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Let B = (Bt)t�0 be a Brownian motion started at x 2 R . Given a stopping

time � for B and a real valued map F , we show how one can optimally bound:

E

�Z �

0

F
�jBtj

�
dt

�
in terms of E(�) . The method of proof relies upon solving the optimal stopping

problem where one minimizes or maximizes:

E

�Z �

0

F
�jBtj

�
dt � c�

�
over all stopping times � for B with c > 0 . By Itô’s formula and the optional

sampling theorem this problem simplifies to the form where explicit computations

are possible. The method is quantitatively demonstrated through the example of

F (x) = xr with r > �1 . This yields some new sharp inequalities.

1. Description of the problem and method of proof

Let (Bt)t�0 be standard Brownian motion. For simplicity in this section we assume that B
starts at zero, but most of the considerations can be extended to the case when B starts at any

x 2 R . Our starting point is Theorem 2.1 below where we prove the following inequalities:

(1.1) Ap E
�
� 1+p=2

� � E

�Z �

0
jBtjp dt

�
� Bp E

�
�1+p=2

�
for all stopping times � for B , and all p > 0 , where Ap and Bp are numerical constants.

Although the best values for the constants Ap and Bp in (1.1) are found below too, in most of

the cases it is much easier to evaluate E(�) rather than E(�1+p=2) .

In this paper we shall answer the question on how the inequality (1.1) can be optimally modified

if the quantity E(�1+p=2) is replaced by a function of E(�) . It turns out that the left-hand

inequality in (1.1) admits such a modification. In Theorem 2.2 below we prove that:

(1.2) E

�Z �

0
jBtjp dt

�
� 2

(2+p) (1+p)

�
E�

�1+p=2

for all stopping times � for B and all p > 0 , and moreover we show that 2=(2+p)(1+p) is

the best possible constant. The analogue of such an inequality does not extend to the right-hand

side in (1.1). In Example 2.4 below we show that the hitting times of the square root boundaries

violate its validity. For this reason we are forced to change the functional of the Brownian path in
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(1.1) from t 7! jBtj to t 7! jBtj�1 . It turns out that such a modified path admits an extension

of (1.2) to the right-hand side in (1.1). In Theorem 2.5 below we prove that:

(1.3) E

�Z �

0

1

jBtjq dt

�
� 2

(2�q) (1�q)
�
E�

�1�q=2

for all stopping times � for B and all 0 � q < 1 , and moreover we again show that 2=(2�q)(1�q)
is the best possible constant. The optimality of the constant both in (1.2) and (1.3) is achieved

through the hitting time of any positive number by the reflected Brownian motion jBj = (jBtj)t�0 .

In fact if �a = inf f t>0 : jBtj=a g for some a > 0 , then the equality is attained both in (1.2)

and (1.3). Consequently, by letting q " 1 in (1.3) we see that:

(1.4) E

�Z �a

0

1

jBtj dt
�

= 1 .

This explains why q must be strictly less than 1 when dealing with t 7! jBtj�q in (1.3).

Our proof of (1.2) and (1.3) is based upon solving the optimal stopping problem where one

minimizes resp: maximizes:

(1.5) E

�Z �

0
F
�jBtj

�
dt � c�

�
over all stopping times � for B . Here F : R! R is a suitable function, and c > 0 is given

and fixed. By Itô formula and the optional sampling theorem we find that (1.5) gets the form:

(1.6) E
�
H
�jB� j

��cjB� j2
�

where F = H 00=2 ( with H(0) =H 0(0) = 0 ). This further equals:

(1.7)

Z 1

0

�
H(x)�cx2� dPjB� j(x)

where PjB� j denotes the distribution law of jB� j . Thus if x�(c) denotes a minimum resp:

maximum point of the map x 7! H(x)�cx2 on R+ , then:

(1.8) ��(c) = inf
�
t > 0 : jBtj = x�(c)

	
is the optimal stopping time for the problem (1.5). This enables us to evaluate the minimum Z�(c)
resp: the maximum Z�(c) in (1.5) exactly. By definition of the minimum then it follows:

(1.9) E

�Z �

0
F
�jBtj

�
dt

�
� sup

c>0

�
cE(�) + Z�(c)

�
whenever � is a stopping time for B . Similarly, by definition of the maximum we get:

(1.10) E

�Z �

0
F
�jBtj

�
dt

�
� inf

c>0

�
cE(� ) + Z�(c)

�
for all stopping times � for B . Supposing that the supremum in (1.9) resp: the infimum in (1.10)

is attained at some c� > 0 , the right-hand side in (1.9) resp: (1.10) defines a function of E(�) .
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Since the stopping time ��(c) is optimal for the problem (1.5) regardless of c > 0 , it is clear that

the inequalities (1.9) and (1.10) are sharp (the equality may be attained in a non-trivial manner).

