperiodic, and thus the Kakutani-Rokhlin lemma (3.107) may be applied. In this

way we obtain a sequence of sets f Ap j p � 1 g in X satisfying:

(3.108) Ap , T�1(Ap) ; . . . ; T
�(p�1)(Ap) are disjoint

(3.109) �
�
Ap [ T�1(Ap) [ . . . [ T�(p�1)(Ap)

�
> 1�1=p

for all p � 1 . We define Cp =
S[p=2]�1

i=0 T�i(Ap) for all p � 2 , and in this way we obtain the

family C = fCp j p � 2 g . The sequence � = f �j j j � 1 g is defined in the usual way:

�j(x) = T j�1(x)

for x 2 X and j � 1 . Then � = f �j j j � 1 g is stationary and ergodic with values in

X and the common law � .

We first verify that (3.106) is fulfilled. For this, we establish the estimate:

(3.110) �C
�f x ; T (x) ; . . . ; T n�1(x) g� � 4n�2

for all x 2 X and all n � 1 . To do so, we recall (3.105) and consider the set:

Fn =
n�

1C(x) ; 1C(T (x)) ; . . . ; 1C(T
n�1(x))

� j C 2 C
o

with n � 1 given and fixed. Hence �C
�fx ; T (x) ; . . . ; T n�1(x)g� = card (Fn) . Therefore we

explore card (Fn) . First, look at those Cp’s for which p � 2n . Then the number of vectors:�
1Cp(x) ; 1Cp

(T (x)) ; . . . ; 1Cp
(T n�1(x))

�
clearly does not exceed 2n when p runs through the set f 2n ; 2n+1 ; . . . g . Adding 2n�2
remaining Cp’s for 2 � p < 2n , we obtain the estimate card (Fn) � 2n+(2n�2) . These facts

complete the proof of (3.110). From (3.110) we obtain (3.106), and the first claim is complete.

Next, we show that (3.103) fails to hold. For this, fix n � 1 and consider the set A4n . Then
1
n

Pn�1
j=0 1C4n

(T j(x)) = 1 for all x 2 Bn :=
Sn�1
j=0 T

�(j+n)(A4n) . Moreover, by construction we

have �(C4n) � 1=2 . These two facts show that:

sup
C2C

���� 1n
n�1X
j=0

1C(T
j(x))��(C)

���� � 1

2
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for all x 2 Bn . From (3.108)-(3.109) we find 4n �(A4n) � 1�1=4n , and thus we get:

�(Bn) = n �(A4n) � 1

4

�
1� 1

4n

�
� 3

16
.

This shows that we do not have convergence in probability in (3.103), and the proof of the second

claim is complete.

Finally, we show that (3.104) fails as well. For this, first note that in the notation of

Theorem A above we have (S;A; �) = (X;B; �) . Now, suppose that there exists A 2 B
such that C shatters those points of the set f T j�1(x) j j � 1 g that lie in A . Let

Bn = f x 2 X j 1
n

Pn�1
j=0 1A(T

j(x)) � �(A)=2 g for n � 1 . Then by Birkhoff’s Ergodic

Theorem 1.6 we have �(Bn) ! 1 as n !1 . Moreover, by the assumption we get:

�C
�f x ; T (x) ; . . . ; T n�1(x) g� � 2

Pn�1
j=0

1A(T
j(x)) � 2n�(A)=2

for all x 2 Bn with n � 1 . Hence we obtain:

�
n
x 2 X j �C

�f x ; T (x) ; . . . ; T n�1(x) g� > 4n�2
o
> 0

for n � 1 large enough. This contradicts (3.110) and completes the proof of the last claim.

3.10.4 Uniform convergence of moving averages. The section consists of two

examples. In the first one (Example 3.37) we show how Theorem 3.27 applies to moving averages.

In the second one (Example 3.38) we show how Theorem 3.29 applies to moving averages.

Example 3.37

Let (
;F ; �; T ) be (RN;B(R)N; �; �) where � denotes the unilateral shift transformation.

Let Xi : R
N! R denote the projection onto the i-th coordinate for all i � 1 . Then fXi gi�1

is a stationary sequence of random variables with distribution law � in (RN;B(R)N) . Let K
be the family f �m gm�1 where �m(s1; s2; . . . ) = s1 + . . . + sm for m � 1 . Suppose that F
is a uniformly bounded family of functions from R into R satisfying the condition:

lim
n!1 sup

m�1
wn

E logNn(";F ; �m)
n

= 0

for all " > 0 , where the sequence wn = o(n) satisfies the uniform mixing rate (3.86). Then

it follows from (3.89) that we have:

sup
m�1

E sup
f2F

��� 1
n

n�1X
i=0

f(Xi+1 + . . . +Xi+m)�
Z


f(X1 + . . . +Xm) d�

��� �! 0

as n!1 . For example, we may take F to be the family of indicators of sets in any VC class.

Example 3.38

Let (
;F ; �) be (RN;B(R)N; �) , and let � denote the unilateral shift transformation

of RN . It should be noted that � is not supposed to be stationary with respect to � . Let

T be the composition operator with � in L1(�) . Let G be the family f �m gm�1 , where

�m : RN ! R denotes the projection onto the m-th coordinate. Put Xm(!) = T (�m)(!) for all

! 2 
 , and all m � 1 . Then fXm gm�1 is a sequence of random variables with distribution

law � in (RN;B(R)N) . Suppose that F is a uniformly bounded family of functions from

111



R into R satisfying the condition:

lim
n!1 sup

m�1
wn

E logNn(";F ; �m)

n
= 0

for all " > 0 , where the sequence wn = o(n) satisfies the uniform mixing rate (3.91). Then

it follows from (3.94) that we have:

sup
m�1

E sup
f2F

��� 1
n

n�1X
i=0

f(Xi+m) �
Z


f(Xi+m) d�

��� �! 0

as n ! 1 .

3.10.5 Metric entropy and majorizing measure type conditions. In Section 2.5.6

we have seen that metric entropy and majorizing measure type conditions (Theorems A and B in

Section 2.5.6) could not be successfully applied for obtaining the uniform law of large numbers in

the context of the Blum-DeHardt approach. In this section we indicate how these conditions do

apply in the context of the VC approach (see [32] and [74]).

1. Throughout we consider a sequence of independent and identically distributed random

variables � = f �j j j � 1 g defined on the probability space (
;F ; P ) with values in the

measurable space (S;A) and a common distribution law � . We suppose that a set T and a

map f : S � T ! R are given, such that s 7! f(s; t) is �-measurable for all t 2 T , and put

F = f f( � ; t) j t 2 T g . We moreover assume that jf(s; t)j � 1 for all (s; t) 2 S � T , and put

M(t) =
R
S f(s; t) �(ds) for t 2 T . The random entropy number Nn(";F) associated with �

through F is defined to be the smallest number of open balls of radius " > 0 in the sup-metric

of Rn needed to cover the random set Fn = f �f(�1; t); . . . ; f(�n; t)� j t 2 T g with n � 1 .

We are interested in obtaining the uniform law of large numbers as follows:

(3.111) sup
t2T

���� 1n
nX

j=1

f(�j; t) �M(t)

���� �! 0 P -a.s.

as n!1 . According to Corollary 2.8 and Theorem 3.8, for (3.111) it is enough to show:

(3.112) E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j ; t)
���� � �! 0

as n!1 , where " = f "j j j � 1g is a Rademacher sequence defined on the probability space

(
";F"; P") and understood to be independent from � = f �j j j � 1 g .

2. In order to bound the left-hand side in (3.112), without loss of generality, we may and

do assume that 0 2 F . ( Otherwise, we could fix an element f0 2 F and work with F0 =
ff�f0 j f 2 F g , noting that Nn(";F) = Nn(";F0) for n � 1 and " > 0 .) Therefore we have:

(3.113) E

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j; t)
���� � � E

�
sup

t0;t002T

���� 1n
nX

j=1

"j �
�
f(�j; t

0)�f(�j; t00)
� ���� �

for all n � 1 . In order to bound the right-side in (3.113), we shall use Theorem A from Section

2.5.6. For this, we define the process ( in t 2 T ) on 
" by:

Xn
t =

1

n

nX
j=1

"j �f(�j(!); t)
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for any given and fixed ! 2 
 and n � 1 . Let us take  (x) = exp(x2)�1 for the Young

function. Then by the Kahane-Khintchine inequality in the Orlicz space L (P ) (see [64]) we get:

(3.114) kXn
s �Xn

t k �
r

8

3
� 1
n
�
� nX
j=1

��f(�j ; s)�f(�j; t)��2�1=2
�
r

8

3
� 1p

n
� max
1�j�n

jf(�j; s)�f(�j ; t)
�� :=r8

3
� 1p

n
� dn1(s; t)

for all s; t 2 T and all n � 1 . Thus, the condition (2.171) is fulfilled with the process

Xt =
p
3n=8Xn

t (!) ( for t 2 T ) and pseudo-metric d = dn1(!) , with ! 2 
 and n � 1 given

and fixed. Hence by (2.172), and the fact that log (1+x) � (log 3= log 2) log x for x � 2 , we get:

E"

�
sup
t2T

���� 1n
nX

j=1

"j �f(�j ; t)
���� � � 8

s
8 log 3

3 log 2

Z 2

0

s
log
�
Nn(";F)

�
n

d"

for all n � 1 . Taking the P -integral and using (3.26), we obtain the inequality:

(3.115) E

�
sup
t2T

���� 1n
nX

j=1

f(�j; t) �M(t)

���� � � C

Z 2

0
E

 s
log
�
Nn(";F)

�
n

!
d"

for all n � 1 with C = 16 (8 log 3=3 log 2)1=2 . From (3.115) we see that (3.111) is valid as

soon as we have:

(3.116) lim
n!1

Z 2

0
E

 s
log
�
Nn(";F)

�
n

!
d" = 0 .

