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A Change-of-Variable Formula
with Local Time on Curves

GORAN PESKIR
�

Let X = (Xt)t�0 be a continuous semimartingale and let b : IR+ ! IR be a

continuous function of bounded variation. Setting C = f (t; x) 2 IR+�IR j x <
b(t)g and D = f (t; x) 2 IR+�IR j x > b(t)g suppose that a continuous function

F : IR+�IR! IR is given such that F is C1;2 on �C and F is C1;2 on �D.

Then the following change-of-variable formula holds:

F (t;Xt) = F (0; X0) +

Z t

0

1

2

�
Ft(s;Xs+)+Ft(s;Xs�)

�
ds

+

Z t

0

1

2

�
Fx(s;Xs+)+Fx(s;Xs�)

�
dXs

+
1

2

Z t

0

Fxx(s;Xs) I(Xs 6= b(s)) dhX;Xis

+
1

2

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs = b(s)) d`bs(X)

where `bs(X) is the local time of X at the curve b given by:

`bs(X) = IP�lim
"#0

1

2"

Z s

0

I(b(r)�"<Xr <b(r)+") dhX;Xir

and d`bs(X) refers to the integration with respect to s 7! `bs(X) . A version of

the same formula derived for an Itô diffusion X under weaker conditions on F
has found applications in free-boundary problems of optimal stopping.

1. Introduction

1. Let X = (Xt)t�0 be a continuous semimartingale (see e.g. [6]) and let b : IR+ ! IR be

a continuous function of bounded variation. Setting:

(1.1) C = f (t; x) 2 IR+�IR j x < b(t) g
(1.2) D = f (t; x) 2 IR+�IR j x > b(t) g
suppose that a continuous function F : IR+�IR ! IR is given such that:

(1.3) F is C1;2 on �C

(1.4) F is C1;2 on �D .

More explicitly, it means that F restricted to C coincides with a function F1 which is C1;2

on IR+�IR , and F restricted to D coincides with a function F2 which is C1;2 on IR+�IR .
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[We recall that a continuous function G : IR+�IR ! IR is C1;2 on IR+�IR if the partial

derivatives Gt ; Gx and Gxx exist and are continuous as functions from IR+�IR to IR .]

Moreover, since F is continuous, the two functions F1 and F2 must coincide on the curve

f(t; b(t)) j t 2 IR+g , or in other words:

(1.5) F1(t; b(t)) = F (t; b(t)) = F2(t; b(t))

for all t 2 IR+ .

Then the natural desire arising in some free-boundary problems of optimal stopping (see [4]-

[5]) is to apply a change-of-variable formula to the process F (t;Xt) so to account for possible

jumps of Fx(s; x) at x = b(s) being measured by:

(1.6) `bs(X) = IP�lim
"#0

1

2"

Z s

0
I(b(r)�"<Xr<b(r)+") dhX;Xir

which represents the local time of X at the curve b for s 2 [0; t] . The limit in (1.6) denotes

a limit in probability (stronger convergence relations may also hold).

The best known example of such a formula is the Tanaka formula (see e.g. [6] p. 222) where

F (t; x) = x+ and b(t) = 0 for all t 2 IR+ . Further special cases are derived in [2] (Section 5)

when X is a Brownian motion, F (t; x) = (x�b(t))+ , and b : IR+ ! IR is a continuous function.

We refer to the recent paper [1] for more definite results in the case of Brownian motion and for

further references on this topic. Motivated by applications in free-boundary problems mentioned

above, the main purpose of the present paper is to consider a more general case of the function F
and the process X using also a somewhat different method of proof.

2. Before we state the change-of-variable formula in Section 2 below, let us for further reference

list the following consequences of the conditions (1.1)-(1.4) stated above:

(1.7) x 7! F (t; x) is continuous at b(t)

(1.8) limits Fx(t; b(t)�) exist in IR

(1.9) t 7! Fx(t; b(t)�) are continuous

(1.10) limits Fxx(t; b(t)�) exist in IR

(1.11) t 7! Fxx(t; b(t)�) are continuous.

It may appear evident that some of these conditions (and thus (1.3) and (1.4) above as well) may

be relaxed. Some of these further extensions will be discussed in Section 3 below.

Yet another consequence of (1.3) and (1.4) that may be useful to note is the following:

(1.12) t 7! F (t; b(t)) is C1 when b is C1 .

It follows by recalling (1.5) above from where we also see that:

(1.13)
d

dt

�
F (t; b(t))

�
= Ft(t; b(t)�) + Fx(t; b(t)�)b0(t)

where the two signs � are simultaneously equal to either + or � respectively.
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2. The first result and proof

The first result of the present paper may now be stated as follows.

Theorem 2.1

Let X = (Xt)t�0 be a continuous semimartingale, let b : IR+ ! IR be a continuous function

of bounded variation, and let F : IR+�IR! IR be a continuous function satisfying (1.3) and (1.4)

above. Then the following change-of-variable formula holds:

(2.1) F (t; Xt) = F (0; X0) +

Z t

0

1

2

�
Ft(s;Xs+)+Ft(s;Xs�)

�
ds

+

Z t

0

1

2

�
Fx(s;Xs+)+Fx(s;Xs�)

�
dXs

+
1

2

Z t

0
Fxx(s;Xs) I(Xs 6= b(s)) dhX;Xis

+
1

2

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs= b(s)) d`bs(X)

where `bs(X) is the local time of X at the curve b given by (1.6) above, and d`bs(X) refers to

the integration with respect to the continuous increasing function s 7! `bs(X) .

Proof. To prove the theorem we shall combine two approximation methods each of which will

improve upon weak points of the other. Consequently, the proof can be shortened but we present

the longer version for comparison of the methods. Another proof will be given in Section 3 below.

Part I: 1. The first approximation method may be termed simple (linear or quadratic). With

t > 0 given and fixed, we shall “smooth out” a possible discontinuity of the map x 7! Fx(t; x)
at b(t) by a linear approximation as follows:

(2.2) F n
x (t; x) = Fx(t; x) if x =2 ]b(t)�"n; b(t)+"n[

= linear if x 2 [b(t)�"n; b(t)+"n]

for (t; x) 2 IR+�IR and n � 1 where "n # 0 as n ! 1 . We thus have:

(2.3) F n
x (t; x) =

Fx(t; b(t)+"n)�Fx(t; b(t)�"n)

2"n

�
x��

b(t)�"n
��

+ Fx(t; b(t)�"n)

for x 2 [b(t)�"n; b(t)+"n] and t 2 IR+ .

Define the map F n : IR+�IR ! IR using (2.2) and (2.3) as follows (other definitions are

also possible and will lead to the same quantitative result):

(2.4) Fn(t; x) = F (t; b(t)�"n) +

Z x

b(t)�"n
F n
x (t; y) dy

= F (t; b(t)�"n) +
Fx(t; b(t)+"n)�Fx(t; b(t)�"n)

2"n

(x�(b(t)�"n))
2

2

+ Fx(t; b(t)�"n) (x�(b(t)�"n))
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for x 2 [b(t)�"n; b(t)+"n] and set:

(2.5) F n(t; x) = F (t; x) if x < b(t)�"n
= F (t; x)�Dn(t) if x > b(t)+"n

where Dn(t) = F (t; b(t)+"n)�F n(t; b(t)+"n) so that using (2.4) we find:

(2.6) Dn(t) = F (t; b(t)+"n)�F (t; b(t)�"n)� "n

�
Fx(t; b(t)+"n)+Fx(t; b(t)�"n)

�
for t 2 IR+ . [It may be noted that the approximating map x 7! F n(t; x) is quadratic on

[b(t)� "n; b(t)+ "n] , and thus as such has three degrees of freedom, while to match the map

x 7! F (t; x) together with its first derivative with respect to x at b(t)�"n introduces four

conditions. All of them thus cannot be met in general, and this is the reason that Dn(t) in (2.5)

is not necessarily zero.]

2. Using (1.3) and (1.4) it follows that x 7! F n(t; x) is C2 but possibly at b(t)�"n where

it is at least C1 . Since moreover x 7! F n
x (t; x) is clearly of bounded variation on each bounded

interval containing b(t)�"n (due to the fact that the four limits F n
xx(t; (b(t)�"n)�) exist in IR

and define continuous functions of t being therefore bounded on bounded intervals) it follows

that the Itô formula can be applied to F n(t; Xt) in the standard form (see e.g. [6] p. 147) as soon

as we have that t 7! F n(t; x) is C1 on IR+ . [If the reader is not familiar with this fact, it

may be noted that a proof also follows from the convolution arguments given in Part II below (see

(2.53) and Remark 2.3).] From (2.4)-(2.6) we however see that t 7! F n(t; x) will be C1 if

additionally to x 7! Fx(t; x) being C1 at b(t)�"n , which we have since x 7! F (t; x) is C2

on the open set C [D , we should also have that s 7! Fx(s; x) is C1 at t for x = b(t)�"n
and that b is C1 on IR+ . For these reasons we shall first prove the theorem i.e. establish (2.1)

when b is C1 on IR+ and the continuous function F : IR+�IR ! IR satisfying (1.3) and

(1.4) is of the form F (t; x) = G(t) H(x) .

3. Let b be C1 and let F satisfying (1.3)-(1.5) be of the form F (t; x) = G(t)H(x) . Then

clearly s 7! Fx(s; x) = G(s)H 0(x) is C1 at t for x = b(t)�"n so that by the arguments

exposed above we can apply the Itô formula in its standard form to F n(t; Xt) giving:

(2.7) F n(t; Xt) = F n(0; X0)+

Z t

0
F n
t (s;Xs)ds+

Z t

0
F n
x (s;Xs)dXs+

1

2

Z t

0
F n
xx(s;Xs)dhX;Xis

for all t 2 IR+ and all n � 1 . A natural step is then to pass to the limit in (2.7) for n!1 ,

and for this we need a few preliminary remarks.

A standard localization argument based on using the exit times �m = inf f s>0 : jXsj�m g
and establishing (2.1) via (2.7) first for t ^ �m in place of t and then letting m ! 1 in the

resulting formula shows that there is no restriction to assume in the sequel that jF j , jFtj , jFxj
and jFxxj are all uniformly bounded by a constant on C [ D (and thus on �C [ �D as well).