In this paper we apply this method and make explicit computations only for the function

F (x) = xr with r > �1 , and this yields the inequalities (1.2) and (1.3), respectively. We want to

mention that the cases of other functions F , including the case when B may start at any point,

could be treated similarly. We believe that the presentation of our method above enables one to

recognize the constraints on the function F needed to derive the inequalities (1.9) and (1.10) in a

precise manner. For instance, if F is continuous and the map x 7! H(x)� cx2 is bounded from

above resp: below on R+ , then (1.9) resp: (1.10) holds. Below we will see that the continuity

condition on F may be relaxed ( by treating the case where F (x) = xr for �1 < r < 0 ).

In such a case one should use Itô-Tanaka’s formula (rather than Itô’s formula). It should be noted

too (particularly when applying the optional sampling theorem) that the stopping times appearing

throughout may be assumed bounded.

The results in this paper are similar in nature and can be compared with the results in [4]. In

some sense the optimal stopping appearing here could be called a Wald’s type optimal stopping for

the integral of Brownian paths. Despite their appealing simplicity we are unaware of similar results.

2. Optimal stopping inequalities

In this section we present the main results of the paper. Throughout B = (Bt)t�0 is standard

Brownian motion defined on a probability space (
;F ; P ) . We begin by giving a proof of the

inequalities (1.1). To the best of our knowledge these inequalities have not been written down

earlier, but we believe that they are known.

Theorem 2.1

Let B = (Bt)t�0 be standard Brownian motion. Then the following inequalities are satisfied:

(2.1) ApE
�
� 1+p=2

� � E

�Z �

0
jBtjp dt

�
� BpE

�
�1+p=2

�
for all stopping times � for B , and all p > 0 , where Ap and Bp are numerical constants.

The best possible values for Ap and Bp are:

(2.2) A�p = 2(z2+p)
2+p=(2+p)(1+p)

(2.3) B�
p = 2(z�2+p)

2+p=(2+p)(1+p)

where z2+p denotes the smallest positive zero of the confluent hypergeometric function x 7!
M(�(2+p)=2; 1=2; x2=2) , and z�2+p denotes the largest positive zero of the parabolic cylinder

function x 7! D2+p(x) (see [1]). (In particular z2n resp: z�2n is the smallest resp: largest positive

zero of the Hermite polynomial x 7! He2n(x) for n� 1 .)

Proof. Let p > 0 be given and fixed. By Itô formula we have:

(2.4) jBtj2+p = (2+p)

Z t

0
jBsj1+psign(Bs) dBs + 2�1(2+p)(1+p)

Z t

0
jBsjp ds
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= (2+p)Mt + Cp

Z t

0
jBsjp ds

where M = (Mt)t�0 is a continuous local martingale started at zero under P , and Cp =
2�1(2+p)(1+p) . Let [M ] = ([M ]t)t�0 denote the quadratic variation of M , and let � be

any stopping time for B . In view of (2.1) it is no restriction to assume that � is bounded by

a constant � > 0 , so that we have:

(2.5) E
�
[M ]�

�1=2
= E

�Z �

0
jBtj2(p+1) dt

�1=2
� �E

�
max
0�t��

jBtj2(p+1)

�
= K�p+2 <1

for some K > 0 . Therefore by Doob’s optional sampling theorem (see [3] and [5]):

(2.6) E(M� ) = 0 .

Thus from (2.4) we obtain the following identity:

(2.7) E

�Z �

0
jBtjp dt

�
= C�1p EjB� j2+p .