3. It is easily verified that the same method (where one uses Theorem B from Section 2.5.6

instead of Theorem A) shows that (3.111) is valid as soon as we have:

(3.117) lim
n!1

1p
n
E

 
inf

m2Pr (T;d n1)
sup
t2T

Z 2

0

s
log

�
1 +

1

m(Bd n1(t; "))

�
d"

!
= 0 .

Here Pr(T; dn1) denotes the family of all probability measures on the Borel �-algebra of the

pseudo-metric space (T; dn1) , and Bd n1(t; ") denotes the ball of radius " > 0 in the pseudo-metric

dn1 with the center at t 2 T . The random pseudo-metric dn1 is given by:

dn1(s; t) = max
1�j�n

jf(�j ; s)�f(�j ; t)
��

for s; t 2 T and n � 1 .

4. Clearly, the conditions (3.116) and (3.117) extend under condition (3.43) to cover the

unbounded case as well (see Remark 3.13). We will not pursue this in more detail here. Instead,

we would like to point out that the pseudo-metric:

dn2 (s; t) =

�
1

n

nX
j=1

��f(�j; s)�f(�j; t)
��2�1=2

with s; t 2 T , which naturally appears in (3.114) above, could also be used towards (3.116) and

(3.117) instead of the pseudo-metric dn1 . In this context one may also like to recall Remark 3.12.
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4. The Spectral Representation Theorem Approach
The purpose of the present chapter is to present a uniform law of large numbers in the wide

sense stationary case which is not accessible by the previous two methods from Chapter 2 and

Chapter 3. The approach relies upon the spectral representation theorem and offers conditions in

terms of the orthogonal stochastic measures which are associated with the underlying dynamical

system by means of this theorem. The case of bounded variation is covered (Theorem 4.3 and

Theorem 4.7), while the case of unbounded variation is left as an open question.

4.1 The problem of uniform convergence in the wide sense stationary case

Let
� f�n(t)gn2Z j t 2 T

�
be a family of (wide sense) stationary sequences of complex

random variables defined on the probability space (
;F ; P ) and indexed by the set T . Then

the mean-square ergodic theorem is known to be valid (see [77] p.410):

(4.1)
1

n

n�1X
k=0

�k(t) ! Lt in L2(P )

as n ! 1 , for all t 2 T . The present chapter is motivated by the following question: When

does the convergence in (4.1) hold uniformly over t 2 T ? In other words, when do we have:

(4.2) sup
t2T

��� 1
n

n�1X
k=0

�k(t) � Lt

��� ! 0 in L2(P )

as n!1 ? The main purpose of this chapter is to present a solution to this problem, as well as

to motivate further research in this direction (see Section 1.3). This material is taken from [69].

The main novelty of the approach towards the uniform ergodic theorem (4.2) taken in the

present chapter (compare it with Chapter 2 and Chapter 3) relies upon the spectral representation

theorem which is valid for (wide sense) stationary sequences under consideration. It makes possible

to investigate the uniform ergodic theorem (4.2) in terms of the orthogonal stochastic measure which

is associated with the underlying sequence by means of this theorem, or equivalently, in terms of

the random process with orthogonal increments which corresponds to the measure.

The main result of the chapter (Theorem 4.3) states that the uniform mean-square ergodic

theorem (4.2) holds as soon as the random process with orthogonal increments which is associated

with the underlying sequence by means of the spectral representation theorem is of bounded variation

and uniformly continuous at zero in a mean-square sense. The converse statement is also shown to

be valid whenever the process is sufficiently rich. It should be mentioned that the approach of the

present chapter makes no attempt to treat the case where the orthogonal stochastic measure (process

with orthogonal increments) is of unbounded variation. We leave this interesting question open.

In the second part of the chapter (Section 4.3) we investigate the same problem in the continuous

parameter case. Let
� fXs(t)gs2R j t 2 T

�
be a family of (wide sense) stationary processes of

complex random variables defined on the probability space (
;F ; P ) and indexed by the set T .

Then the mean-square ergodic theorem is known to be valid (see [76] p.25):

(4.3)
1

�

Z �

0
Xs(t) ds ! Lt in L2(P )

as � ! 1 , for all t 2 T . The question under investigation is as above: When does the
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convergence in (4.3) hold uniformly over t 2 T ? In other words, when do we have:

(4.4) sup
t2T

��� 1
�

Z �

0
Xs(t) ds � Lt

��� ! 0 in L2(P )

as � !1 ? The main result in this context is shown to be of the same nature as the main result

for sequences stated above. The same holds for the remarks following it. We will not state either

of this more precisely here, but instead pass to the results in a straightforward way.

4.2 The uniform mean-square ergodic theorem (the discrete parameter case)

The aim of this section is to present a uniform mean-square ergodic theorem in the discrete

parameter case. Throughout we consider a family of (wide sense) stationary sequences of complex

random variables
�f�n(t)gn2Z j t 2 T

�
defined on the probability space (
;F ; P ) and indexed

by the set T . Thus, we have:

(4.5) E
���n(t)��2 < 1

(4.6) E
�
�n(t)

�
= E

�
�0(t)

�
(4.7) Cov

�
�m+n(t); �m(t)

�
= Cov

�
�n(t); �0(t)

�
for all n;m 2 Z , and all t 2 T . For proofs of the well-known classical results and facts

which will be soon reviewed below, as well as for more information on the (wide sense) stationary

property, we refer to the standard references on the subject [4], [27], [76], [77].

As a matter of convenience, we will henceforth suppose:

(4.8) E
�
�n(t)

�
= 0

for all n 2 Z , and all t 2 T . Thus the covariance function of f�n(t)gn2Z is given by:

(4.9) Rt(n) = E
�
�n(t)�0(t)

�
whenever n 2 Z and t 2 T .

By the Herglotz theorem there exists a finite measure �t = �t(�) on B(<��; � ]) such that:

(4.10) Rt(n) =

Z �

��
ein� �t(d�)

for n 2 Z and t 2 T . The measure �t is called the spectral measure of f�n(t)gn2Z for t 2 T .

The spectral representation theorem states that there exists an orthogonal stochastic measure

Zt = Zt(!;�) on 
 � B(<��; � ]) such that:

(4.11) �n(t) =

Z �

��
ein� Zt(d�)

for n 2 Z and t 2 T . The fundamental identity in this context is:

(4.12) E
��� Z �

��
'(�) Zt(d�)

���2 =

Z �

��

��'(�)��2 �t(d�)
whenever the function ' : <��; � ]! C belongs to L2(�t) for t 2 T . We also have:
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(4.13) Zt(��) = Zt(�)

for all � 2 B(<��; �>) , and all t 2 T .

The random process defined by:

(4.14) Zt(�) = Zt(<��; �])
for � 2<��; � ] is with orthogonal increments for every t 2 T . Thus, we have:

(4.15) E
��Zt(�)

��2 < 1 , for all � 2 <��; � ]

(4.16) E
��Zt(�n)�Zt(�)

��2 ! 0 , whenever �n # � for � 2 <��; � ]
(4.17) E

��
Zt(�4)�Zt(�3)

��
Zt(�2)�Zt(�1)

��
= 0

whenever �� < �1 < �2 < �3 < �4 � � , for all t 2 T . We will henceforth put Zt(��) = 0
for all t 2 T . Moreover, we will assume below that the process fZt(�)g������ is of bounded

variation and right continuous (outside of a P -nullset) for all t 2 T . In this case the integral:

(4.18)

Z �

��
'(�) Zt(d�)

may be well defined pointwise on 
 as the usual Riemann-Stieltjes integral for all t 2 T . If

 : <�1; �2 ] ! C is of bounded variation and right continuous for some �� � �1 < �2 � � ,

then the integration by parts formula states:

(4.19)

Z �2

�1

 (��) Zt(d�) +

Z �2

�1

Zt(�)  (d�) =  (�2)Zt(�2)�  (�1)Zt(�1)

for all t 2 T . Moreover, if we denote by V(�; <�1; �2 ]) the total variation of the function

� : <�1; �2 ] ! C , then we have:

(4.20)

���� Z �2

�1

 (�) Zt(d�)

���� � sup
�1<���2

�� (�)�� � V(Zt; <�1; �2 ])
(4.21)

���� Z �2

�1

Zt(�)  (d�)

���� � sup
�1<���2

��Zt(�)�� � V( ;<�1; �2 ])
for all t 2 T .