This fact then transfers further and enables us to make similar conclusions about the maps jF nj ,

jF n
t j , jF n

x j and jF n
xxj for n � 1 . In other words, from definitions (2.2)-(2.6) we see that there

is no restriction to assume that these maps remain uniformly bounded on IR+�IR by a constant
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not depending on n � 1 . This will be freely used in what follows.

4. From (2.6) we see that Dn(t) ! 0 so that by (2.4) and (2.5) we find that:

(2.8) F n(t; x) ! F (t; x)

as n ! 1 for all (t; x) 2 IR+�IR .

Moreover, it is easily seen directly from (2.4) and (2.5) that:

(2.9) F n
x (t; x) ! Fx(t; x) if x 6= b(t)

! 1

2

�
Fx(t; b(t)+)+Fx(t; b(t)�)

�
if x = b(t)

as n ! 1 for all (t; x) 2 IR+�IR .

Finally, note firstly that from (2.6) using (1.13) we get:

(2.10) D0
n(t) = Ft(t; b(t)+"n) + Fx(t; b(t)+"n) b

0(t)� Ft(t; b(t)�"n)� Fx(t; b(t)�"n) b0(t)

�"n d

dt

�
Fx(t; b(t)+"n)+Fx(t; b(t)�"n)

�
! Ft(t; b(t)+) + Fx(t; b(t)+) b

0(t)� Ft(t; b(t)�)� Fx(t; b(t)�) b0(t) = 0

as n!1 for all t 2 IR+ . Secondly, let us compute F n
t (t; x) for x = b(t) using (2.4). For

this, note that by differentiating in (2.4) we find:

(2.11) F n
t (t; x) = Ft(t; b(t)�"n) + Fx(t; b(t)�"n) b0(t)

+
d

dt

�
Fx(t; b(t)+"n)�Fx(t; b(t)�"n)

� (x�(b(t)�"n))2
4"n

+
�
Fx(t; b(t)+"n)�Fx(t; b(t)�"n)

� (x�(b(t)�"n))
2"n

(�b0(t))

+
d

dt

�
Fx(t; b(t)�"n)

� �
x�(b(t)�"n)

�
+ Fx(t; b(t)�"n) (�b0(t)) .

Inserting x = b(t) hence we see that:

(2.12) F n
t (t; b(t)) = Ft(t; b(t)�"n) + Fx(t; b(t)�"n) b0(t) + O("n)

�1

2

�
Fx(t; b(t)+"n)�Fx(t; b(t)�"n)

�
b0(t) +O("n)� Fx(t; b(t)�"n) b0(t)

! Ft(t; b(t)�) � 1

2

�
Fx(t; b(t)+)�Fx(t; b(t)�)

�
b0(t)

= Ft(t; b(t)�) � 1

2

�
Ft(t; b(t)�)�Ft(t; b(t)+)

�
=

1

2

�
Ft(t; b(t)+)+Ft(t; b(t)�)

�
as n ! 1 for all t 2 IR+ by means of (1.13). It thus follows from (2.5) using (2.10) and

5



(2.12) just established that:

(2.13) F n
t (t; x) ! Ft(t; x) if x 6= b(t)

! 1

2

�
Ft(t; b(t)+)+Ft(t; b(t)�)

�
if x = b(t)

as n ! 1 for all (t; x) 2 IR+�IR .

5. Recalling the localization argument above we know that there is no restriction to assume

that jF n
t j is uniformly bounded by a constant not depending on n � 1 , so that by (2.13) and

the dominated convergence theorem it follows that:

(2.14)

Z t

0
F n
t (s;Xs) ds !

Z t

0

1

2

�
Ft(s;Xs+)+Ft(s;Xs�)

�
ds

as n ! 1 .

Similarly, we may assume that jF n
x j is uniformly bounded, so that by (2.9) and the stochastic

dominated convergence theorem (see e.g. [6] p. 142) it follows that:

(2.15)

Z t

0
F n
x (s;Xs) dXs !

Z t

0

1

2

�
Fx(s;Xs+)+Fx(s;Xs�)

�
dXs

in probability as n ! 1 .

Finally, using (2.2) and (2.3) we see that:

(2.16)

Z t

0
F n
xx(s;Xs) dhX;Xis =

Z t

0
Fxx(s;Xs) I(Xs =2 [b(s)�"n; b(s)+"n]) dhX;Xis

+
1

2"n

Z t

0

�
Fx(s; b(s)+"n)�Fx(s; b(s)�"n)

�
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis

upon recalling that
R t
0 I(Xs= b(s)) dhX;Xis = 0 for b of bounded variation (which we have

since b is C1 by assumption) so that the value of Fxx(s; � ) at b(s) can be set arbitrarily.

Again, by the localization argument we may assume that jFxxj is uniformly bounded, so that

by the dominated convergence theorem it follows that:

(2.17)

Z t

0
Fxx(s;Xs) I(Xs =2 [b(s)�"n; b(s)+"n]) dhX;Xis

!
Z t

0
Fxx(s;Xs) I(Xs 6= b(s)) dhX;Xis

as n ! 1 .

6. Letting n!1 in (2.7) above, and using (2.8) with (2.14)-(2.17), we can conclude that:

(2.18) lim
n!1

1

2"n

Z t

0

�
Fx(s; b(s)+"n)�Fx(s; b(s)�"n)

�
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis

exists in IR as a limit in probability. In particular, if we choose Xc
t = Xt � c(t) to be the

semimartingale and set F (t; x) = x+ with b(t) � 0 , we see that the local time `ct(X) of X
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at c , given by (1.6) above with c instead of b , exists in IR as a limit in probability. The

proof in the case b is C1 and F satisfying (1.3)-(1.5) is of the form F (t; x) = G(t)H(x)
will therefore be completed as soon as we show that:

(2.19) IP� lim
n!1

1

2"n

Z t

0

�
Fx(s; b(s)+"n)�Fx(s; b(s)�"n)

�
I(b(s)�"n<Xs<b(s)+"n)dhX;Xis

=
1

2

Z t

0
�xFx(s;Xs) I(Xs = b(s)) d`bs(X)

where we set �xFx(s; b(s)) = Fx(s; b(s)+)�Fx(s; b(s)�) for s 2 [0; t] .

7. To verify (2.19) we may add and subtract �Fx(s; b(s)+) as well as Fx(s; b(s)�) under

the first integral sign in (2.19). Using then that a continuous function on a compact set is uniformly

continuous, for given � > 0 we can find n� � 1 such that jFx(s; b(s)+"n)� Fx(s; b(s)+)j < �
for all s 2 [0; t] and all n � n� . Hence it follows that:

(2.20)

��� 1

2"n

Z t

0

�
Fx(s; b(s)+"n)�Fx(s; b(s)+)

�
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis

���
� �

1

2"n

Z t

0
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis ! � `bt(X)

in probability as n ! 1 . Letting � # 0 we can conclude:

(2.21)
1

2"n

Z t

0

�
Fx(s; b(s)+"n)�Fx(s; b(s)+)

�
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis ! 0

in probability as n ! 1 . Similarly, we find that:

(2.22)
1

2"n

Z t

0

�
Fx(s; b(s)�)�Fx(s; b(s)�"n)

�
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis ! 0

in probability as n!1 . Using (2.21) and (2.22) in the right-hand side of (2.19) we see that:

(2.23) IP� lim
n!1

1

2"n

Z t

0

�
Fx(s; b(s)+"n)�Fx(s; b(s)�"n)

�
I(b(s)�"n<Xs<b(s)+"n)dhX;Xis

= IP� lim
n!1

1

2"n

Z t

0

�
Fx(s; b(s)+)�Fx(s; b(s)�)

�
I(b(s)�"n<Xs<b(s)+"n) dhX;Xis .

Moreover, we know by (1.9) that:

(2.24) t 7! Fx(t; b(t)+)�Fx(t; b(t)�) is continuous

so in view of (2.23) to establish (2.19) it is enough to verify that:

(2.25) IP�lim
"#0

1

2"

Z t

0
g(s) I

�
b(s)�"<Xs<b(s)+"

�
dhX;Xis =

Z t

0
g(s) d`bs(X)

for a continuous function g : [0; t] ! IR .
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For this, denote the left-hand side in (2.25) by L and note that:

(2.26) L = IP�lim
"#0

1

2"

nX
i=1

Z ti

ti�1
g(s) I

�
b(s)�"<Xs<b(s)+"

�
dhX;Xis

= IP�lim
"#0

1

2"

nX
i=1

g(s"i )

Z ti

ti�1
I
�
b(s)�"<Xs<b(s)+"

�
dhX;Xis

�
nX

i=1

�
lim sup

"#0
g(s"i )

��
`bti(X)�`bti�1(X)

�
�

nX
i=1

g(s�i )
�
`bti(X)�`bti�1(X)

�
!

Z t

0
g(s) d`bs(X)

for some s"i and s�i = lim sup"#0 s"i from [ti�1; ti] where 0 = t0 < t1 < . . . < tn�1 < tn = t
so that max1�i�n(ti�ti�1)! 0 as n!1 . In exactly the same way using a liminf instead of

the limsup one derives the reverse inequality, and this establishes (2.25) for continuous g .

Thus (2.19) holds too, and the proof of the theorem in the special case when b is C1 and

F satisfying (1.3)-(1.5) is of the form F (t; x) = G(t)H(x) is complete.

8. One could now wish to argue that a simple density argument (such as that all polynomialseF (t; x) =
Pn

i=1 Pi(t) Qi(x) are dense in the class of functions F satisfying (1.3)-(1.5) when

restricted to a compact set K � IR+�IR relative to the norm:

(2.27) kFkK = sup
(t;x)2K

�
jF (t; x)j + jFt(t; x�)j + jFx(t; x�)j + jFxx(t; x�)j

�
upon recalling the localization argument above; or that C1 functions ~b are dense in the class

of C0 functions b relative to the supremum norm on a compact time interval) should be able

to complete the proof. However, since we are dealing with general continuous semimartingales

X it seems apparent that a conceptual difficulty in completing such a proof would lie in the

irregularity of the map x 7! `xt (X) which is generally known to be right-continuous only (see

e.g. [6], Chapter VI), or even completely discontinuous, if adopting our symmetric definition of

the local time (1.6). We thus proceed with Part II of the proof where these difficulties of Part I

will be avoided while the new difficulty appearing in the end of Part II can be resolved using the

partial result of Part I just established.