Recall Burkholder-Davis’ inequalities:

(2.8) dqE
�
� q=2

� � EjB� jq if 1<q<1 and E
�
� q=2

�
< 1

(2.9) EjB� jq � DqE
�
� q=2

�
for all q > 0

with the best possible values for Dq and dq given by (see [2]):

(2.10) dq =

�
(zq)

q if 2 � q <1
(z�q )q if 1 < q � 2

(2.11) Dq =

�
(z�q )q if 2 � q <1
(zq)

q if 0 < q � 2

where zq and z�q are such as in the statement of the theorem. Setting q = p + 2 the claims of

the theorem clearly follow from (2.7)-(2.11). The proof is complete.

In the next theorem we show how the left-hand inequality in (2.1) extends if the quantity

E(�1+p=2) is replaced by a function of E(�) . Note that the proof offers additional information

as well, but we do not write it down separately (see Remark 2.3 below).

Theorem 2.2

Let B = (Bt)t�0 be standard Brownian motion. Then the following inequality is satisfied:

(2.12) E

�Z �

0
jBtjp dt

�
� 2

(2+p) (1+p)

�
E�

�1+p=2

for all stopping times � for B and all p > 0 . The constant 2=(2+p)(1+p) is the best possible.

Proof. Given p > 0 consider the following optimal stopping problem:
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(2.13) V (c) = inf
�

E

�Z �

0
jBtjp dt � c�

�
where c > 0 is given and fixed, and the infimum is taken over all stopping times � for B
having finite expectation. Let � be any such stopping time for B . Then in view of (2.12) it is

no restriction to assume that � is bounded, so that by (2.7) we have:

(2.14) E

�Z �

0
jBtjp dt� c�

�
= E

�
C�1
p jB� j2+p � c�

�
= E

�
C�1
p jB� j2+p � cjB� j2

�
=

Z 1

0

�
C�1
p x2+p � cx2

�
dPjB� j(x)

where Cp = 2�1(2+p)(1+p) and PjB� j denotes the distribution law of jB� j .

Denote f(x) = C�1
p x2+p � cx2 for x > 0 . Then it is easily verified that f attains its

minimum on R+ at x�(c) = (c(1+p))1=p and f(x�(c)) = �p(1+p)2=pc1+2=p=(2+p) . Hence

from (2.14) we find:

(2.15) V (c) =
�p (1+p)2=p

(2+p)
c1+2=p

and the optimal stopping time in (2.13) (the one at which the infimum is attained) is:

(2.16) �� = inf
�
t > 0 : jBtj = x�(c)

	
(Since E(��) < 1 note that the expectation in (2.5) with � = �� is finite, so that (2.6) and

hence (2.7) holds for �� as well.) From (2.13) we get:

(2.17) E

�Z �

0
jBtjp dt

�
� sup

c>0

�
cE(�) + V (c)

�
.

Denote g(c) = cE(�)+V (c) for c > 0 . Then it is easily verified that g attains its maximum

on R+ at c� = (E�)p=2=(1+p) and g(c�) = (2=(2+p)(1+p))(E�)1+p=2 . Inserting this into

(2.17) we get (2.12). The proof is complete.

Remark 2.3

1. Since for �� defined in (2.16) we have E(��) = EjB�� j2= x2�(c) = (c(1+p))2=p for all

c > 0, by taking c = c� = (E�)p=2=(1+p) we see that each �a = inf f t> 0 : jBtj = a g with

a > 0 is optimal in (2.17), and therefore in (2.12) as well ( the equality is attained at �a for all

a>0 ). (This is also verified directly by Itô-Tanaka formula and the optional sampling theorem.)

2. The proof presented above can be applied in the case when Brownian motion B starts at

any x 2 R . In this way we can extend (2.12) by proving the following inequality:

(2.18) E

�Z �

0
jBt+xjp dt

�
� 2

(2+p) (1+p)

��
E(�)+x2

�1+p=2 � jxj2+p

�
which is valid for all stopping times � for B , all p > 0 , and all x 2 R . Moreover, the constant

2=(2+p)(1+p) is the best possible for all x 2 R . In fact, if �a;x = inf f t>0 : jBt + xj = a g
with a > 0 , then the equality in (2.18) is attained at �a;x for all a > 0 and all x 2 R .
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3. Note that (2.12) can be obtained more directly by using Jensen’s inequality (observe in (2.7)

that EjB� j2+p = E(jB� j2)1+p=2 � (EjB� j2)1+p=2 = (E�)1+p=2 whenever E(�) < 1 ). The

main value of the proof given above lies in its applicability to the other functionals F ( different

from x 7! jxjp ) for which the convexity of x 7! H(
p
x) with H 00 = F (and thus Jensen’s

inequality as well) fails. The same facts hold for (2.18). See also Remark 2.4 in [4].