The mean-square ergodic theorem for f�n(t)gn2Z states:

(4.22)
1

n

n�1X
k=0

�k(t) ! Zt(f0g) in L2(P )

as n!1 , for all t 2 T . If moreover the process fZt(�)g������ is of bounded variation and

right continuous for all t 2 T , then the convergence in (4.22) is P -a.s. as well. We also have:

(4.23)
1

n

n�1X
k=0

Rt(k) ! �t(f0g)

as n ! 1 , for all t 2 T . Finally, it is easily seen that:
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(4.24) Zt(f0g) = 0 , �t(f0g) = 0

whenever t 2 T .

The main purpose of the present section is to investigate when the uniform mean-square ergodic

theorem is valid:

(4.25) sup
t2T

��� 1
n

n�1X
k=0

�k(t) � Zt(f0g)
��� ! 0 in L2(P )

as n ! 1 . We think that this problem appears worthy of consideration, and moreover to the

best of our knowledge it has not been studied previously.

The main novelty of the approach towards uniform ergodic theorem taken here relies upon the

spectral representation (4.11) which makes possible to investigate (4.25) in terms of the orthogonal

stochastic measure Zt(!;�) defined on 
�B(<��; � ]) , or equivalently, in terms of the random

process fZt(�)g������ with orthogonal increments which corresponds to the measure by means

of (4.14), where t ranges over T . In the sequel we find it convenient to restrict ourselves to the

case where the process fZt(�)g������ is of bounded variation and right continuous for t 2 T .

It is an open interesting question if the results which are obtained below under these hypotheses

extend in some form to the general case.

One may observe that certain measurability problems related to (4.25) could appear (when the

supremum is taken over an uncountable set). It is due to our general hypothesis on the set T .

Despite this drawback we will implicitly assume measurability wherever needed. We emphasize

that this simplification is not essential, and can be supported in quite a general setting by using

theory of analytic spaces as explained in Paragraph 5 of Introduction. The following definition

shows useful in the main theorem below.

Definition 4.1

Let f�n(t)gn2Z be a (wide sense) stationary sequence of complex random variables for which

the spectral representation (4.11) is valid with the process f Zt(�) g������ being of bounded

variation and right continuous for t 2 T . Then the family
� f�n(t)gn2Z j t 2 T

�
is said

to be variationally rich, if for any given �� � �1 < �2 < �3 � � and t0; t00 2 T one can

find t� 2 T satisfying:

(4.26) V(Zt0 ; <�1; �2]) +V(Zt00; <�2; �3]) � V(Zt� ; <�1; �3]) .

It should be noted that every one point family is variationally rich. A typical non-trivial example

of variationally rich family is presented in Example 4.9 below. Variationally rich families satisfy

the following important property.

Lemma 4.2

Let
� f�n(t)gn2Z j t 2 T

�
be variationally rich, and suppose that:

(4.27) E
�
sup
t2T
V2

�
Zt; <��; �]

��
< 1 .

If In =<�n; �n] are disjoint intervals in <��; �] with �n = �n+1 for n � 1 , then we have:
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(2.28) sup
t2T
V(Zt; In) ! 0 in L2(P )

as n ! 1 .

Proof. Given " > 0 , choose tn 2 T such that:

sup
t2T
V(Zt; In) � "

2n
� V(Ztn ; In)

for n � 1 . Given tn , tn+1 2 T , by (4.26) one can select t� 2 T such that:

V(Ztn; In) +V(Ztn+1 ; In+1) � V(Zt�; In [ In+1) � sup
t2T
V(Zt; <��; �]) .

Applying the same argument to t� and tn+2 , and then continuing by induction, we obtain:
1X
n=1

sup
t2T
V(Zt; In) � " � sup

t2T
V(Zt; <��; �]) .

Letting " # 0 , we get:

1X
n=1

sup
t2T
V2(Zt; In) �

� 1X
n=1

sup
t2T
V(Zt; In)

�2
� sup

t2T
V2(Zt; <��; �]) .

Taking expectation and using condition (4.27), we obtain (4.28). This completes the proof.

We may now state the main result of this section.

Theorem 4.3

Let f�n(t)gn2Z be a (wide sense) stationary sequence of complex random variables for which

the spectral representation (4.11) is valid with the process f Zt(�) g������ being of bounded

variation and right continuous for t 2 T . Suppose that the following condition is satisfied:

(4.29) E
�
sup
t2T
V2
�
Zt; <��; �]

��
< 1 .

Then the uniform mean-square ergodic theorem is valid:

(4.30) sup
t2T

��� 1
n

n�1X
k=0

�k(t) � Zt(f0g)
��� ! 0 in L2(P )

as n ! 1 , as soon as either of the following two conditions is fulfilled:

(4.31) There exists 0 < � < 1 such that:

sup
� 1
n�

<�� 1
n�

E
�
sup
t2T

��Zt(�)�Zt(0)��2� = o
�
n��1

�
as n ! 1 .

(4.32) There exist 0 < � < 1 < � such that:

(i) sup
t2T

��Zt(�)�Zt(0)�� ! 0 in P -probability

118



(ii) sup
t2T
V
�
Zt;



n��; n��

�� ! 0 in P -probability

as � ! 0 and n ! 1 .

Moreover, if
� f�n(t)gn2Z j t 2 T

�
is variationally rich, then the uniform mean-square ergodic

theorem (4.30) holds if and only if we have:

(4.33) sup
t2T

��Zt(�)�Zt(0) + Zt(0�)�Zt(��)
�� ! 0 in P -probability

as � ! 0 . In particular, if
� f�n(t)gn2Z j t 2 T

�
is variationally rich, then the uniform

mean-square ergodic theorem (4.30) holds whenever the process f Zt(�) g������ is uniformly

continuous at zero:

(4.34) sup
t2T

��Zt(�)�Zt(0)
�� ! 0 in P -probability

as � ! 0 .

Proof. Let t 2 T and n � 1 be given and fixed. Then by (4.11) we have:

1

n

n�1X
k=0

�k(t) =
1

n

n�1X
k=0

Z �

��

eik� Zt(d�) =

Z �

��

'n(�) Zt(d�)

where 'n(�) = (1=n)(ein��1)=(ei��1) for � 6= 0 and 'n(0) = 1 . Hence we get:

(4.35)
1

n

n�1X
k=0

�k(t) � Zt

�f0g� = Z �

��

�
'n(�)�1f0g(�)

�
Zt(d�) =

Z �

��

 n(�) Zt(d�)

=

Z ��n

��
 n(�) Zt(d�) +

Z �n

��n
 n(�) Zt(d�) +

Z �

�n

 n(�) Zt(d�)

for any 0 < �n < � , where  n(�) = '(�) for � 6= 0 and  n(0) = 0 .

We begin by showing that (4.31) is sufficient for (4.30). The proof of this fact is carried out

into two steps as follows. (The first step will be of use later on as well.)

Step 1. We choose �n # 0 in (4.35) such that:

(4.36) sup
t2T

��� Z ��n

��
 n(�) Zt(d�)

��� ! 0 in L2(P )

(4.37) sup
t2T

��� Z �

�n

 n(�) Zt(d�)
��� ! 0 in L2(P )

as n ! 1 .

First consider (4.36), and note that by (4.20) we get:

(4.38)
��� Z ��n

��
 n(�) Zt(d�)

��� � sup
��<����n

�� n(�)�� � V�
Zt; <��;��n ]

�
� 2

n

1�� e�i�n�1
�� � V�

Zt; <��; � ]
�

.
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Put �n = n�� for some � > 0 , and denote An = (1=n)(1=je�i�n�1j) . Then we have:

(4.39) A2
n =

1

n2
1�� e�i�n�1 ��2 =

1

n2
1

2
�
1�cos (n��)� ! 0

as n ! 1 , if and only if � < 1 . Hence by (4.38) and (4.29) we see that (4.36) holds with

�n = n�� for any 0 < � < 1 .

Next consider (4.37), and note that by (4.20) we get:

(4.40)
��� Z �

�n

 n(�) Zt(d�)
��� � 2An � V

�
Zt; <��; � ]

�
where An is clearly as above. Thus by the same argument we see that (4.37) holds with �n = n��
for any 0 < � < 1 . (In the sequel �n is always understood in this sense.)

Step 2. Here we consider the remaining term in (4.35). First notice that from the integration

by parts formula (4.19) we obtain the estimate:��� Z �n

��n
 n(�) Zt(d�)

��� � �� n(�n)�� � ��Zt(�n)�� +
�� n(��n)�� � ��Zt(��n)��

+
��� Z �n

��n

�
Zt(�)�Zt(0)

�
 n(d�)

��� + ��Zt(0)�� � �� n(�n)� n(��n)�� .

Hence by Jensen’s inequality we get:

sup
t2T

��� Z �n

��n
 n(�) Zt(d�)

���2 � 4

��� n(�n)��2 � sup
t2T

��Zt(�n)��2 +
�� n(��n)��2 � sup

t2T

��Zt(��n)��2
+ V

�
 n; <��n; �n]

� � Z �n

��n
sup
t2T

��Zt(�)�Zt(0)��2 V( n; d�)
+ sup

t2T

��Zt(0)��2 � �� n(�n)� n(��n)��2 � .