Part II: 1. The second method is based on the well-known convolution approximation. To

simplify the analysis of the mapping s 7! F (s; b(t)) around the point t , which can be complicated

if b oscillates heavily, let us first replace the function F by the function G defined by:

(2.28) G(t; x) = F (t; x+b(t))

for (t; x) 2 IR+�IR . Approximate then the new map G as follows:

(2.29) Gn(t; x) =

Z
IR

1

2

�
G(t; x+y=n) + G(t; x�y=n)

�

(y) dy

for (t; x) 2 IR+�IR , where 
 : IR! IR+ is any given and fixed function satisfying the following
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three conditions: (i) 
 is C1 ; (ii) 
 has a compact support which we choose to be [0; 1] ;

(iii)
R
IR
(y) dy = 1 . Such a function is easily specified explicitly.

Introduce the following functions:

(2.30) P n(t; x) =

Z
IR
G(t; x+y=n) 
(y) dy

(2.31) Nn(t; x) =

Z
IR
G(t; x�y=n) 
(y) dy

and let Hn denote either P n or Nn . Then the following facts are valid:

(2.32) t 7! Hn(t; x) is of bounded variation

(2.33) x 7! Hn(t; x) is C1

(2.34) t 7! @kHn

@xk
(t; x) is continuous

for every k 2 IN [ f0g and in particular for k equal to 1 and 2 what we shall use.

To establish (2.32) one can use Itô’s formula (see e.g. [6] p. 147) with the C1;2 function (t; z) 7!
F (s; x� y=n+ z) and the semimartingale (t; b(t)) , since F (t; x� y=n+ z) = F1(t; x� y=n+ z)
if x� y=n � 0 and F (t; x� y=n+ z) = F2(s; x� y=n+ z) if x� y=n > 0 for z = b(t) in

both cases, where F1 and F2 are C1;2 functions from (1.5). Integrating the resulting formula

with respect to 
(y)dy , and using the Fubini theorem, one obtains a representation for Hn(t; x)
from which the claim follows readily.

To verify (2.33) and (2.34) we can introduce substitutions z = x � y=n in the two integrals

and then differentiate under the integral signs as many times as we please upon using the standard

argument to justify this operation (based on the dominated convergence theorem); the continuity of

the map in (2.34) follows then easily from the continuity of the map t 7! G(t; z) .

2. The property (2.34) embodies a clear advantage of the convolution approximation upon the

linear approximation from Part I, and we shall now exploit this fact. We will begin by analysing

the function P n first; this will then be followed by a similar analysis of the function Nn .

Let Z = (Zt)t�0 be a continuous semimartingale. Using (2.32) with Hn = P n and Itô’s

formula for C2 functions let us write:

(2.35) P n(t; Zt)�P n(0; Z0) =
mX
i=1

P n(ti; Zti)�P n(ti�1; Zti)

+
mX
i=1

P n(ti�1; Zti)�P n(ti�1; Zti�1) =
mX
i=1

Z ti

ti�1
Pn(ds; Zti)

+
mX
i=1

�Z ti

ti�1
P n
x (ti�1; Zs) dZs +

1

2

Z ti

ti�1
P n
xx(ti�1; Zs) dhZ;Zis

�
where 0 = t0 < t1 < . . . tm�1 < tm = t are given so that max 1�i�m(ti�ti�1)! 0 as m!1 .

By (2.34) with k = 1 and the stochastic dominated convergence theorem as well as (2.34) with

k = 2 and the dominated convergence theorem, upon using the localization argument if needed,

9



we see that the final sum in (2.35) converges in probability as m!1 , and so does the first sum

too. Denoting the latter limit by
R t
0 P

n(ds; Zs) (which clearly does not depend on any particular

choice of the points ti ) in this way we end up with the following version of the Itô formula:

(2.36) P n(t; Zt) = P n(0; Z0) +

Z t

0
P n(ds; Zs) +

Z t

0
P n
x (s; Zs) dZs +

1

2

Z t

0
P n
xx(s; Zs) dhZ;Zis

being valid for all n � 1 .

3. To compute the first integral in (2.36) we shall first note that the Itô formula gives:

(2.37) F (ti; x+b(ti)) = F (ti�1; x+b(ti�1)) +
Z ti

ti�1
Ft(s; (x+b(s))�) ds

+

Z ti

ti�1
Fx(s; (x+b(s))�) db(s)

for all x 2 IR and i = 1; 2; . . . ; n . It follows in the same way as the proof of (2.32) sketched

above upon using that F = F1 on C and F = F2 on D where F1 and F2 are C1;2

functions from (1.5).

Recalling the definition of the first integral in (2.36) we find using (2.30)+(2.28) and (2.37)

that the following line of identities is true:

(2.38)

Z t

0
P n(ds; Zs) = IP� lim

m!1

mX
i=1

�
Pn(ti; Zti)�P n(ti�1; Zti)

�
= IP� lim

m!1

mX
i=1

Z
IR

�
G(ti; Zti+y=n)�G(ti�1; Zti+y=n)

�

(y) dy

= IP� lim
m!1

mX
i=1

Z
IR

�
F (ti; Zti+y=n+b(ti))�F (ti�1; Zti+y=n+b(ti�1))

�

(y) dy

= IP� lim
m!1

mX
i=1

Z
IR

�Z ti

ti�1
Ft(s; (Zti+y=n+b(s))+) ds

+

Z ti

ti�1
Fx(s; (Zti+y=n+b(s))+) db(s)

�

(y) dy

=

Z
IR

�Z t

0
Ft(s; (Zs+y=n+b(s))+)ds+

Z t

0
Fx(s; (Zs+y=n+b(s))+)db(s)

�

(y) dy

where the final identity follows from the fact that the maps z 7! Ft(s; (z+y=n+b(s))+) and

z 7! Fx(s; (z+y=n+b(s))+) are right-continuous. Letting n!1 in (2.38) we finally get:

(2.39) lim
n!1

Z t

0
P n(ds; Zs) =

Z t

0
Ft(s; (Zs+b(s))+) ds +

Z t

0
Fx(s; (Zs+b(s))+) db(s) .

4. Similar calculations can be performed with the map Nn . Instead of (2.35) we can write:

(2.40) Nn(t; Zt)�Nn(0; Z0) =
mX
i=1

�
Nn(ti; Zti)�Nn(ti; Zti�1)

�

10



+
mX
i=1

�
Nn(ti; Zti�1)�Nn(ti�1; Zti�1)

�
=

mX
i=1

�Z ti

ti�1
Nn
x (ti; Zs) dZs

+
1

2

Z ti

ti�1
Nn
xx(ti; Zs) dhZ;Zis

�
+

mX
i=1

Z ti

ti�1
Nn(ds; Zti�1) .

Using the same arguments as above, this then leads to the following analogue of (2.36):

(2.41) Nn(t; Zt) = Nn(0; Z0) +

Z t

0
Nn(ds; Zs) +

Z t

0
Nn
x (s; Zs)dZs +

1

2

Z t

0
Nn
xx(s; Zs)dhZ;Zis

as well as the following analogue of (2.38):

(2.42)

Z t

0
Nn(ds; Zs) = IP� lim

m!1

mX
i=1

Nn(ti; Zti�1)�Nn(ti�1; Zti�1)

=

Z
IR

�Z t

0
Ft(s; (Zs�y=n+b(s))�) ds+

Z t

0
Fx(s; (Zs�y=n+b(s))�) db(s)

�

(y) dy

where this time for the final identity it is used that the maps z 7! Ft(s; (z�y=n+b(s))�) and

z 7! Fx(s; (z�y=n+b(s))�) are left-continuous. Letting n!1 in (2.42) we finally get:

(2.43) lim
n!1

Z n

0
Nn(ds; Zs) =

Z t

0
Ft(s; (Zs+b(s))�) ds+

Z t

0
Fx(s; (Zs+b(s))�) db(s) .

5. With the aim of letting n ! 1 in (2.36) and (2.41), let us first note that:

(2.44) P n(t; x) ! G(t; x+) and Nn(t; x) ! G(t; x�)
(2.45) P n

x (t; x) ! Gx(t; x+) and Nn
x (t; x) ! Gx(t; x�)

(2.46) P n
xx(t; x) ! Gxx(t; x+) and Nn

xx(t; x) ! Gxx(t; x�)

as n ! 1 . It is important to note that the sequences in (2.44) and (2.45) are bounded by

a constant on any bounded subset of IR+�IR so that the (stochastic) dominated convergence

theorem can be used in (2.36) and (2.41) upon applying the localization argument; this, however,

is not the case with the sequences in (2.46) due to the existence of jumps of Gx at (t; 0) when

such ones exist for the map Fx(t; � ) at b(t) . More explicitly, substituting z = x�y=n in

(2.30) and (2.31) respectively, differentiating twice under the integral signs (which is justified by

the standard arguments recalled in the proof of (2.33) and (2.34) above), and using integration by

parts twice, we find that the following formulas are valid:

(2.47) P n
xx(t; x) =

Z
IR
Gxx(t; x+y=n) I(x+y=n 6= 0) 
(y) dy

+ n
(�nx)
�
Gx(t; 0+)�Gx(t; 0�)

�
(2.48) Nn

xx(t; x) =

Z
IR
Gxx(t; x�y=n) I(x�y=n 6= 0) 
(y) dy

+ n
(nx)
�
Gx(t; 0+)�Gx(t; 0�)

�
11



for all (t; x) 2 IR+�IR and all n � 1 , where clearly the final terms present the difficulty as they

are not uniformly bounded. From (2.47) and (2.48) we however see that:

(2.49) P n
xx(t; x) I

�
x =2 ]�1=n; 0[

� ! Gxx(t; x+)

(2.50) Nn
xx(t; x) I

�
x =2 ]0; 1=n[

� ! Gxx(t; x�)

as n ! 1 , while clearly these sequences are bounded by a constant on any bounded subset

of IR+�IR , so that the same arguments can be used for them as for the sequences in (2.44)

and (2.45) above.