Example 2.4

From (2.1) and (2.12) it is clear that the quantity E(�1+p=2) on the right-hand side in (2.1)

cannot generally be replaced by (E�)1+p=2 . Here we exhibit a class of stopping times which

violate such an inequality. For simplicity we only consider the case p = 1 , but other cases could

be treated similarly. So we shall show that the following inequality:

(2.19) E

�Z �

0
jBtj dt

�
� C

�
E�

�3=2
cannot be satisfied for all stopping times � for B with a fixed numerical constant C > 0 .

For this consider the hitting times of the square root boundaries:

(2.20) Tc = inf
�
t > 0 : jBtj = c (t+1)1=2

	
for c > 0 . Then it is well-known that E(T q

c ) < 1 if and only if c < c0(q) where c0(q) is

the smallest positive zero of the confluent hypergeometric function c 7! M(�q; 1=2; c2=2) (see

[6]). In particular, it is easily verified that c0(1) = 1 > c0(3=2) = 0:84 . . . .

Chose now 0 < cn " c0(3=2) . Denote Tn = Tcn and T0 = Tc0(3=2) . Then E(T
3=2
n ) <1

for any n � 1 given and fixed, so that:

(2.21) E

�Z Tn

0
jBtj4 dt

�1=2
� E

�
c4n
�
Tn+1

�2
Tn

�1=2
� c2nE

�
T
3=2
n +

p
2Tn + T

1=2
n

�
� c2n (2+

p
2)
�
1+E(T

3=2
n )

�
< 1 .

Therefore by Itô formula ( applied to jBtj3 ) and Doob’s optional sampling theorem we find:

(2.22) E

�Z Tn

0
jBtj dt

�
=

1

3
EjBTnj3 =

c3n
3
E(Tn+1)3=2 .

So, if (2.19) would be satisfied, then:

(2.23)
c3n
3
E(T

3=2
n ) � c3n

3
E(Tn+1)3=2 � C(ETn)

3=2

for all n � 1 . Letting n ! 1 we would get:

(2.24)
c30(3=2)

3
E(T

3=2
0 ) � C(ET0)

3=2 < 1

since c0(3=2) < 1 . However, this contradicts the fact that E(T
3=2
0 ) = 1 . Thus (2.19) cannot

be satisfied for all Tn with n � 1 . The proof of the claim is complete.
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Motivated by the preceding example we change the functional of the Brownian path in (2.12)

so that we obtain the following extension of this inequality. The proof is similar to the proof of

Theorem 2.2 and we only sketch the most important parts for the convenience of the reader.

Theorem 2.5

Let B = (Bt)t�0 be standard Brownian motion. Then the following inequality is satisfied:

(2.25) E

�Z �

0

1

jBtjq dt

�
� 2

(2�q) (1�q)
�
E�

�1�q=2

for all stopping times � for B and all 0 � q < 1 . The constant 2=(2�q)(1�q) is the best possible.

Proof. Given 0 � q < 1 consider the following optimal stopping problem:

(2.26) W (c) = sup
�

E

�Z �

0

1

jBtjq dt � c�

�
where c > 0 is given and fixed, and the supremum is taken over all stopping times � for B having

finite expectation. By Itô-Tanaka (and occupation times) formula (see [5] p.208-209) we find:

(2.27) jBtj2�q = (2�q)
Z t

0
jBsj1�qsign(Bs) dBs + 2�1(2�q)(1�q)

Z t

0
jBsj�q ds

= (2�q)Mt + Cq

Z �

0

1

jBsjq ds

where M = (Mt)t�0 is a continuous local martingale started at zero under P , and Cq =
2�1(2�q)(1�q) . Let � be any stopping time for B having finite expectation. Then it is no

restriction to assume that � is bounded, so that in exactly the same way as in the proof of Theorem

2.1 (Doob’s optional sampling theorem) we find E(M� ) = 0 . Thus from (2.27) we obtain:

(2.28) E

�Z �

0

1

jBtjq dt

�
= C�1q EjB� j2�q .