Taking expectation and using Fubini’s theorem we obtain:

(4.41) E

�
sup
t2T

��� Z �n

��n
 n(�) Zt(d�)

���2� � 4

��� n(�n)��2 �E� sup
t2T

��Zt(�n)��2�+ �� n(��n)��2 �E� sup
t2T

��Zt(��n)��2�
+ sup
��n<���n

E
�
sup
t2T

��Zt(�)�Zt(0)��2� � V2
�
 n; <��n; �n]

�
+ E

�
sup
t2T

��Zt(0)��2� � �� n(�n)� n(��n)��2 � .

Now note that for any �� < � � � we have:

jZt(�)j � jZt(�)�Zt(�t)j + jZt(�t)j � V(Zt; <��; � ]) + "

where �t is chosen to be close enough to �� to satisfy jZt(�t)j � " by right continuity.

Passing to the supremum and using (4.29) hence we get:

(4.42) E
�
sup
t2T

sup
��<���

��Zt(�)��2� < 1 .
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By (4.39) we have  n(�n)! 0 and  n(��n)! 0 , and thus by (4.42) we see that:

(4.43)
�� n(�n)��2 � E�

sup
t2T

��Zt(�n)��2� +
�� n(��n)��2 � E�

sup
t2T

��Zt(��n)��2�
+ E

�
sup
t2T

��Zt(0)��2� � �� n(�n)� n(��n)��2 ! 0

as n!1 . From (4.41) we see that it remains to estimate the total variation of  n on <��n; �n] .

For this put Fk(�) = eik� for 0 � k � n � 1 , and notice that we have:

(4.44) V
�
 n; <��n; �n ]

� � 1 + V
�
'n; <��n; �n ]

� � 1 +

Z �n

��n
j'n0(�)j d�

By the Cauchy-Schwarz inequality and orthogonality of Fk’s on <��; �] , we obtain from (4.44)

the following estimate:

(4.45) V
�
 n; <��n; �n ]

� � 1 +
p
2�n

1

n

�Z �

��

��� n�1X
k=0

ikFk(�)
���2d� �1=2

= 1 +
p
2�n

1

n

� n�1X
k=1

k2
�1=2

� 1 +
p
2�n

1

n
n3=2 � Cn(1��)=2

with some constant C > 0 . Combining (4.35), (4.36), (4.37), (4.41), (4.43) and (4.45) we complete

the proof of sufficiency of (4.31) for (4.30). This fact finishes Step 2.

We proceed by showing that (4.32) is sufficient for (4.30). For this Step 1 can stay unchanged,

and Step 2 is modified as follows.

Step 3. First split up the integral:

(4.46)
Z �n

��n
 n(�) Zt(d�) =

Z ��n

��n
 n(�) Zt(d�) +

Z �n

��n
 n(�) Zt(d�) +

Z �n

�n

 n(�) Zt(d�)

for any 0 < �n < �n . Put �n = n�� for some � > 1 . (In the sequel �n is always understood

in this sense.) Then from (4.13) and (4.20) we get by right continuity:

(4.47)
��� Z ��n

��n
 n(�) Zt(d�)

��� � V
�
Zt; <��n;��n ]

�
= V

�
Zt; [��n;��n ]

�
= V

�
Zt; [�n; �n ]

�
= V

�
Zt; <�n; �n ]

�
.

Similarly, by (4.20) we get:

(4.48)
��� Z �n

�n

 n(�) Zt(d�)
��� � V

�
Zt; <�n; �n ]

�
.

From (4.29), (4.47), (4.48) and (ii) in (4.32) it follows by uniform integrability that:

(4.49) sup
t2T

��� Z ��n

��n
 n(�) Zt(d�)

��� ! 0 in L2(P )

(4.50) sup
t2T

��� Z �n

�n

 n(�) Zt(d�)
��� ! 0 in L2(P )

as n!1 . Now by (4.35), (4.36), (4.37), (4.49) and (4.50) we see that it is enough to show:
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(4.51) sup
t2T

��� Z �n

��n
 n(�) Zt(d�)

��� ! 0 in L2(P )

as n ! 1 . For this recall  n(0) = 0 . Thus from the integration by parts formula (4.19)

combined with (4.21) we get:

(4.52)
��� Z �n

��n
 n(�) Zt(d�)

��� � ��� Z 0�

��n
 n(�) Zt(d�)

��� + ��� Z �n

0

 n(�) Zt(d�)
���

� �� n(0�)Zt(0�) �  n(��n)Zt(��n)
�� + ��� Z 0�

��n
Zt(�)  n(d�)

���
+
�� n(�n)Zt(�n)�  n(0+)Zt(0)

��+ ��� Z �n

0

Zt(�)  n(d�)
��� � ��Zt(0�)�  n(��n)Zt(��n)

��
+ sup
��n<�<0

��Zt(�)�� �V� n; <��n; 0>�+ �� n(�n)Zt(�n)�Zt(0)��+ sup
0<���n

��Zt(�)�� �V� n; <0; �n]� .

Next we verify that:

(4.53)  n(��n) ! 1 &  n(�n) ! 1

as n ! 1 . For this note that we have:

�� n(��n)�1�� = ��� 1
n

n�1X
k=0

e�ik�n�1
��� � max

0�k�n�1
��e�ik�n�1��

=
��e�i(n�1)�n�1

�� � ��e�i(1=n��1)�1
�� ! 0

as n ! 1 . This proves (4.53). In addition we show that:

(4.54) V
�
 n;<��n; 0>

� ! 0 & V
�
 n; <0; �n ]

� ! 0

as n ! 1 . For this note that we have:

V
�
 n; <0; �n]

� � 1

n

n�1X
k=0

V
�
Fk; <0; �n]

� � max
0�k�n�1

V
�
Fk; <0; �n ]

�
= V

�
Fn�1; <0; �n ]

� � ��1�cos �n
�� + �� sin �n�� ! 0

as n ! 1 . In the same way we obtain:

V
�
 n; <��n; 0>

� � ��1�cos�n
�� + �� sin �n�� ! 0

as n ! 1 . Thus (4.54) is established. Finally, we obviously have:

(4.55)
��Zt(0�)� n(��n)Zt(��n)

�� � ��Zt(0�)�Zt(��n)
�� + ��1� n(��n)�� � ��Zt(��n)

��
(4.56)

�� n(�n)Zt(�n)�Zt(0)
�� � �� n(�n)�1

�� � ��Zt(�n)
�� + ��Zt(�n)�Zt(0)

�� .

Combining (4.32), (4.42), (4.52), (4.53), (4.54), (4.55) and (4.56) we obtain (4.51). This fact

completes the proof of sufficiency of (4.32) for (4.30). Step 3 is complete.

A slight modification of Step 3 will show that (4.33) is sufficient for (4.30) whenever the family

is variationally rich. This is done in the next step.
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Step 4. First consider the left side in (4.52). By (4.19) and (4.21) we have:��� Z �n

��n
 n(�) Zt(d�)

��� � ��� Z 0�

��n
 n(�) Zt(d�) +

Z �n

0

 n(�) Zt(d�)
���

� �� n(0�)Zt(0�)� n(��n)Zt(��n) +  n(�n)Zt(�n)� n(0+)Zt(0)
��

+
��� Z 0�

��n
Zt(�)  n(d�)

���+ ��� Z �n

0

Zt(�)  n(d�)
��� � �� n(�n)�1

�� � ��Zt(�n)��
+

��Zt(�n)�Zt(0) + Zt(0�)�Zt(��n)
��+ ��1� n(��n)�� � ��Zt(��n)��

+ sup
��n<�<0

��Zt(�)�� � V�
 n;<��n; 0>

�
+ sup

0<���n

��Zt(�)�� � V�
 n; <0; �n]

�
.

Hence by the same arguments as in Step 3 we obtain (4.51).

Next consider the remaining terms in (4.46). By (4.47) and (4.48) we see that it suffices to show:

(4.57) V
�
Zt; <�n; �n ]

� ! 0 in L2(P )

as n ! 1 . We show that (4.57) holds with �n = n�3=2 and �n = n�1=2 . The general case

follows by the same pattern (with possibly a three intervals argument in (4.59) below).

For this put In =<�n; �n ] , and let pn = (pn�1)3 for n � 2 with p1 = 2 . Then the

intervals Ipn satisfy the hypotheses of Lemma 4.2 for n � 1 , and therefore we get:

(4.58) sup
t2T

V
�
Zt; Ipn

� ! 0 in L2(P )

as n ! 1 . Moreover, for pn < q � pn+1 we have:

(4.59) V
�
Zt; Iq

� � V
�
Zt; Ipn

�
+ V

�
Zt; Ipn+1

�
.

Thus from (4.59) we obtain (4.57), and the proof of sufficiency of (4.33) for (4.30) follows as in

Step 3. This fact completes Step 4.

In the last step we prove necessity of (4.33) for (4.30) under the assumption that the family

is variationally rich.

Step 5. From the integration by parts formula (4.19) we have:

1

n

n�1X
k=0

�k(t) � Zt
�f0g� = Z �

��
 n(�) Zt(d�) =

Z ��n

��
 n(�) Zt(d�) +

Z ��n

��n
 n(�) Zt(d�)

+ n(0�)Zt(0�)� n(��n)Zt(��n) +  n(�n)Zt(�n)� n(0+)Zt(0)

�
Z 0�

��n
Zt(�)  n(d�) �

Z �n

0

Zt(�)  n(d�)

+

Z �n

�n

 n(�) Zt(d�) +

Z �

�n

 n(�) Zt(d�) .