6. It follows from the preceding arguments that by letting n!1 in (2.36)+(2.41) and using

(2.39)+(2.43), (2.44)+(2.45), (2.49)+(2.50) together with the identity:

(2.51) G(t; x) = lim
n!1Gn(t; x) = lim

n!1
1

2

�
P n(t; x)+Nn(t; x)

�
we obtain the following formula:

(2.52) G(t; Zt) = G(0; Z0) +

Z t

0

1

2

�
Ft(s; (Zs+b(s))+)+Ft(s; (Zs+b(s))�)

�
ds

+

Z t

0

1

2

�
Fx(s; (Zs+b(s))+)+Fx(s; (Zs+b(s))�)

�
db(s)

+

Z t

0

1

2

�
Gx(s; Zs+)+Gx(s; Zs�)

�
dZs +

1

2

Z t

0
Gxx(s; Zs) I(Zs 6=0) dhZ;Zis

+
1

2
IP� lim

n!1
1

2

Z t

0

�
n
(�nZs) I(�1=n<Zs<0) + n
(nZs) I(0<Zs<1=n)

�
�
Gx(s; 0+)�Gx(s; 0�)

�
dhZ;Zis

where the value of Gxx(s; Zs) for Zs = 0 does not matter since
R t
0 I(Zs=0) dhZ;Zis = 0 by

the occupation times formula (see e.g. [6] p. 224).

Applying (2.52) to the semimartingale Zt = Xt� b(t) and noting that the db(s) integral

cancels out, we obtain the following formula:

(2.53) F (t; Xt) = F (0; X0) +

Z t

0

1

2

�
Ft(s;Xs+)+Ft(s;Xs�)

�
ds

+

Z t

0

1

2

�
Fx(s;Xs+)+Fx(s;Xs�)

�
dXs +

1

2

Z t

0
Fxx(s;Xs) I(Xs 6=0) dhX;Xis

+
1

2
IP� lim

n!1
1

2

Z t

0
�xFx(s; b(s))

�
n
(n(b(s)�Xs)) I(b(s)�1=n<Xs<0)

+n
(n(Xs�b(s))) I(0<Xs<b(s)+1=n)

�
dhX;Xis

where we set �xFx(s; b(s)) = Fx(s; b(s)+)�Fx(s; b(s)�) and use that hX�b;X�bi = hX;Xi
since b is of bounded variation.
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7. Thus to complete the proof of (2.1) it is enough to establish the following limit representation:

(2.54) IP� lim
n!1

1

2(1=n)

Z t

0
�xFx(s; b(s))

�

(n(b(s)�Xs)) I(b(s)�1=n<Xs<0)

+
(n(Xs�b(s))) I(0<Xs<b(s)+1=n)

�
dhX;Xis

=

Z t

0
�xFx(s; b(s)) d`

b
s

which appears to be the analogue of (2.25) from Part I in the present case. An equivalent way of

looking at (2.54) is the following:

(2.55)
1

2(1=n)

�

(n(b(s)�Xs)) I(b(s)�1=n <Xs < 0)

+
(n(Xs�b(s))) I(0<Xs<b(s)+1=n)

�
dhX;Xis �! d`bs

on [0; t] in probability as n ! 1 . In view of (2.25) we see that yet another equivalent way

of looking at either (2.54) or (2.55) is the following:

(2.56)
1

2(1=n)

�

(n(b(s)�Xs)) I(b(s)�1=n <Xs < 0)

+ 
(n(Xs�b(s))) I(0<Xs<b(s)+1=n)

�
dhX;Xis

� 1

2(1=n)
I(b(s)�1=n<Xs< b(s)+1=n) dhX;Xis �! 0

on [0; t] in probability as n ! 1 .

8. It is at this point that Part I of the proof shows helpful. For this, firstly note that it is

enough to prove (2.54) when �xFx(s; b(s)) is replaced by h(s) where h : IR+ ! IR is any

C1 function. This follows easily since C1 functions s 7! h(s) are dense (by the Weierstrass

theorem) in the class of continuous functions s 7! �xFx(s; b(s)) with respect to the supremum

norm on the compact set [0; t] . Thus to establish (2.54) it is enough to prove that:

(2.57) IP� lim
n!1

1

2(1=n)

Z t

0
h(s)

�

(n(b(s)�Xs)) I(b(s)�1=n<Xs< 0)

+
(n(Xs�b(s))) I(0<Xs<b(s)+1=n)

�
dhX;Xis

=

Z t

0
h(s) d`bs

for any C1 function h : IR+ ! IR .

If such a function h is given, we can consider the function eF : IR+�IR! IR given by:

(2.58) eF (t; x) = h(t) jxj

for (t; x) 2 IR+�IR . This function is then of the type for which the formula (2.1) with eb(s) � 0
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was proved in Part I above for any continuous semimartingale. Taking the semimartingale to beeXt = Xt�b(t) and noting that �x
eFx(s;eb(s)) = �x

eFx(s; 0) = 2h(s) , we see that (2.57) follows

by a direct comparison of (2.53) from Part II and (2.1) from Part I, both with eF , eX and eb in

place of F , X and b , respectively. Thus (2.57) holds for all C1 functions and therefore for all

continuous functions h as well. Since s 7! �xFx(s; b(s)) is continuous by (1.9), this establishes

(2.54). Finally, inserting (2.54) in (2.53) we obtain (2.1), and the proof is complete.

We will conclude the present section with a few remarks which are aimed to clarify some of

the points related to the change-of-variable formula (2.1).

Remark 2.2

The following two simple examples may help to obtain a better feeling for the class of functions

F : IR+�IR ! IR to which the change-of-variable formula (2.1) is applicable.

1. Let F1(t; x) = (t� 1)2 and F2(t; x) = x2 for (t; x) 2 IR+�IR , and let C = f (t; x) j x<
jt�1 jg and D = f(t; x) j x> jt�1 jg . Then F defined to be F1 on �C and being equal F2 on
�D satisfies (1.3) and (1.4) so that the change-of-variable formula (2.1) can be applied. Note that

b(t) = j t�1 j in this case, and that b is not differentiable at t=1 . This fact does not contradict

the implicit function theorem (see e.g. [3] p. 8) since (@=@t)(F2�F1)(t; x) = �2(t�1) = 0
for (t; x) = (1; b(1)) = (1; 0) . Using the same method one can similarly construct many other

functions F to which the change-of-variable formula (2.1) is applicable.

2. Let F (t; x) = (x�b(t))+ for (t; x) 2 IR+�IR where b : IR+ ! IR is a continuous

function. If b is C1 then F satisfies (1.3) and (1.4) with C and D from (1.1) and (1.2),

and the change-of-variable formula (2.1) can be applied. If b is only of bounded variation, then

the change-of-variable formula (2.1) can still be applied, however, with the function eF (t; x) = x+

instead of F and the continuous semimartingale eXt = Xt�b(t) instead of X , as in this

case we see that (1.1)-(1.4) are satisfied with eF in place of F and eb � 0 in place of b .

Finally, if b is only continuous then the change-of-variable formula (2.1) cannot generally be

applied in its present form.

Remark 2.3

The change-of-variable formula (2.1) can obviously be extended to the case when instead of

one function b we are given finitely many functions b1; b2; . . . ; bn which do not intersect.

More precisely, let us assume that the following conditions are satisfied:

(2.59) bi : IR+ ! IR is continuous and of bounded variation for 1 � i � n

(2.60) Fi : IR+�IR ! IR is C1;2 for 1 � i � n+1

(2.61) F (t; x) = F1(t; x) if x < b1(t)

= Fi(t; x) if bi�1(t) < x < bi(t) for 2 � i � n

= Fn+1(t; x) if x > bn(t)

where F : IR+�IR ! IR is continuous. If X = (Xt)t�0 is a continuous semimartingale, then

the change-of-variable formula (2.1) extends as follows:
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(2.62) F (t; Xt) = F (0; X0) +

Z t

0

1

2

�
Ft(s;Xs+)+Ft(s;Xs�)

�
ds

+

Z t

0

1

2

�
Fx(s;Xs+)+Fx(s;Xs�)

�
dXs

+
1

2

Z t

0
Fxx(s;Xs) I

�
Xs =2fb1(s); . . . ; bn(s)g

�
dhX;Xis

+
1

2

nX
i=1

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs= bi(s)) d`

bi
s (X)

where `bis (X) is the local time of X at the curve bi given by (1.6) above, and d`bis (X) refers

to the integration with respect to s 7! `bis (X) for i = 1; . . . ; n .

Remark 2.4

It should be noted that an effort is made in the proof above (recall (2.28) and (2.29) in Part

II) to establish the change-of-variable formula (2.1) with the one-dimensional limits Ft(s;Xs�)
and Fx(s;Xs�) instead of the two-dimensional limits Ft(s�; Xs�) and Fx(s�; Xs�) in the

first and second integral, respectively. The latter two limits may require a more complex analysis

which in turn may lead to more restrictive conditions on the function F if the curve b oscillates

heavily. This is not the case with the former two limits which also more naturally reflect that fact

that b is a function of t so that each line parallel to the x-axis intersects b at most once.

Note, however, if the following conditions are satisfied:

(2.63)

Z t

0

�
Ft(s;Xs+)+Ft(s;Xs�)

�
I(Xs = b(s)) ds = 0

(2.64)

Z t

0

�
Fx(s;Xs+)+Fx(s;Xs�)

�
I(Xs = b(s)) dXs = 0

then the first two integrals in (2.1) can be simplified to read as follows:

(2.65) F (t; Xt) = F (0; X0)+

Z t

0
Ft(s;Xs) I(Xs 6=b(s)) ds+

Z t

0
Fx(s;Xs) I(Xs 6=b(s)) dXs

+
1

2

Z t

0
Fxx(s;Xs) I(Xs 6= b(s)) dhX;Xis

+
1

2

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs= b(s)) d`bs(X)

whenever the other conditions of Theorem 2.1 are fulfilled. [The same fact extends to the formula

(2.62) above and the formula (2.70) below.]

Note that (2.63) is satisfied as soon as we know that:

(2.66) P
�
Xs = b(s)

�
= 0 for s 2 h0; t] .