Hence we find that:

(2.29) E

�Z �

0

1

jBtjq dt � c�

�
= E

�
C�1q jB� j2�q � c�

�
= E

�
C�1q jB� j2�q � cjB� j2

�
=

Z 1

0

�
C�1q x2�q � cx2

�
dPjB� j(x)

where PjB� j denotes the distribution law of jB� j .

Denote f(x) = C�1
q x2�q � cx2 for x > 0 . Then it is easily verified that f attains its

maximum on R+ at x�(c) = (c(1�q))�1=q and f(x�(c)) = qc1�2=q=(2�q)(1�q)2=q . Hence

from (2.23) we find:

(2.30) W (c) =
q

(2�q)(1�q)2=q c
1�2=q

and the optimal stopping time in (2.26) (the one at which the infimum is attained) is:

(2.31) �� = inf
�
t > 0 : jBtj = x�(c)
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(Note that (2.28) holds for �� as well.) From (2.26) we get:

(2.32) E

�Z �

0

1

jBtjq dt

�
� inf

c>0

�
cE(�) +W (c)

�
.

Denote g(c) = cE(�) + W (c) for c > 0 . Then it is easily verified that g attains its

minimum on R+ at c� = 1=(1�q)(E�)q=2 and g(c�) = (2=(2�q)(1�q))(E�)1�q=2 . Inserting

this into (2.32) we get (2.25). The proof is complete.

Remark 2.6

1. In exactly the same way as in part 1 of Remark 2.3 above we can verify that each �a =
inf f t > 0 : jBtj = a g with a > 0 is optimal in (2.32), and therefore in (2.25) as well ( the

equality is attained at �a for all a > 0 ). (This is also obtained directly by Itô-Tanaka formula

and the optional sampling theorem.) Finally, letting q " 1 in (2.25) with � = �a , we see that

(1.4) holds for all a > 0 . This explains why q in Theorem 2.5 must be strictly less than 1 .

2. The proof above can be applied in the case when Brownian motion B starts at any x 2 R .

In this way we can extend (2.25) by proving the following inequality:

(2.33) E

�Z �

0

1

jBt+xjq dt

�
� 2

(2�q) (1�q)
��

E(�) + x2
�1�q=2 � jxj2�q

�
which is valid for all stopping times � for B , all 0 � q < 1 , and all x 2 R . Moreover,

the constant 2=(2� q)(1� q) is the best possible for all x 2 R ( the equality is attained at

�a;x = inf f t > 0 : jBt+xj = a g for all a> 0 and all x 2R ).

3. Note that (2.25) can be obtained more directly by using Jensen’s inequality (observe in (2.28)

that EjB� j2�q = E(jB� j2)1�q=2 � (EjB� j2)1�q=2 = (E�)1�q=2 whenever E(�) < 1 ). The

main value of the proof given above lies in its applicability to the other functionals F ( different

from x 7! jxj�q ) for which the concavity of x 7! H(
p
x) with H 00 = F (and thus Jensen’s

inequality as well) fails. The same facts hold for (2.33). See also Remark 2.4 in [4].

From (2.28) in the proof of Theorem 2.5 and (2.8)-(2.11) in the proof of Theorem 2.1 we

obtain the following result.

Corollary 2.7

Let B = (Bt)t�0 be standard Brownian motion. Then the following inequalities are satisfied:

(2.34) Aq E
�
�1�q=2

� � E

�Z �

0

1

jBtjq dt

�
� Bq E

�
�1�q=2

�
for all stopping times � for B and all 0 � q < 1 , where Aq and Bq are numerical constants.

The best possible values for Aq and Bq are:

(2.35) A�q = 2(z�2�q)
2�q=(2�q)(1�q)

(2.36) B�
q = 2(z2�q)

2�q=(2�q)(1�q)
where z�2�q denotes the largest positive zero of the parabolic cylinder function x 7! D2�q(x) ,

and z2�q denotes the smallest positive zero of the confluent hypergeometric function x 7!
M(�(2�q)=2; 1=2; x2=2) (see [1]).
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