Hence we easily get:

(4.60)
��Zt(�n)�Zt(0) + Zt(0�)�Zt(��n)

�� � �� n(�n)�1
�� � ��Zt(�n)

��+ ��1� n(��n)�� � ��Zt(��n)
��

+
��� Z �

��
 n(�) Zt(d�)

���+ ��� Z ��n

��
 n(�) Zt(d�)

���+ ��� Z ��n

��n
 n(�) Zt(d�)

���+ ��� Z 0�

��n
Zt(�)  n(d�)

���+
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+
��� Z �n

0

Zt(�)  n(d�)
��� + ��� Z �n

�n

 n(�) Zt(d�)
��� + ��� Z �

�n

 n(�) Zt(d�)
��� .

Finally, from (4.20) and (4.21) we obtain the estimates as in Step 3 and Step 4:

(4.61)
��� Z 0�

��n
Zt(�)  n(d�)

��� � sup
��n<�<0

��Zt(�)�� � V�
 n; <��n; 0>

�
(4.62)

��� Z �n

0

Zt(�)  n(d�)
��� � sup

0<���n

��Zt(�)�� � V�
 n; <0; �n ]

�
(4.63)

��� Z ��n

��n
 n(�) Zt(d�)

��� � V
�
Zt; <�n; �n ]

�
(4.64)

��� Z �n

�n

 n(�) Zt(d�)
��� � V

�
Zt; <�n; �n ]

�
.

Combining (4.36), (4.37), (4.42), (4.53), (4.54), (4.57), (4.60) and (4.61)-(4.64) we complete

the proof of necessity of (4.33) for (4.30). This fact finishes Step 5. The last statement of the

theorem is obvious, and the proof is complete.

Remarks 4.4

(1) Note that Theorem 4.3 reads as follows: If the convergence in (4.31) is not uniformly fast

enough (but we still have it), then examine convergence of the total variation as stated in (ii) of

(4.32). The characterization (4.33) with (4.34) shows that this approach is in some sense optimal.

(2) A close look into the proof shows that we have convergence P -a.s. in (4.30), as soon

as we have convergence P -a.s. either in (4.31) (without the expectation and square sign, but with

(��1)=2), or in (i) and (ii) of (4.32). Moreover, if
�f�n(t)gn2Z j t 2 T

�
is variationally rich, then

the same fact holds as for the characterization (4.33), as well as for the sufficient condition (4.34).

In all these cases the condition (4.29) could be relaxed by removing the expectation and square sign.

In this way we cover a pointwise uniform ergodic theorem for (wide sense) stationary sequences.

(3) Under (4.29) the convergence in P -probability in either (i) or (ii) of (4.32) is equivalent to

the convergence in L2(P ) . The same fact holds for the convergence in P -probability in either

(4.33) or (4.34). It follows by uniform integrability.

(4) For the condition (ii) of (4.32) note that for every fixed t 2 T and any 0 < � < 1 < � :

V
�
Zt;



n�� ; n��

�� ! 0 P -a.s.

whenever fZt(�) g������ is of bounded variation and right continuous (at zero), as n ! 1 .

Note also that under (4.29) the convergence is in L2(P ) as well.

(5) It is easily verified by examining the proof above that the characterization (4.33) remains

valid under (4.29), whenever the property of being variationally rich is replaced with any other

property implying the condition (ii) of (4.32).

(6) It remains an open interesting question if the result of Theorem 4.3 extends in some form

to the case where the associated process fZt(�)g������ is not of bounded variation for t 2 T .

4.3 The uniform mean-square ergodic theorem(the continuous parameter case)

The aim of this section is to present a uniform mean-square ergodic theorem in the continuous

parameter case. Throughout we consider a family of (wide sense) stationary processes of complex

random variables
�fXs(t)gs2R j t 2 T

�
defined on the probability space (
;F ; P ) and indexed
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by the set T . Thus, we have:

(4.65) E
��Xs(t)

��2 < 1
(4.66) E

�
Xs(t)

�
= E

�
X0(t)

�
(4.67) Cov

�
Xr+s(t); Xr(t)

�
= Cov

�
Xs(t); X0(t)

�
for all s; r 2 R , and all t 2 T . For proofs of the well-known classical results and facts which

will be soon reviewed below, we refer (as in Section 4.2) to the standard references on the subject

[4], [27], [76], [77].

As a matter of convenience, we will henceforth suppose:

(4.68) E
�
Xs(t)

�
= 0

for all s 2 R , and all t 2 T . Thus the covariance function of fXs(t)gs2R is given by:

(4.69) Rt(s) = E
�
Xs(t)X0(t)

�
whenever s 2 R and t 2 T .

By the Bochner theorem there exists a finite measure �t = �t(�) on B(R) such that:

(4.70) Rt(s) =

Z 1

�1
eis� �t(d�)

for s 2 R and t 2 T . The measure �t is called the spectral measure of fXs(t)gs2R for t 2 T .

The spectral representation theorem states if Rt is continuous, then there exists an orthogonal

stochastic measure Zt = Zt(!;�) on 
 � B(R) such that:

(4.71) Xs(t) =

Z 1

�1
eis� Zt(d�)

for s 2 R and t 2 T . The fundamental identity in this context is:

(4.72) E
��� Z 1

�1
'(�) Zt(d�)

���2 = Z 1

�1

��'(�)��2 �t(d�)
whenever the function ' : R! C belongs to L2(�t) for t 2 T . We also have (4.13) which

is valid for all � 2 B(R) , and all t 2 T .

The random process defined by:

(4.73) Zt(�) = Zt(<�1; �])

for � 2 R is with orthogonal increments for every t 2 T . Thus, we have (4.15), (4.16) and

(4.17) whenever � 2 R and �1 < �1 < �2 < �3 < �4 < 1 for all t 2 T . We will

henceforth put Zt(�1) = 0 for all t 2 T . Moreover, we will assume below again that the

process f Zt(�) g�2R is of bounded variation and right continuous (outside of a P -nullset) for

all t 2 T . In this case the integral:

(4.74)

Z 1

�1
'(�) Zt(d�)
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may be well defined pointwise on 
 as the usual Riemann-Stieltjes integral for all t 2 T . If

 : <�1; �2 ]! C is of bounded variation and right continuous for some �1 � �1 < �2 � 1 ,

then the integration by parts formula (4.19) holds for all t 2 T . Moreover, for the total variation

V(�; <�1; �2 ]) of the function � : <�1; �2]! C we have (4.20) and (4.21) for all t 2 T .

The mean-square ergodic theorem for fXs(t)gs2R states:

(4.75)
1

�

Z �

0
Xs(t) ds ! Zt(f0g) in L2(P )

as � ! 1 , for all t 2 T . If moreover the process fZt(�) g�2R is of bounded variation and

right continuous for all t 2 T , then the convergence in (4.75) is P -a.s. as well. We also have:

(4.76)
1

�

Z �

0
Rt(s) ds ! �t(f0g)

as � ! 1 , for all t 2 T . Finally, it is easily seen that (4.24) is valid in the present case

whenever t 2 T .

The main purpose of the present section is to investigate when the uniform mean-square ergodic

theorem is valid:

(4.77) sup
t2T

��� 1
�

Z �

0
Xs(t) ds � Zt(f0g)

��� ! 0 in L2(P )

as � !1 . As before, we think that this problem appears worthy of consideration, and moreover

to the best of our knowledge it has not been studied previously. It turns out that the methods

developed in the last section carry over to the present case without any difficulties.

The main novelty of the approach could be explained in the same way as in Section 4.2. The

same remark might be also directed to the measurability problems. We will not state either of this

more precisely here, but instead recall that we implicitly assume measurability wherever needed.

The definition stated in Section 4.2 extends verbatim to the present case. Again, it is shown

useful in the main theorem below.

Definition 4.5

Let fXs(t)gs2R be a (wide sense) stationary process of complex random variables for which

the spectral representation (4.71) is valid with the process fZt(�)g�2R being of bounded variation

and right continuous for t 2 T . Then the family
�fXs(t)gs2R j t 2 T

�
is said to be variationally

rich, if for any given �1 < �1 < �2 < �3 <1 and t0; t00 2 T one can find t� 2 T satisfying:

(4.78) V(Zt0; <�1; �2]) +V(Zt00; <�2; �3]) � V(Zt�; <�1; �3]) .

We remark again that every one point family is variationally rich. A typical non-trivial example

of variationally rich family in the present case may be constructed similarly to Example 4.9 below.

Variationally rich families satisfy the following important property.

Lemma 4.6

Let
� fXs(t)gs2R j t 2 T

�
be variationally rich, and suppose that:

(4.79) E
�
sup
t2T
V2

�
Zt;R

��
< 1 .
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If In =<�n; �n] are disjoint intervals in R with �n = �n+1 for n � 1 , then we have:

(4.80) sup
t2T
V(Zt; In) ! 0 in L2(P )

as n ! 1 .