Moreover, if X = M +A is the decomposition of X into a local martingale M and a

bounded-variation process A (both being continuous and adapted to the same filtration) then
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R t
0 (Fx(s;Xs+)+Fx(s;Xs�))I(Xs = b(s)) dXs =

R t
0 (Fx(s;Xs+)+Fx(s;Xs�))I(Xs = b(s)) dAs

since
R t
0 (Fx(s;Xs+)+Fx(s;Xs�))I(Xs = b(s)) dMs = 0 by the extended occupation times

formula (see e.g. [6] p. 232) using also that hM;Mi = hX;Xi = hX�b;X�bi where X � b
is a continuous semimartingale. We thus see that (2.64) is equivalent to:

(2.67)

Z t

0

�
Fx(s;Xs+)+Fx(s;Xs�)

�
I(Xs = b(s)) dAs = 0 .

For example, if X solves dXt = �(t; Xt) dt+ �(t; Xt) dBt where B is a standard Brownian

motion, then At =
R t
0 �(s;Xs) ds and (2.67) holds whenever (2.66) holds. Thus, in this case

we see that (2.66) is sufficient for both (2.63) and (2.64), and consequently (2.1) takes the simpler

form (2.65).

Remark 2.5

The change-of-variable formula (2.1) in Theorem 2.1 is expressed in terms of the symmetric

local time (1.6). The Part II of the proof clearly shows that we could work equally well with the

one-sided local times defined by:

(2.68) `b+s (X) = IP� lim
"#0

1

"

Z s

0
I(b(r)�Xr <b(r)+") dhX;Xir

(2.69) `b�s (X) = IP�lim
"#0

1

"

Z s

0
I(b(r)�"<Xr� b(r)) dhX;Xir

where only (2.2)+(2.3) in Part I of the proof should be accordingly modified. Then under the same

conditions as in Theorem 2.1 we find that the following analogues of (2.1) are valid:

(2.70) F (t; Xt) = F (0; X0) +

Z t

0
Ft(s;Xs�) ds +

Z t

0
Fx(s;Xs�) dXs

+
1

2

Z t

0
Fxx(s;Xs) I(Xs 6= b(s)) dhX;Xis

+
1

2

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs= b(s)) d`b�s (X) .

It is well-known that a main advantage of the one-sided local time (2.68) upon the symmetric local

time (1.6) is that the former generally admits a right-continuous modification in the space variable

(see e.g. [6] pp. 225 and 234). In particular, if X�b is a continuous local martingale, then the

three definitions (1.6), (2.68) and (2.69) coincide.

Remark 2.6

A key point in the proof above was reached through the definition (2.58) which enabled us to

connect Part II with Part I of the proof and in this way establish (2.54). When considering (2.54)

on its own, however, it is tempting to make use of the extended occupation times formula (see e.g.

[6] p. 232) and then integrate by parts in order to make use of the fact that Pn
x and Nx

n converge

weakly as n!1 . Although leading to the same formula (2.1), it seems that this approach may

have a drawback of requiring stronger conditions to be imposed on X than those used in Theorem

2.1 above, the aim of which would be to recover the continuity of the map x 7! `xt (X) in order
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to exploit the weak convergence mentioned. While this may well be working for a special class

of continuous semimartingales (such as diffusions driven by Brownian motion via SDE’s) it may

be difficult to extend this approach to the case of general continuous semimartingales treated in

Theorem 2.1. It is exactly at this point where the real power of the argument above rests.

3. Another proof and extensions

The proof of Theorem 2.1 given above makes use of the Itô formula and derives the Tanaka

formula. If we make use of the Tanaka formula as well, then a simpler proof can be given as

follows. The idea to use (3.1)-(3.4) below is due to Thomas Kurtz.

1. Set Z1
t = Xt ^ b(t) and Z2

t = Xt _ b(t) and note by (1.5) that:

(3.1) F (t; Xt) = F 1(t; Z1
t ) + F 2(t; Z2

t ) � F (t; b(t))

where for the notational convenience we set F 1 = F1 and F 2 = F2 . The processes (Z1
t )t�0

and (Z2
t )t�0 are continuous semimartingales admitting the following representations:

(3.2) Z1
t =

1

2

�
Xt+b(t) � jXt�b(t)j�

(3.3) Z2
t =

1

2

�
Xt+b(t) + jXt�b(t)j� .

Recalling the Tanaka formula:

(3.4) jXt�b(t)j = jX0�b(0)j +
Z t

0
sign(Xs�b(s)) d(Xs�b(s)) + `bt(X)

where sign(0) = 0 , we find that:

(3.5) dZ1
t =

1

2

�
d(Xt+b(t)) � sign(Xt�b(t)) d(Xt�b(t)) � d`bt(X)

�
=

1

2

��
1� sign(Xt�b(t)

�
dXt +

�
1 + sign(Xt�b(t)

�
db(t) � d`bt(X)

�
(3.6) dZ2

t =
1

2

�
d(Xt+b(t)) + sign(Xt�b(t)) d(Xt�b(t)) + d`bt(X)

�
=

1

2

��
1 + sign(Xt�b(t)

�
dXt +

�
1� sign(Xt�b(t)

�
db(t) + d`bt(X)

�
.

Hence we also see that:

(3.7) dhZ1; Z1it =
�
I(Xt<b(t)) +

1

4
I(Xt= b(t))

�
dhX;Xit = I(Xt<b(t)) dhX;Xit

(3.8) dhZ2; Z2it =
�
I(Xt>b(t)) +

1

4
I(Xt= b(t))

�
dhX;Xit = I(Xt>b(t)) dhX;Xit

where the second identity in (3.7) and (3.8) follows by the occupation times formula.
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2. Applying the Itô formula to F 1(t; Z1
t ) and using (3.5)+(3.7) we get:

(3.9) F 1(t; Z1
t ) = F 1(0; Z1

0 ) +

Z t

0
F 1
t (s; Z

1
s ) ds

+

Z t

0
F 1
x (s; Z

1
s ) dZ

1
s +

1

2

Z t

0
F 1
xx(s; Z

1
s ) dhZ1; Z1is

= F 1(0; Z1
0) +

Z t

0
F 1
t (s; Z

1
s ) ds+

1

2

Z t

0

�
1� sign(Xs�b(s))

�
F 1
x (s; Z

1
s ) dXs

+
1

2

Z t

0

�
1 + sign(Xs�b(s))

�
F 1
x (s; Z

1
s ) db(s)�

1

2

Z t

0
F 1
x (s; Z

1
s ) d`

b
s(X)

+
1

2

Z t

0
I(Xs < b(s))F 1

xx(s; Z
1
s ) dhX;Xis .

Applying the Itô formula to F 2(t; Z1
t ) and using (3.6)+(3.8) we get:

(3.10) F 2(t; Z2
t ) = F 2(0; Z2

0) +

Z t

0
F 2
t (s; Z

2
s ) ds

+

Z t

0
F 2
x (s; Z

2
s ) dZ

2
s +

1

2

Z t

0
F 2
xx(s; Z

2
s ) dhZ2; Z2is

= F 2(0; Z2
0) +

Z t

0
F 2
t (s; Z

2
s ) ds+

1

2

Z t

0

�
1 + sign(Xs�b(s))

�
F 2
x (s; Z

2
s ) dXs

+
1

2

Z t

0

�
1� sign(Xs�b(s))

�
F 2
x (s; Z

2
s ) db(s) +

1

2

Z t

0
F 2
x (s; Z

2
s ) d`

b
s(X)

+
1

2

Z t

0
I(Xs > b(s))F 2

xx(s; Z
2
s ) dhX;Xis .

3. With the aim of inserting (3.9) and (3.10) in the right-hand side of (3.1) we will proceed

by grouping the corresponding terms.

Firstly, note that:

(3.11) F 1(0; Z1
0) + F 2(0; Z2

0) = F 1(0; X0 ^ b(0)) + F 2(0; X0 _ b(0))

= F (0; X0) + F (0; b(0))

upon using (1.5) with t = 0 .

Secondly, note that:

(3.12)

Z t

0
F 1
t (s; Z

1
s ) ds+

Z t

0
F 2
t (s; Z

2
s ) ds =

Z t

0

�
F 1
t (s;Xs) + F 2

t (s; b(s))
�
I(Xs<b(s)) ds

+

Z t

0

�
F 1
t (s; b(s)) + F 2

t (s; b(s))
�
I(Xs= b(s)) ds

+

Z t

0

�
F 1
t (s; b(s)) + F 2

t (s;Xs)
�
I(Xs> b(s)) ds
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=

Z t

0

�
Ft(s;Xs) I(Xs<b(s)) +

1

2

�
Ft(s; b(s)�) + Ft(s; b(s)+)

�
I(Xs= b(s))

+Ft(s;Xs) I(Xs > b(s))

�
ds

+

Z t

0

�
Ft(s; b(s)+) I(Xs<b(s)) +

1

2

�
Ft(s; b(s)�) + Ft(s; b(s)+)

�
I(Xs= b(s))

+Ft(s; b(s)�) I(Xs > b(s))

�
ds

=

Z t

0

1

2

�
Ft(s;Xs+) + Ft(s;Xs�)

�
ds

+

Z t

0

�
Ft(s; b(s)+) I(Xs<b(s)) +

1

2

�
Ft(s; b(s)�) + Ft(s; b(s)+)

�
I(Xs= b(s))

+Ft(s; b(s)�) I(Xs > b(s))

�
ds

upon using in the final identity that F is C1;2 on C and D .

Thirdly, note that:

(3.13)
1

2

Z t

0

�
1� sign(Xs�b(s))

�
F 1
x (s; Z

1
s ) dXs +

1

2

Z t

0

�
1 + sign(Xs�b(s))

�
F 2
x (s; Z

2
s ) dXs

=

Z t

0

�
1

2

�
1 � sign(Xs�b(s))

�
F 1
x (s;Xs)

+
1

2

�
1 + sign(Xs�b(s))

�
F 2
x (s; b(s))

�
I(Xs< b(s)) dXs

+

Z t

0

�
1

2

�
1 � sign(Xs�b(s))

�
F 1
x (s; b(s))

+
1

2

�
1 + sign(Xs�b(s))

�
F 2
x (s; b(s))

�
I(Xs = b(s)) dXs

+

Z t

0

�
1

2

�
1 � sign(Xs�b(s))

�
F 1
x (s; b(s))

+
1

2

�
1 + sign(Xs�b(s))

�
F 2
x (s;Xs)

�
I(Xs>b(s)) dXs

=

Z t

0
F 1
x (s;Xs) I(Xs<b(s)) dXs +

Z t

0

1

2

�
F 1
x (s; b(s)) + F 2

x (s; b(s))
�
I(Xs = b(s)) dXs

+

Z t

0
F 2
x (s;Xs) I(Xs>b(s)) dXs =

Z t

0

1

2

�
Fx(s;Xs+) + Fx(s;Xs�)

�
dXs

upon using in the final identity that F = F 1 on �C and F = F 2 on �D .

Fourthly, note that:

(3.14)
1

2

Z t

0

�
1+sign(Xs�b(s))

�
F 1
x (s; Z

1
s ) db(s)+

1

2

Z t

0

�
1� sign(Xs�b(s))

�
F 2
x (s; Z

2
s ) db(s)
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=

Z t

0

�
1

2

�
1 + sign(Xs�b(s))

�
F 1
x (s;Xs)

+
1

2

�
1 � sign(Xs�b(s))

�
F 2
x (s; b(s))

�
I(Xs< b(s)) db(s)

+

Z t

0

�
1

2

�
1 + sign(Xs�b(s))

�
F 1
x (s; b(s))

+
1

2

�
1 � sign(Xs�b(s))

�
F 2
x (s; b(s))

�
I(Xs= b(s)) db(s)

+

Z t

0

�
1

2

�
1 + sign(Xs�b(s))

�
F 1
x (s; b(s))

+
1

2

�
1 � sign(Xs�b(s))

�
F 2
x (s;Xs)

�
I(Xs>b(s)) db(s)

=

Z t

0

�
F 2
x (s; b(s)) I(Xs<b(s)) +

1

2

�
F 1
x (s; b(s)) + F 2

x (s; b(s))
�
I(Xs= b(s))

+F 1
x(s; b(s)) I(Xs > b(s))

�
db(s)

=

Z t

0

�
Fx(s; b(s)+) I(Xs<b(s)) +

1

2

�
Fx(s; b(s)�) + Fx(s; b(s)+)

�
I(Xs= b(s))

+Fx(s; b(s)�) I(Xs > b(s))

�
db(s)

upon using in the final identity that F = F 1 on �C and F = F 2 on �D .

4. Inserting (3.9) and (3.10) in the right-hand side of (3.1) and using (3.11)-(3.14) we see that

the change-of-variable formula (2.1) will be obtained if we can verify the following identity:

(3.15) F (t; b(t)) = F (0; b(0))

+

Z t

0

�
Ft(s; b(s)+) I(Xs<b(s)) +

1

2

�
Ft(s; b(s)+) + Ft(s; b(s)�)

�
I(Xs=b(s))

+Ft(s; b(s)�) I(Xs > b(s))

�
ds

+

Z t

0

�
Fx(s; b(s)+) I(Xs<b(s)) +

1

2

�
Fx(s; b(s)+) + Fx(s; b(s)�)

�
I(Xs=b(s))

+Fx(s; b(s)�) I(Xs > b(s))

�
db(s) .

To prove (3.15) formally first note that by (1.5) we have:

(3.16) F (t; b(t)) � F (0; b(0)) =

Z t

0
Ft(s; b(s)+) ds +

Z t

0
Fx(s; b(s)+) db(s)

=

Z t

0
Ft(s; b(s)�) ds +

Z t

0
Fx(s; b(s)�) db(s)
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for all t � 0 . In particular, taking first A = ht1; t2] for 0 � t1 < t2 � t with t > 0 fixed, and

then using the standard uniqueness argument for finite measures, we see that the second identity

in (3.16) extends as follows:

(3.17)

Z t

0
Ft(s; b(s)+) 1A(s) ds +

Z t

0
Fx(s; b(s)+) 1A(s) db(s)

=

Z t

0
Ft(s; b(s)�) 1A(s) ds +

Z t

0
Fx(s; b(s)�) 1A(s) db(s)

for every Borel subset A of [0; t] . Letting A in (3.17) first to be f 0 � s � t j Xs<b(s) g
and then f 0 � s � t j Xs=b(s) g , we see that the identity (3.15) reduces to equality between the

first and the third term in (3.16). This shows that (3.15) is valid and thus (2.1) is satisfied as well.

5. The preceding proof can be conveniently extended to derive a version of the change-of-

variable formula (2.1) that goes beyond the conditions (1.3) and (1.4). Motivated by applications

in free-boundary problems of optimal stopping (cf. [4]-[5]) we will now present such an extension

of (2.1) where (1.3) and (1.4) are replaced by the conditions:

(3.18) F is C1;2 on C

(3.19) F is C1;2 on D

and X = (Xt)t�0 is a diffusion process solving:

(3.20) dXt = �(t; Xt) dt + �(t; Xt) dBt

in Itô’s sense. The latter more precisely means that X satisfies:

(3.21) Xt = X0 +

Z t

0
�(s;Xs) ds +

Z t

0
�(s;Xs) dBs

for all t � 0 where � and � are locally bounded (continuous) functions for which the integrals

in (3.21) are well-defined (the second being Itô’s) so that X itself is a continuous semimartingale

(the process B = (Bt)t�0 is a standard Brownian motion). To ensure that X is non-degenerate

we will assume that � > 0 . This fact, in particular, implies that (2.66) holds for all t > 0 so

that (2.1) takes the simpler form (2.65) whenever (1.3) and (1.4) are satisfied.

It turns out, however, that the conditions (1.3) and (1.4) are not always readily verified. The

main example we have in mind (arising from the free-boundary problems mentioned above) is:

(3.22) F (t; x) = Et;x

�
G(t+�D; Xt+�D)

�
where Xt = x under Pt;x , an admissible function G is given and fixed, and:

(3.23) �D = inf f s > 0 j (t+s;Xt+s) 2D g .

Then one directly obtains the ’interior condition’ (3.18) by standard means while the ’closure

condition’ (1.3) is harder to verify at b since (unless we know a priori that b is Lipschitz

continuous or even differentiable) both Ft and Fxx may in principle diverge when b is
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approached from the interior of C .

The following theorem is designed precisely to handle such cases (without entering into more

involved arguments on Lipschitz continuity or differentiability of b which is not given explicitly)

provided that one has some basic control over Fx at b . [In free-boundary problems mentioned

above such a control is provided by the principle of smooth fit which often follows knowing only

that b is increasing or decreasing for instance.] It turns out that in the latter case even if Ft is

formally to diverge when the boundary b is approached from the interior of C , this deficiency

is counterbalanced by a similar behaviour of Fxx through the infinitesimal generator of X , and

consequently the first integral in (3.29) below is still well-defined and finite. For specific applications

of the theorem below see [4] and [5] (as well as a number of subsequent papers on the topic).

6. Given a subset A of IR+�IR and a function f : A! IR we say that f is locally bounded

on A ( in IR+�IR ) if for each a in �A there is an open set U in IR+�IR containing a such

that f restricted to A\U is bounded. Note that f is locally bounded on A if and only if for

each compact set K in IR+�IR the restriction of f to A\K 6= ; is bounded. Given a function

g : [0; t]! IR of bounded variation we let V (g)(t) denote the total variation of g on [0; t] .

To grasp the meaning of the condition (3.26) below in the case of F from (3.22) above, letting

ILX = @=@t + � @=@x + (�2=2) @2=@x2 denote the infinitesimal generator of X , note that:

(3.24) ILXF = 0 in C

(3.25) ILXF = ILXG in D .

This shows that ILXF is locally bounded on C [D as soon as ILXG is so on D . The latter

condition (in free-boundary problems) is easily verified since G is given explicitly.

The second result of the present paper may now be stated as follows (see also Remark 3.2

below for further sufficient conditions).

Theorem 3.1

Let X = (Xt)t�0 be a diffusion process solving (3.20) in Itô’s sense, let b : IR+ ! IR be

a continuous function of bounded variation, and let F : IR+�IR ! IR be a continuous function

satisfying (3.18) and (3.19) above.

If the following conditions are satisfied:

(3.26) Ft + �Fx + (�2=2)Fxx is locally bounded on C [ D

(3.27) Fx( � ; b( � )�") ! Fx( � ; b( � )�) uniformly on [0; t] as " # 0

(3.28) sup
0<"<�

V (F ( � ; b( � )�"))(t) < 1 for some � > 0

then the following change-of-variable formula holds:

(3.29) F (t; Xt) = F (0; X0) +

Z t

0

�
Ft + �Fx + (�2=2)Fxx

�
(s;Xs) I(Xs 6= b(s)) ds

+

Z t

0
(�Fx)(s;Xs) I(Xs 6= b(s)) dBs
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+
1

2

Z t

0

�
Fx(s;Xs+)�Fx(s;Xs�)

�
I(Xs= b(s)) d`bs(X)

where `bs(X) is the local time of X at the curve b given by (1.6) above, and d`bs(X) refers to

the integration with respect to the continuous increasing function s 7! `bs(X) .

Before we pass to the proof of (3.29) we will state a number of sufficient conditions which

either imply (3.26)-(3.28) or can be used instead. It will be assumed in the following remark that

F satisfies (3.18) and (3.19) above. Fuller arguments for the statements appearing in the remark

will be given in the proof below.

Remark 3.2

1. Note that (1.3) and (1.4) imply (3.26)-(3.28) so that (3.29) is a version of (2.1) obtained

under weaker conditions. Note also that the following condition:

(3.30) Fx is continuous on �C and �D

implies (3.27). Finally, if either of the following two sets of conditions is satisfied:

(3.31) s 7! F (s; x) is decreasing on [0; t] for each x 2 IR ; x 7! F (s; x) is decreasing

(increasing) on IR for each s 2 [0; t] ; s 7! b(s) is increasing (decreasing) on [0; t]

(3.32) s 7! F (s; x) is increasing on [0; t] for each x 2 IR ; x 7! F (s; x) is increasing

(decreasing) on IR for each s 2 [0; t] ; s 7! b(s) is increasing (decreasing) on [0; t]

then (3.28) holds as well.