Proof. The proof is exactly the same as the proof of Lemma 4.2. The only difference is that

the interval <��; � ] should be replaced with R .

We may now state the main result of this section.

Theorem 4.7

Let fXs(t)gs2R be a (wide sense) stationary process of complex random variables for which

the spectral representation (4.71) is valid with the process fZt(�)g�2R being of bounded variation

and right continuous for t 2 T . Suppose that the following condition is satisfied:

(4.81) E
�
sup
t2T
V2

�
Zt;R

��
< 1 .

Then the uniform mean-square ergodic theorem is valid:

(4.82) sup
t2T

��� 1
�

Z �

0
Xs(t) ds � Zt(f0g)

��� ! 0 in L2(P )

as � ! 1 , as soon as either of the following two conditions is fulfilled:

(4.83) There exists 0 < � < 1 such that:

sup
����<�����

E
�
sup
t2T

��Zt(�)�Zt(0)
��2� = o

�
���1

�
as � ! 1 .

(4.84) There exist 0 < � < 1 < � such that:

(i) sup
t2T

��Zt(�)�Zt(0)
�� ! 0 in P -probability

(ii) sup
t2T
V
�
Zt;



��� ; ���

�� ! 0 in P -probability

as � ! 0 and � ! 1 .

Moreover, if the family
�fZs(t)gs2R j t 2 T

�
is variationally rich, then the uniform mean-square

ergodic theorem (4.82) holds if and only if we have:

(4.85) sup
t2T

��Zt(�)�Zt(0) + Zt(0�)�Zt(��)
�� ! 0 in P -probability

as � ! 0 . In particular, if the family
� fZs(t)gs2R j t 2 T

�
is variationally rich, then the

uniform mean-square ergodic theorem (4.82) holds whenever the process fZt(�)g�2R is uniformly

continuous at zero:

(4.86) sup
t2T

��Zt(�)�Zt(0)
�� ! 0 in P -probability
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as � ! 0 .

Proof. The proof may be carried out by using precisely the same method which is presented

in the proof of Theorem 4.3. Thus we find it unnecessary here to provide all of the details, but

instead will present only the essential points needed to make the procedure work.

Let � > 0 be fixed. We begin by noticing that a simple Riemann approximation yields:

nX
k=1

�

n
exp

�
ik

�

n
�
�
!
Z �

0

eis� ds

as n ! 1 , for all � 2 R . Since the left side above is bounded by the constant function �
which belongs to L2(�t) , then by (4.72) we get:Z 1

�1

� nX
k=1

�

n
exp

�
ik
�

n
�
��

Zt(d�) =

nX
k=1

�

n
Xk �n

(t) !
Z 1
�1

�Z �

0

eis� ds
�
Zt(d�) in L2(P )

as n ! 1 , for all t 2 T . Hence we get:

1

�

Z �

0

Xs(t) ds =

Z 1

�1
f� (�) Zt(d�)

for all t 2 T , where f� (�) = (1=�)(ei���1)=(i�) for � 6= 0 and f� (0) = 1 . Thus we have:

1

�

Z �

0

Xs(t) ds � Zt(f0g) =
Z 1

�1

�
f� (�) � 1f0g(�)

�
Zt(d�) =

Z 1

�1
g� (�) Zt(d�)

for all t 2 T , where g� (�) = f� (�) for � 6= 0 and g� (0) = 0 .

Let us first reconsider Step 1. For this note that by (4.20) we get:

(4.87)
��� Z ���

��
g� (�) Zt(d�)

��� � sup
�1<�����

��g� (�)�� � V�
Zt; <�1;��� ]

� � 2

�

1

j i�� j � V
�
Zt;R

�
for all t 2 T . Thus putting �� = ��� for some � > 0 , we see that:

(4.88) sup
t2T

��� Z ���

�1
g� (�) Zt(d�)

��� ! 0 in L2(P )

as � !1 , as soon as we have 0 < � < 1 . In exactly the same way as for (4.88) we find:

(4.89) sup
t2T

��� Z 1

��

g� (�) Zt(d�)
��� ! 0 in L2(P )

as � ! 1 . Facts (4.88) and (4.89) complete Step 1.

Next reconsider Step 2. First, it is clear that:

(4.90) g� (��� ) ! 0 & g� (�� ) ! 0

as � ! 1 . Next, by the same arguments as in the proof of Theorem 4.3 we obtain:

(4.91) E
�
sup
t2T

sup
�2R

jZt(�)j2
�
< 1 .

Thus the only what remains is to estimate the total variation of g� on <��� ; �� ] .

For this put Gs(�) = eis� for 0 � s � � , and notice that we have:
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(4.92) V
�
g� ; <��� ; �� ]

� � 1 + V
�
f� ; <��� ; �� ]

� � 1 +

Z ��

���

jf�0(�)j d� .

Next recall that f� (�) = (1=�)
R �
0 eis� ds for all � 2 R . Again, by the Cauchy-Schwarz

inequality (with Fubini’s theorem) and orthogonality of Gs’s on <��; �] , we obtain from (4.92):

(4.93) V
�
g� ; <��� ; �� ]

� � 1 +
p
2��

1

�

�Z �

��

��� Z �

0

is � Gs(�) ds
���2d��1=2

= 1 +
p
2��

1

�

�Z �

0

s2 ds
�1=2

= 1 +
p
2��

1

�

� 3=2p
3
� C� (1��)=2

with some constant C > 0 . Finally, by using (4.90), (4.91) and (4.93) we can complete Step 2

as in the proof of Theorem 4.3.

To complete Step 3 as in the proof of Theorem 4.3, it is just enough to verify that:

(4.94) g� (��� ) ! 1 & g� (�� ) ! 1

(4.95) V
�
g� ; <��� ; 0>

� ! 0 & V
�
g� ; <0; �� ]

� ! 0

as � ! 1 , where �� = n�� for � > 1 .

First consider (4.94), and note that we have:��g� (��� )�1�� = ��� 1
�

Z �

0

e�is�� ds� 1
��� � sup

0�s��

��e�is���1
�� = ��e�i����1

�� = ��e�i(1=���1)�1��! 0

as � ! 1 . This proves (4.94).

Next consider (4.95), and note that we have:

V
�
g� ; <0; �� ]

� � 1

�

Z �

0

V
�
Gs; <0; �� ]

�
ds � sup

0�s��
V
�
Gs; <0; �� ]

�
= V

�
G� ; <0; �� ]

�
� ��1�cos ��

�� + �� sin �� �� ! 0

as � !1 . This proves the second part of (4.95). The first part follows by the same argument.

The rest of the proof can be carried out as was done in the proof of Theorem 4.3.

We conclude this section by pointing out that Remarks 4.4 carry over in exactly the same form

to cover the present case. The same remark may be directed to Example 4.8 and Example 4.9 below.

4.4 Uniform convergence of almost periodic sequences

In the next example we show how Theorem 4.3 applies to almost periodic sequences.

Example 4.8

Consider an almost periodic sequence of random variables:

(4.96) �n(t) =
X
k2Z

zk(t)e
i�kn

for n 2 Z and t 2 T . In other words, for every fixed t 2 T we have:

(4.97) Random variables zi(t) and zj(t) are mutually orthogonal for all i 6= j :

E
�
zi(t)zj(t)

�
= 0
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(4.98) Numbers �k belong to <��; �] for k 2 Z , and satisfy �i 6= �j whenever i 6= j

(4.99) The condition is satisfied:X
k2Z

Ejzk(t)j2 < 1 .

Note that under (4.99) the series in (4.96) converges in the mean-square sense.

From (4.96) we see that the orthogonal stochastic measure is defined as follows:

Zt(�) =
X

k2Z;�k2�
zk(t)

for � 2 B(<��; � ]) and t 2 T . The covariance function is given by:

Rt(n) =
X
k2Z

ei�knEjzk(t)j2

for n 2 Z and t 2 T .

In order to apply Theorem 4.3 we will henceforth assume:

(4.100) E

�
sup
t2T

�X
k2Z

jzk(t)j
�2�

< 1 .

Note that this condition implies:

(4.101) E

�
sup
t2T

�X
k2Z

jzk(t)j2
��

< 1 .

Let k0 2 Z be chosen to satisfy �k0 = 0 , while otherwise set zk0(t) � 0 for all t 2 T .

According to Theorem 4.3, the uniform mean-square ergodic theorem is valid:

(4.102) sup
t2T

��� 1
n

n�1X
k=0

�k(t) � zk0(t)
��� ! 0 in L2(P )

as n ! 1 , as soon as either of the following two conditions is fulfilled:

(4.103) There exists 0 < � < 1 such that:

sup
0<�� 1

n�

E

�
sup
t2T

��� X
0<�k��

zk(t)
���2� + sup

� 1
n�

<�<0

E

�
sup
t2T

��� X
�<�k�0

zk(t)
���2� = o

�
n��1

�
as n ! 1 .

(4.104) There exist 0 < � < 1 < � such that:

(i) sup
t2T

��� X
0<�k��

zk(t)
��� + sup

t2T

��� X
��<�k�0

zk(t)
��� �! 0 in P -probability

(ii) sup
t2T

X
1

n�
<�j� 1

n�

jzj(t)j ! 0 in P -probability

as � # 0 and n ! 1 .

In particular, hence we see that if zero does not belong to the closure of the sequence f�kgk2Z ,

then (4.102) is valid. Moreover, if the condition is fulfilled:
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(4.105) E

�X
k2Z

sup
t2T

jzk(t)j
�2

< 1

with zk0(t) � 0 for t 2 T , then clearly (i) and (ii) of (4.104) are satisfied, even though the

condition (4.103) on the speed of convergence could possibly fail. Thus, under (4.105) we again

have (4.102).

Example 4.9 (Variationally rich family)

Consider the Gaussian case in the preceding example. Thus, suppose that the almost periodic

sequence (2.96) is given:

(4.106) �n(t) =
X
k2Z

zk(t)e
i�kn

for n 2 Z and t 2 T , where for every fixed t 2 T the random variables zk(t) =
�k(t) � gk � N(0; �2k(t)) are independent and Gaussian with zero mean and variance �2k(t)
for k 2 Z . Then (4.97) is fulfilled. We assume that (4.98) and (4.99) hold. Thus, the family

� =
� f�2k(t)gk2Z j t 2 T

�
satisfies the following condition:

(4.107)
X
k2Z

�2k(t) < 1

for all t 2 T . We want to see when the family � =
� f�n(t)gn2Z j t 2 T

�
is variationally rich,

and this should be expressed in terms of the family � .

For this, take arbitrary �� � �1 < �2 < �3 � � and t0 , t00 2 T , and compute the left-hand

side in (4.26). From the form of the orthogonal stochastic measure Zt = Zt(!;�) which is

established in the preceding example, we see that:

(4.108) V (Zt;�) =
X

k2Z;�k2�
jzk(t)j

for � 2 B(<��; � ]) and t 2 T . Hence we find:

(4.109) V(Zt0 ; <�1; �2 ]) + V(Zt00; <�2; �3 ])

=
X

�1<�k��2

���k(t0)��jgkj +
X

�2<�k��3

���k(t00)��jgkj .

Thus, in order that � be variationally rich, the expression in (4.109) must be dominated by:

(4.110)
X

�1<�k��3

���k(t�)��jgkj
for some t� 2 T . For instance, this will be true if the family � satisfies the following property:

(4.111)
�
�2k(t

0)_�2k(t
00)
	
k2Z 2 �

for all t0 , t00 2 T . For example, if �k(t) = t=2jkj for k 2 Z and t belongs to a subset T of

<0;1> , the last property (4.111) is satisfied, and the family � is variationally rich.
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Supplement: Hardy’s regular convergence, uniform convergence of re-

versed martingales, and consistency of statistical models

The purpose of this supplement is to indicate how the concept of Hardy’s regular convergence

[37] plays an important role towards consistency of statistical models (see [43]) by means of uniform

convergence of families of reversed submartingales. This material is taken from [63] and [65].

1. Let � = ( �� j � 2 �0 ) be a statistical model with a sample space (S;A) , reference

measure � , and parameter set �0 . In other words (S;A; �) is a measure space and �� is a

probability measure on (S;A) satisfying �� << � for all � 2 �0 . Then the likelihood function

and the log-likelihood function for � are defined as follows:

(S.1) f(s; �) =
d��
d�

(s) and h(s; �) = log f(s; �)

for all (s; �) 2 S � �0 . Suppose a random phenomenon is considered that has the unknown

distribution � belonging to � . Then there exists �0 2 �0 such that � = ��0 and we may

define the information function as follows:

(S.2) I(�) =

Z
S
f(s; �0) h(s; �) �(ds)

for all � 2 �0 for which the integral exists. Put � = sup �2�0
I(�) and denote M = f � 2

�0 j I(�) = � g . If the following condition is satisfied:

(S.3)

Z
S
f(s; �0) j log f(s; �0) j �(ds) <1

then by the information inequality (see [43] p.32) we may conclude:

(S.4) M = f � 2 �0 j �� = � g and I(�) < I(�0) = � for �� 6= � .

Hence we see that under condition (S.3) the problem of determining the unknown distribution �
is equivalent to the problem of determining the set M of all maximum points of the information

function I on �0 . It is easily verified that (S.3) is satisfied as soon as we have:

(S.5) f( � ; �0) 2 Lp(�) \ Lq(�)

for some 0 < p < 1 < q <1 . In order to determine the set M we may suppose that the

observations X1; X2; . . . of the random phenomenon under consideration are available. In other

words f Xj j j � 1 g is a sequence of identically distributed random variables defined on a

probability space (
;F ; P ) with values in (S;A) and the common distribution law � . If

X1; X2; . . . are independent, then by Kolmogorov’s Law 1.9 we have:

(S.6) hn( � ; �) = 1

n

nX
j=1

h(Xj( � ); �) ! I(�) P -a.s.

as n ! 1 for all � 2 �0 for which the integral in (S.2) exists. Thus it may occur that under

possibly additional hypotheses certain maximum points �̂n of the map on the left side in (S.6) on

�0 approach the maximum points of the map on the right side in (S.6) on �0 , that is the set

M . This principle is, more or less explicitly, well-known and goes back to Fisher’s fundamental
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papers [24] and [25]. A more general case of considerable interest is described as follows.

2. Some statistical models are formed by the family H = (fhn(!; �);Sn j n � 1g j � 2 �0)
of reversed submartingales defined on a probability space (
;F ; P ) and indexed by a separable

metric space �0 . From general theory of reversed martingales (see [19]) we know that each

hn(�) converges P -almost surely to a random variable h1(�) as n!1 , whenever � 2 �0 .

If the tail �-algebra S1 = \1n=1Sn is degenerated, that is P (A) 2 f0; 1g for all A 2 S1 ,

then h1(�) is also degenerated, that is P -almost surely equal to some constant which depends

on � 2 �0 . In this case the information function associated with H :

I(�) = a:s: lim
n!1hn(�) = lim

n!1Ehn(�)

may be well-defined for all � 2 �0 . The problem under consideration is to determine the maximum

points of I on �0 using only information on random functions hn(!; �) for n � 1 . For this

reason two concepts of maximum functions may be introduced as follows.

Let f �̂n j n � 1 g be a sequence of functions from 
 into � , where (�; d) is a compact

metric space containing �0 . Then f �̂n j n � 1 g is called a sequence of empirical maxima

associated with H , if there exist a function q : 
 ! N and a P -null set N 2 F satisfying:

(S.7) �̂n(!) 2 �0 ; 8! 2 
 n N ; 8n � q(!)

(S.8) hn(!; �̂n(!)) = h�n(!;�0) ; 8! 2 
 n N ; 8n � q(!)

where h�n(!;B) = sup �2B hn(!; �) for n � 1 ; ! 2 
 and B � �0 . The sequence

f �̂n j n � 1 g is called a sequence of approximating maxima associated with H , if there exist

a function q : 
 ! N and a P -null set N 2 F satisfying:

(S.9) �̂n(!) 2 �0 ; 8! 2 
 n N ; 8n � q(!)

(S.10) lim inf
n!1 hn(!; �̂n(!)) � sup

�2�0

I(�) ; 8! 2 
 nN .

It is easily verified that every sequence of empirical maxima is a sequence of approximating

maxima. Note that although hn(!; � ) does not need to attain its maximal value on �0 , and (S.8)

may fail in this case, we can always find a sequence of functions f �̂n j n � 1 g satisfying:

hn(!; �̂n(!)) � h�n(!;�0)� "n(!) , if h�n(!;�0) < +1
hn(!; �̂n(!)) � n , if h�n(!;�0) = +1

for all ! 2 
 and all n � 1 , where "n ! 0 as n!1 . Passing to the limit inferior we see

that (S.10) is satisfied, so that sequences of approximating maxima always exist.

In order to explain the importance of the reversed-martingale assumption, we shall recall the

well-known fact that any U -statistics (or U -process called sometimes):

hn(!; �) =
1

n!

X
�2Pn

h(X�(!); �) ( n � 1 , ! 2 
 , � 2 �0 )

is a reversed (sub)martingale, whenever X = (X1; X2; . . . ) is exchangeable and Eh(X; �) <1
for � 2 �0 . Here Pn denotes the set of all permutations of f 1; 2; . . . ; n g , and X� =
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(X�1 ; . . . ; X�n ; Xn+1; . . . ) .

3. The concept of consistency is introduced as follows. Define the set:

M =M(H) = f � 2 �0 j I(�) = � g
where � = sup �2�0

I(�) . Let � � � , then H is said to be S-consistent on � , if for

every sequence of approximating maxima f �̂n j n � 1 g associated with H we have that

Cf�̂n(!)g\� �M for all ! 2 
 nN , where N is a P -null set in F . In particular H is said

to be S-consistent, if it is S-consistent on � . Note that H is S-consistent on � if and only

if, every accumulation point of any sequence of approximating maxima f �̂n j n � 1 g associated

with H which belongs to � is a maximum point of the information function I on �0 .