2. If (3.27) holds, then the following condition:

(3.33) s 7! Ft(s; b(s)�") does not change its sign on [0; t] for " # 0

implies (3.28). Moreover, if both (3.26) and (3.27) hold, then the following condition:

(3.34) s 7! Fxx(s; b(s)�") does not change its sign on [0; t] for " # 0

implies (3.28) as well. In particular, if (3.26) and the following two conditions hold:

(3.35) x 7! F (s; x) is convex or concave on [b(s)� �; b(s)] and convex or concave on

[b(s); b(s)+�] for each s 2 [0; t] with some � > 0

(3.36) s 7! Fx(s; b(s)�) is continuous on [0; t] with values in IR

then both (3.27) and (3.28) hold. This shows that (3.35) and (3.36) imply (3.29) when (3.26) holds.

The condition (3.35) can further be relaxed to the form where:

(3.37) Fxx = G1 + G2 on C [ D

where G1 is non-negative (non-positive) and G2 is continuous on �C and �D . Thus, if (3.36)

and (3.37) hold, then both (3.27) and (3.28) hold implying also (3.29) when (3.26) holds.
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3. The condition (3.27) in the above theorem can be replaced by the following condition:

(3.38) sup
0�"<�

V (Fx( � ; b( � )�"))(t) < 1 for some � > 0 .

Thus, if (3.26) holds, then (3.28) and (3.38) imply (3.29). Note that " in (3.38) is required to be

0 as well. [Although it appears to be of theoretical interest, when stated together and compared

with (3.28), the condition (3.38) is somewhat harder to verify generally.]

Proof. The proof is an extension of the arguments (3.1)-(3.17) above obtained by replacing b
by b� " and b + " and passing to the limit when " # 0 (possibly over a subsequence).

1. For this, set Z1;"
t = Xt^(b(t)�") and Z2;"

t = Xt_(b(t)+") and write down the formulas

(3.9) and (3.10) with b � " and b + " instead of b respectively. Grouping the corresponding

terms like in (3.11)-(3.14) we find that:

(3.39) F (t; Z1;"
t ) + F (t; Z2;"

t ) = F
�
0; X0^(b(0)�")

�
+ F

�
0; X0_(b(0)+")

�
+

Z t

0

�
Ft + �Fx + (�2=2)Fxx

�
(s;Xs) I

�
Xs =2 [b(s)�"; b(s)+"]

�
ds

+

Z t

0
(�Fx)(s;Xs) I

�
Xs =2 [b(s)�"; b(s)+"]

�
dBs

+
1

2

Z t

0
Fx(s; b(s)+") d`b+"

s (X) � 1

2

Z t

0
Fx(s; b(s)�") d`b�"s (X)

+

Z t

0
Ft(s; b(s)+") I(Xs<b(s)+") ds+

Z t

0
Fx(s; b(s)+") I(Xs<b(s)+") db(s)

+

Z t

0
Ft(s; b(s)�") I(Xs>b(s)�") ds+

Z t

0
Fx(s; b(s)�") I(Xs>b(s)�") db(s)

upon using that P (Xs = b(s)�") = 0 for 0 < s � t .

2. Suppose that we can prove that:

(3.40)
1

2

Z t

0
Fx(s; b(s)+") d`b+"

s (X) � 1

2

Z t

0
Fx(s; b(s)�") d`b�"s (X)

! 1

2

Z t

0
Fx(s; b(s)+) d`bs(X) � 1

2

Z t

0
Fx(s; b(s)�) d`bs(X)

as well as that:

(3.41)

Z t

0
Ft(s; b(s)+") I(Xs<b(s)+") ds+

Z t

0
Fx(s; b(s)+") I(Xs<b(s)+") db(s)

+

Z t

0
Ft(s; b(s)�") I(Xs>b(s)�") ds+

Z t

0
Fx(s; b(s)�") I(Xs>b(s)�") db(s)

! F (t; b(t)) � F (0; b(0))

both P -a.s. as " # 0 (possibly over a subsequence). Then letting " # 0 in (3.39) and using
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the dominated convergence theorem (deterministic and stochastic) to establish a convergence in

P -probability of the first and second integral in (3.39), where (3.26) can be used for the former

and for the latter it may be noted that (3.27) implies that Fx and thus �Fx as well are both

locally bounded on C [D , we see that the limiting identity obtained is exactly (3.29) above. The

proof therefore reduces to derive (3.40) and (3.41).

3. To derive (3.40) let us show that:

(3.42)

Z t

0
Fx(s; b(s)�") d`b�"s (X) !

Z t

0
Fx(s; b(s)�) d`bs(X)

P -a.s. as " # 0 over a subsequence. For this, note that sup 0�s�t j`b�"s (X)� `bs(X)j ! 0 P -a.s.

as " # 0 over a subsequence as shown in (3.59) below. Thus outside a P -null set d`b�"s
�! d`bs(X)

on [0; t] as " # 0 over a subsequence. From the weak convergence just established and the

uniform convergence assumed in (3.27) one easily finds that (3.42) holds as claimed.

4. To derive (3.41) first note that by adding and subtracting the same terms and using (3.45)

below we find that (3.41) is equivalent to:

(3.43)

Z t

0
Ft(s; b(s)+") I(Xs� b(s)+") ds +

Z t

0
Fx(s; b(s)+") I(Xs� b(s)+") db(s)

+

Z t

0
Ft(s; b(s)�") I(Xs�b(s)�") ds+

Z t

0
Fx(s; b(s)�") I(Xs�b(s)�") db(s)

! F (t; b(t)) � F (0; b(0))

P -a.s. as " # 0 over a subsequence. Note that the relation (3.43) is obvious if Xs stays strictly

above or below b(s) for all 0 � s � t or if s 7! Xs crosses s 7! b(s) finitely many times on

[0; t] . To treat the case of a sample path of X we may invoke some results on weak convergence

of signed measures and proceed as follows.

Let �" denote the Lebesgue-Stieltjes signed measure associated with s 7! F (s; b(s)+") on

[0; t] , and let � denote the Lebesgue-Stieltjes signed measure associated with s 7! F (s; b(s))
on [0; t] . Let �+" and ��" denote the positive and negative part of �" respectively. Since

(3.28) holds we can use Helly’s selection theorem to conclude that �+"n
�! �1 and ��"n

�! �2
over a subsequence "n # 0 as n!1 , where �1 and �2 are positive finite measures on [0; t] .

Moreover, since F (s; b(s)+"n)! F (s; b(s)) as n!1 for each s 2 [0; t] , and s 7! F (s; b(s))
is (right-)continuous on [0; t] , it follows that � = �1 � �2 .

Set An = f 0 � s � t j Xs � b(s)+"n g for n � 1 and note that An " A as n ! 1
where A = f 0 � s � t j Xs > b(s) g . Since @An � f 0 � s � t j Xs = b(s)+"n g we see that:

(3.44) E

�Z t

0
1@An

(s) �1;2(ds)

�
� E

�Z t

0
I(Xs= b(s)+"n) �1;2(ds)

�
=

Z t

0
P (Xs= b(s)+"n) �1;2(ds) = 0

for all n � 1 . This shows that �1;2(@An) = 0 for all n � 1 outside a P -null set. In exactly

the same way one finds that �1;2(@A) = 0 outside a P -null set.
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Denoting ��n = ��"n for all n � 1 we claim that limn!1 ��n (An) = �1;2(A) outside a P -null

set. To see this set anm = ��n (Am) and note that the two limits an1 = limm!1 anm = ��n (A)
and a1m = limn!1 anm = �1;2(Am) exist (the latter outside a P -null set by the weak

convergence established) and moreover satisfy limn!1 an1 = limm!1 a1m = �1;2(A) =: a11
(the former outside a P -null set by the weak convergence established). Clearly ann � an1 since

An " A so that lim supn!1 ann � a11 . On the other hand, since anm � ann for all m � n ,

it follows first by letting n!1 that a1m � lim inf n!1 ann and then again by letting m!1
that a11 � lim inf n!1 ann . This proves that limn!1 ann = a11 outside a P -null set as

claimed. In particular, this implies that �"n(A"n) ! �(A) as n!1 outside a P -null set.

Returning to (3.43) and recalling the formula (with the plus sign):

(3.45) F (t; b(t)�") = F (0; b(0)�") +
Z t

0
Ft(s; b(s)�") ds+

Z t

0
Fx(s; b(s)�") db(s)

being true for every t > 0 , we see by the previous conclusion that:

(3.46)

Z t

0
Ft(s; b(s)+"n) I(Xs�b(s)+"n) ds+

Z t

0
Fx(s; b(s)+"n) I(Xs�b(s)+"n) db(s)

= �"n(A"n) ! �(A)

P -a.s. as n ! 1 . In exactly the same way one proves that:

(3.47)

Z t

0
Ft(s; b(s)�"n) I(Xs�b(s)�"n) ds+

Z t

0
Fx(s; b(s)�"n) I(Xs�b(s)�"n) db(s)

= �"n(B"n) ! �(B)

P -a.s. over some "n # 0 as n ! 1 , where �"n is the Lebesgue-Stieltjes signed measure

associated with s 7! F (s; b(s)�"n) on [0; t] while B"n = f 0 � s � t j Xs � b(s)�"n g and

B = f 0 � s � t j Xs < b(s) g, upon using the formula (3.45) (with the minus sign).

From (3.46) and (3.47) we see that the four integrals on the left-hand side of (3.43) converge

to �(A) + �(B) P -a.s. as " # 0 over a subsequence. Moreover, from the fact that:

(3.48) E

�Z t

0
1Ac\Bc(s) �1;2(ds)

�
= E

�Z t

0
I(Xs= b(s)) �1;2(ds)

�
=

Z t

0
P (Xs= b(s)) �1;2(ds) = 0

it follows that �1;2(A
c \Bc) = 0 outside a P -null set. Hence �(Ac \Bc) = 0 outside a P -null

set so that �(A) + �(B) = �(A [ B) = �([0; t]) = F (t; b(t))�F (0; b(0)) P -a.s. as claimed in

(3.43). This completes the proof of (3.29) under (3.26)-(3.28).

In the reminder of the proof we present fuller arguments for the statements given in Remark

3.2 above upon recalling that F is assumed to satisfy (3.18) and (3.19).