It can be proved (see [43] and [63]) that the set of all possible accumulation points of all possible

sequences of approximating maxima associated with H equals:

M̂ = M̂(H) = f � 2 ��0 j �H(�) � � g
where the upper information function �H is given by:

�H(�) = inf
r>0

lim sup
n!1

h�n(!; b(�; r)) P -a.s.

for all � 2 � , and all ! 2 
 outside some P -null set N� 2 F . ( We remark that all functions

hn are extended to be zero on � n �0 for n � 1 .)

Hence we see that conditions implying:

(S.11) lim sup
n!1

h�n(!; b(�; r)) = sup
�2b(�;r)

I(�)

for all ! 2 
 outside N� , and all r 2 Q+ ; r � r� , have for a consequence:

�H(�) = �I(�)

where � 2 � is a given point and r� > 0 is a given number. Here �I(�) = limr#0 sup�2b(�;r) I(�)
denotes the upper semicontinous envelope of I for � 2 � . Since the set ~M = ~M(H) is closed

and contains M(H) , then cl (M(H)) � ~M(H) . Conversely, if � 2 ~M(H) ; then there exists

a sequence f �n j n � 1 g in � satisfying:

d(�n; �) < 2�n and I(�n) � (� ^ n)� 2�n

for all n � 1 . Thus if �n ! � with I(�n) ! � implies I(�) = � for all � 2 ~M(H) , then
~M(H) = M(H) = cl(M(H)) . This is for instance true if I has the closed graph, or if I is

upper semicontinuous on ~M(H) . It is instructive to notice that I is always upper semicontinuous

on M(H) , as well as that for every � 2 ~M(H) we actually have �I(�) = � .

Thus, the condition (S.11) plays a central role towards consistency. It is therefore of interest

to describe this condition in more detail. This is done in terms of Hardy’s regular convergence

as follows. It should be noted that condition (S.11) itself is expressed by means of almost sure

convergence, while Hardy’s regular convergence condition presented below is in terms of means.

4. Let us recall that a double sequence of real numbers A = f ank j n; k � 1 g is convergent
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(in Pringsheim’s sense) to the limit A , if 8" > 0 ; 9p" � 1 such that 8n; k � p" we have

j A � ank j < " . In this case we shall write A = limn;k!1 ank . According to Hardy [37] we

say that a double sequence of real numbers A = f ank j n; k � 1 g is regularly convergent (in
Hardy’s sense) to the limit A , if all limits:

lim
n!1 ank ; lim

k!1
ank ; lim

n;k!1
ank

exist, for all n; k � 1 , and the last one is equal to A . In this case we necessarily have:

lim
n!1 lim

k!1
ank = lim

k!1
lim
n!1 ank = lim

n;k!1
ank = A .

In the proof below we shall need the following facts.

Lemma S.1

Let E = fEnk j n; k � 1 g be a double sequence of real numbers satisfying the following

two conditions:

(S.12) En1 � En2 � En3 � . . . ; for all n � 1

(S.13) E1k � E2k � E3k � . . . ; for all k � 1 .

Let En1 = lim
k!1

Enk and E1k = lim
n!1Enk for n; k � 1 . Then the following five statements

are equivalent:

(S.14) E is regularly convergent (in Hardy’s sense)

(S.15) E is convergent (in Pringsheim’s sense)

(S.16) �1 < lim
k!1

E1k = lim
n!1En1 < +1

(S.17) 8" > 0 ; 9p" � 1 such that 8n;m; k; l � p" we have j Enk � Eml j < "

(S.18) 8" > 0 ; 9p" � 1 such that Ep"1 � E1p" < " .

Proof. It follows by a straightforward verification.

We may now state the main result which displays a useful role of Hardy’s regular convergence

in establishing uniform convergence of families of reversed submartingales.

Theorem S.2

Let (f X i
n ; Fn j �1 < n � �1 g j i 2 N) be a countable family of reversed submartingales

defined on the probability space (
;F ; P ) , and let X i�1 denote the a:s: limit of X i
n as n! �1

for all i 2 N . If the following condition is satisfied:

(S.19) 8" > 0 ; 9p" � 1 such that 8n;m; k; l � p" we have:���E�
sup

1�i�k
X i�n

�
� E

�
sup
1�j�l

Xj
�m

� ��� < "

then we have:
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(S.20) 9k0 � 1 such that �1 < inf
n��1E

�
sup

1�i�k0
X i

n

�
� inf

n��1E
�
sup
i2N

X i
n

�
< +1

(S.21) sup
i2N

X i
n �! sup

i2N
X i
�1 P -a.s. and in L1(P ) , as n ! �1 .

Conversely, if we have convergence in P -probability in (S.21) together with the following condition:

(S.22) �1 < inf
n��1E

�
sup
i2N

X i
n

�
< +1

then (S.19) holds.

Proof. First suppose that (S.19) holds, then letting k !1 in (S.19) and using the monotone

convergence theorem we obtain:���E� sup
i2N

X i�p"
�
� E

�
sup

1�j�p"
Xj
�p"

� ��� � "

Hence we see that the last inequality in (S.20) must be satisfied, and moreover one can easily

verify that for every subset M of N the family:

(S.23)
n

sup
i2M

X i
n ; Fn j �1 < n � p"

o
forms a reversed submartingale. Thus by the reversed submartingale convergence theorem have:

(S.24) sup
i2M

X i
n ! XM

�1 P -a.s.

(S.25) E
�
sup
i2M

X i
n

�
! E

�
XM
�1

�
(S.26) sup

i2M
X i
n ! XM

�1 in L1(P ) , if inf
n��1E

�
sup
i2M

X i
n

�
> �1

as n ! �1 . Note that if M is a finite subset of N , then XM�1 = sup i2M X i�1 P -a.s.

Therefore letting n ! 1 in (S.19) and using (S.25) we obtain:���E� sup
1�i�p"

X i
�1

�
� E

�
sup

1�j�p"
Xj
�p"

� ��� � " .

Hence sup1�i�p" X
i�1 2 L1(P ) , and thus by (S.25) we may conclude:

inf
n��1E

�
sup

1�i�p"
X i
n

�
= E

�
sup

1�i�p"
X i
�1

�
> �1 .

This completes the proof of (S.20). Moreover, from this by (S.26) we get:

(S.27) sup
i2N

X i
n ! XN�1 in L1(P )

as n ! �1 . In order to establish (S.21) note that by (S.24) and (S.27) it is enough to show

that XN�1 = sup i2NX i�1 P -a.s. Since the inequality XN�1 � supi2NX i�1 P -a.s. follows

straightforwardly and XN�1 2 L1(P ) , it is sufficient to show that:
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(S.28) EXN�1 = E
�
sup
i2N

X i
�1

�
.

In order to deduce (S.28) let us note that the double sequence E = f Enk j n; k � 1 g defined by:

(S.29) Enk = E
�

sup
1�i�k

X i
�n
�

satisfies conditions (S.12) and (S.13), and moreover (S.19) is precisely (S.17). Therefore by (S.16)

in Lemma S.1 and the monotone convergence theorem we may conclude:

EXN�1 = lim
n!1 lim

k!1
E
�

sup
1�i�k

X i
�n
�
= lim

k!1
lim
n!1E

�
sup

1�i�k
X i
�n
�
= E

�
sup
i2N

X i
�1

�
.

Thus (S.28) is established, and the proof of (S.21) is complete.

Next suppose that (S.22) holds and that we have convergence in P -probability in (S.21). Then

by (S.23) and the second inequality in (S.22) the family f sup i2NX i
n ; Fn j �1 < n � n1 g is

a reversed submartingale ( for some n1 � �1 ) which by the first inequality in (S.22) satisfies:

inf
n�n1

E
�
sup
i2N

X i
n

�
> �1 .

Therefore (S.21) follows straightforwardly by (S.24) and (S.26). Moreover, by (S.21) and the

monotone convergence theorem we may conclude:

�1 < lim
n!1 lim

k!1
E
�

sup
1�i�k

X i
�n
�
= lim

k!1
lim
n!1E

�
sup

1�i�k
X i
�n
�
<1 .

Hence (S.19) follows directly by applying the implication (S.16) ) (S.17) in Lemma S.1 to the

double sequence E = fEnk j n; k � 1 g defined by (S.29). This completes the proof.

Corollary S.3

Let (f X i
n ; Fn j �1 < n � �1 g j i 2 N) be a countable family of reversed submartingales

defined on the probability space (
;F ; P ) , and let X i�1 denote the a:s: limit of X i
n as n! �1

for all i 2 N . Suppose that the following condition is satisfied:

�1 < inf
n��1

E
�
sup
i2N

X i
n

�
< +1 .

Put Enk = E(sup1�i�k X i�n) for all n; k � 1 . Then the family:

f sup
i2N

X i
n ; Fn j �1 < n � n1 g

is a reversed submartingale ( for some n1 � �1 ) and supi2NX i
n converges P -almost surely and

in L1(P ) , as n ! �1 . Moreover, we have:

sup
i2N

X i
n �! sup

i2N
X i�1 P -a.s. and in L1(P )

as n ! �1 , if and only if the double sequence E = f Enk j n; k � 1 g is regularly convergent

(in Hardy’s sense).
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[32] GINÉ, E. and ZINN, J. (1984). Some limit theorems for empirical processes. Ann. Probab.

12 (929-989).
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