5. To see that (1.3) and (1.4) imply (3.26)-(3.28) note first that (1.3) and (1.4) imply (3.26).

Moreover, noting that (1.3) and (1.4) imply (3.30), and applying the general fact that each continuous

function on a compact set is uniformly continuous, we see that (3.30) implies (3.27) and thus so
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do (1.3) and (1.4) as claimed. Finally, from (3.45) we find that:

(3.49) V (F ( � ; b( � )�"))(t) �
Z t

0
jFt(s; b(s)�")j ds +

Z t

0
jFx(s; b(s)�")j dV (b)(s)

for " > 0 . Since under (1.3) and (1.4) both Ft and Fx are continuous on �C and �D , and

thus bounded on each compact set contained in �C and �D , it follows by taking supremum over

all 0 < " < � on both sides of (3.49) that (3.28) is satisfied for all � > 0 . This shows that

(1.3) and (1.4) imply (3.28) as claimed.

If (3.31) holds then s 7! F (s; b(s)�") is decreasing on [0; t] and therefore of bounded

variation. Moreover, since F is continuous and thus locally bounded we see that (3.28)

follows as well. This shows that (3.31) implies (3.28) as claimed. Similarly, if (3.32) holds

then s 7! F (s; b(s)�") is increasing on [0; t] and (3.28) follows in the same way. This shows

that (3.32) implies (3.28) as claimed.

6. For (3.33) recall first that (3.45) implies (3.49) above. Moreover, using (3.33) and taking

supremum over all 0 < " < � in (3.45) we find:

(3.50) sup
0<"<�

Z t

0
jFt(s; b(s)�")j ds = sup

0<"<�

Z t

0
Ft(s; b(s)�") ds

= sup
0<"<�

�
F (t; b(t)�") � F (0; b(0)�")�

Z t

0
Fx(s; b(s)�") db(s)

�
� sup

0<"<�
jF (t; b(t)�")j+ sup

0<"<�
jF (0; b(0)�")j+ sup

0<"<�

Z t

0
jFx(s; b(s)�")jdV (b)(s) <1

where the final (strict) inequality follows from the fact that F and Fx are locally bounded on

C and D . Taking supremum over all 0 < " < � on both sides of (3.49) and using (3.50) we

find that (3.28) is satisfied for all � > 0 . This shows that (3.33) implies (3.28) when (3.27) holds.

For (3.34) note that Ft = ILXF � �F � (�2=2)Fxx where LXF and �Fx are locally

bounded on C and D by (3.26) and (3.27) respectively. Inserting the former expression for

Ft into the right-hand-side of (3.49) we get:

(3.51) V (F ( � ; b( � )�"))(t) �
Z t

0
jILXF (s; b(s)�")j ds +

Z t

0
j(�Fx)(s; b(s)�")j ds

+

Z t

0
((�2=2)jFxxj)(s; b(s)�")ds+

Z t

0
jFx(s; b(s)�")j dV (b)(s)

for " > 0 . Moreover, using (3.34) and taking supremum over all 0 < " < � in (3.45) we find:

(3.52) sup
0<"<�

Z t

0
((�2=2)jFxxj)(s; b(s)�") ds = sup

0<"<�

Z t

0
((�2=2)(�Fxx))(s; b(s)�") ds

= sup
0<"<�

�
� F (0; b(0)�")� F (t; b(t)�")�

Z t

0
(ILXF��Fx)(s; b(s)�") ds

�
Z t

0
Fx(s; b(s)�") db(s)

�
� sup

0<"<�
jF (0; b(0)�")j + sup

0<"<�
jF (t; b(t)�")j + sup

0<"<�

Z t

0
jILXF (s; b(s)�")j ds
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+ sup
0<"<�

Z t

0
j(�Fx)(s; b(s)�")j ds + sup

0<"<�

Z t

0
jFx(s; b(s)�")j dV (b)(s) < 1

where the final (strict) inequality follows from the fact that F , ILXF , �Fx and Fx are locally

bounded on C and D . Taking supremum over all 0 < " < � on both sides of (3.51) and

using (3.52) we find that (3.28) is satisfied for all � > 0 . This shows that (3.34) implies (3.28)

when (3.26) and (3.27) hold.

For (3.35) note first that if x 7! F (s; x) is convex (concave) then x 7! Fx(s; x) is

increasing (decreasing) so that " 7! Fx(s; b(s)� ") is increasing (decreasing). Each of the

preceding two conclusions together with (3.36) then implies (3.27) by Dini’s theorem (note that

each s 7! Fx(s; b(s)�") is continuous on the compact set [0; t] ). Moreover, since Fxx � 0
or Fxx � 0 depending on if x 7! F (s; x) is convex or concave, we see that (3.35) implies

(3.34). Taken together with the previous conclusion this shows that (3.35) and (3.36) imply (3.27)

and (3.28) when (3.26) holds.

That (3.35) in the previous implication can be relaxed to the form (3.37) follows firstly by

a simple modification of the proof given in (3.51)-(3.52) above which yields (3.28). For (3.27)

note that by setting c = min 0�s�t b(s) � 1 and integrating both sides in (3.37) from c to

x with respect to the space variable we find that Fx(s; x) � Fx(s; c) =
R x
c Fxx(s; y) dy =R x

c G1(s; y) dy +
R x
c G2(s; y) dy =: H1(s; x) + H2(s; x) where x 7! H1(s; x) is convex and

(s; x) 7! H2(s; x) is continuous on �C and �D . It thus follows as above that H1( � ; b( � )�")
! H1( � ; b( � )�) and H2( � ; b( � )�") ! H2( � ; b( � )�) both uniformly on [0; t] as " # 0 ,

where it should be noted that by (3.36) and the fact that H2 is continuous on �C and �D it

follows that s 7! H1(s; b(s)�) is continuous on [0; t] . This shows that (3.36) and (3.37) imply

(3.27) and (3.28) when (3.26) holds.

7. For (3.38) the idea is to transfer the requirement of uniform convergence (in the weak-limit

relations yielding (3.40) above) from Fx to `b(X) using integration by parts. The latter gives:

(3.53)

Z t

0
Fx(s; b(s)�") d`b�"s (X) = Fx(s; b(s)�")`b�"s (X)

��t
0
�

Z t

0
`b�"s (X) dsFx(s; b(s)�")

for " > 0 . Suppose that we can prove that:

(3.54)

Z t

0
`b�"s (X) dsFx(s; b(s)�") !

Z t

0
`bs(X) dsFx(s; b(s)�)

P -a.s. as " # 0 over a subsequence. Then letting " # 0 in (3.53), using (3.54), and integrating

back by parts we see that (3.42) holds and so does (3.40). Thus, the proof of (3.40) in this case

reduces to establish (3.54).

For this, since Fx(s; b(s)�") ! Fx(s; b(s)�) as " # 0 for every s 2 [0; t] , and the

condition (3.38) is assumed to be satisfied, by Helly’s theorem it follows that dsFx(s; b(s)�") �!
dsFx(s; b(s)�) on [0; t] in the sense that

R t
0 g(s) dsFx(s; b(s)�") !

R t
0 g(s) dsFx(s; b(s)�) as

" # 0 for every continuous function g : [0; t] ! IR . In view of (3.54) it is therefore sufficient

to show that outside a P -null set `b�"s (X) ! `bs(X) uniformly over s in [0; t] as " # 0
(possibly over a subsequence).

For this, apply the Tanaka formula to the semimartingale Z = X � b and the function
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f(z) = jz � "j for z 2 IR and " � 0 . This gives:

(3.55) jZt � "j = jZ0 � "j +
Z t

0
sign(Zs � ") dZs + `�"

t (Z)

where sign(0) = 0 . Noting that `�"
t (Z) = `b�"

t (X) we find from (3.55) that:

(3.56) sup
0�s�t

j`b�"
s (X) � `bs(X)j = sup

0�s�t
j`�"

s (Z) � `0s(Z)j

� sup
0�s�t

���jZs�"j�jZsj
��+��jZ0j�jZ0�"j

��+��� Z s

0

�
sign(Zr)�sign(Zr�")

�
dZr

����.

Setting H"
s = sign(Zs) � sign(Zs�") hence we find:

(3.57) sup
0�s�t

j`b�"
s (X) � `bs(X)j � 2" +

Z t

0
jH"

s j j�(s;Xs)j ds

+

Z t

0
jH"

s j dV (b)(s) + sup
0�s�t

��� Z t

0
H"

s �(s;Xs) dBs

��� .

The argument of (3.48) with Lebesgue measure � instead of �1;2 shows that outside a P -null

set Zs = Xs�b(s) = 0 for �-a.a. s in [0; t] . It follows that outside the same P -null set

H"
s ! 0 for �-a.a. s in [0; t] . Since jH"

s j � 2 for 0 � s � t and � is locally bounded

it thus follows by the dominated convergence theorem that the first integral in (3.57) tends to zero

outside a P -null set as " # 0 . In exactly the same way we find that the second integral in (3.57)

tends to zero outside a P -null set as " # 0 . To bound the third integral in (3.57) we can make

use of the Burkholder-Davis-Gundy inequality which yields:

(3.58) E

�
sup
0�s�t

��� Z s

0
H"

r �(r;Xr) dBr

���� � E

�Z t

0
(H"

s)
2�2(s;Xs) ds

�1=2
.

Since � is locally bounded and H"
s = 0 for Xs =2 [b(s)�"; b(s)+"] when s 2 [0; t] , it follows

as above following (3.57) that
R t
0 (H

"
s)

2�2(s;Xs) ds ! 0 outside a P -null set as " # 0 so that

the right-hand side of (3.58) tends to zero as " # 0 by the dominated convergence theorem. This

implies that the third integral in (3.57) tends to zero outside P -null set as " # 0 over a subsequence.

Summarizing the preceding conclusions in (3.57) we obtain:

(3.59) sup
0�s�t

j`b�"
s (X) � `bs(X)j ! 0

P -a.s. as " # 0 over a subsequence. Thus outside a P -null set `b�"
s (X) ! `bs(X) uniformly

over s in [0; t] as " # 0 over a subsequence as claimed. This shows that (3.38) imply that

(3.28) is sufficient for (3.29) when (3.26) holds. The proof is complete.

It appears evident from the proofs above that the change-of-variable formula (2.1) can be

extended to the case of a general (not necessarily continuous) semimartingale in the multi-

dimensional setting of functions which are smooth above and below surfaces (instead of curves).

Some of these extensions will be studied in a subsequent publication.
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