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Let X = (Xt)t≥0 be a strong Markov process, and let G1, G2 and G3 be
continuous functions satisfying G1 ≤ G3 ≤ G2 and Ex supt |Gi(Xt)| < ∞ for i =
1, 2, 3 . Consider the optimal stopping game where the sup-player chooses a stopping
time τ to maximise, and the inf-player chooses a stopping time σ to minimise, the
expected payoff

Mx(τ, σ) = Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ)

]

where X0 = x under Px . Define the upper value and the lower value of the game by

V ∗(x) = inf
σ

sup
τ

Mx(τ, σ) & V∗(x) = sup
τ

inf
σ

Mx(τ, σ)

where the horizon T (the upper bound for τ and σ above) may be either finite or
infinite (it is assumed that G1(XT ) = G2(XT ) if T is finite and lim inft→∞G2(Xt) ≤
lim supt→∞G1(Xt) if T is infinite). If X is right-continuous, then the Stackelberg
equilibrium holds, in the sense that V ∗(x) = V∗(x) for all x with V := V ∗ = V∗
defining a measurable function. If X is right-continuous and left-continuous over
stopping times (quasi-left-continuous), then the Nash equilibrium holds, in the sense
that there exist stopping times τ∗ and σ∗ such that

Mx(τ, σ∗) ≤ Mx(τ∗, σ∗) ≤ Mx(τ∗, σ)

for all stopping times τ and σ , implying also that V (x) = Mx(τ∗, σ∗) for all x .
Further properties of the value function V and the optimal stopping times τ∗ and
σ∗ are exhibited in the proof.

1. Introduction

Let X = (Xt)t≥0 be a strong Markov process, and let G1, G2 and G3 be continuous
functions satisfying G1 ≤ G3 ≤ G2 (for further details see Section 2 below). Consider the
optimal stopping game where the sup-player chooses a stopping time τ to maximise, and the
inf-player chooses a stopping time σ to minimise, the expected payoff

(1.1) Mx(τ, σ) = Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ)

]

where X0 = x under Px .
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Define the upper value and the lower value of the game by

(1.2) V ∗(x) = inf
σ

sup
τ

Mx(τ, σ) & V∗(x) = sup
τ

inf
σ

Mx(τ, σ)

where the horizon T (the upper bound for τ and σ above) may be either finite or infinite (it
is assumed that G1(XT ) = G2(XT ) if T is finite and lim inft→∞ G2(Xt) ≤ lim supt→∞ G1(Xt)
if T is infinite). Note that V∗(x) ≤ V ∗(x) for all x .

In this context one distinguishes: (i) the Stackelberg equilibrium, meaning that

(1.3) V ∗(x) = V∗(x)

for all x (in this case V := V ∗ = V∗ unambiguously defines the value of the game); and (ii)
the Nash equilibrium, meaning that there exist stopping times τ∗ and σ∗ such that

(1.4) Mx(τ, σ∗) ≤ Mx(τ∗, σ∗) ≤ Mx(τ∗, σ)

for all stopping times τ and σ , and for all x (in other words (τ∗, σ∗) is a saddle point).
It is easily seen that the Nash equilibrium implies the Stackelberg equilibrium with V (x) =
Mx(τ∗, σ∗) for all x .

A variant of the problem above was first studied by Dynkin [5] using martingale methods
similar to those of Snell [21]. Specific examples of the same problem were studied in [9] and
[12] using Markovian methods (see also [13] for martingale methods). In parallel to that Ben-
soussan and Friedman (cf. [10], [2], [3]) developed an analytic approach (for diffusions) based
on variational inequalities. Martingale methods were further advanced in [18] (see also [23]),
and Markovian setting was studied in [8] (via Wald-Bellman equations) and [22] (via penalty
equations). More recent papers on optimal stopping games include [14], [16], [1], [11], [6], [7]
and [15]. These papers study specific problems and often lead to explicit solutions. For opti-
mal stopping games with randomized stopping times see [17] and the references therein. For
connections with singular stochastic control (forward/backward SDE) see [4] and the references
therein.

The most general martingale result known to date assumes an upper/lower semi-continuity
from the left (cf. [18, Theorem 15, page 42]) so that it does not cover the case of Lévy pro-
cesses for example. The most general Markovian result known to date assumes an asymptotic
condition uniformly over initial points (cf. [22, Condition (A3), page 2]) so that it is not always
easily verifiable. The present paper aims at closing these gaps.

The main result of the paper (Theorem 2.1) may be summarised as follows. If X is right-
continuous, then the Stackelberg equilibrium holds with a measurable value function. If X is
right-continuous and left-continuous over stopping times (quasi-left-continuous), then the Nash
equilibrium holds (see also Example 3.1 and Theorem 3.2). These two sufficient conditions are
known to be most general in optimal stopping theory (see e.g. [19] and [20]). Further properties
of the value function V and the optimal stopping times τ∗ and σ∗ are exhibited in the proof.

2. Result and proof

1. Throughout we will consider a strong Markov process X = (Xt)t≥0 defined on a filtered
probability space (Ω,F , (Ft)t≥0, Px) and taking values in a measurable space (E,B) , where
E is a locally compact Hausdorff space with a countable base, and B is the Borel σ -algebra
on E . It will be assumed that the process X starts at x under Px for x ∈ E and that the
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sample paths of X are (firstly) right-continuous and (then) left-continuous over stopping times.
The latter condition is often referred to as quasi-left-continuity and means that Xτn → Xτ Px -
a.s. whenever τn and τ are stopping times such that τn ↑ τ as n →∞ . (Stopping times are
always referred with respect to the filtration (Ft)t≥0 given above.) It is also assumed that the
filtration (Ft)t≥0 is right-continuous (implying that the first entry times to open and closed
sets are stopping times) and that F0 contains all Px -null sets from FX

∞ = σ(Xt : t ≥ 0)
(implying also that the first entry times to Borel sets are stopping times). The main example
we have in mind is when Ft = σ(FX

t ∪ N ) where FX
t = σ(Xs : 0 ≤ s ≤ t) and N = {A ⊆

Ω : ∃B ∈ FX
∞ , A ⊆ B , Px(B) = 0 } for t ≥ 0 with F = F∞ . In addition, it is assumed

that the mapping x 7→ Px(F ) is (universally) measurable for each F ∈ F . It follows that
the mapping x 7→ Ex(Z) is (universally) measurable for each (integrable) random variable Z .
Finally, without loss of generality we will assume that Ω equals the canonical space E[0,∞)

with Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0 , so that the shift operator θt : Ω → Ω is well
defined by θt(ω)(s) = ω(t+s) for ω ∈ Ω and t, s ≥ 0 .

2. Given continuous functions G1, G2, G3 : E → IR satisfying G1 ≤ G3 ≤ G2 and the
following integrability condition:

(2.1) Ex sup
t
|Gi(Xt)| < ∞ (i = 1, 2, 3)

for all x ∈ E , we consider the optimal stopping game where the sup-player chooses a stopping
time τ to maximise, and the inf-player chooses a stopping time σ to minimise, the expected
payoff

(2.2) Mx(τ, σ) = Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ)

]

where X0 = x under Px .
Define the upper value and the lower value of the game by

(2.3) V ∗(x) = inf
σ

sup
τ

Mx(τ, σ) & V∗(x) = sup
τ

inf
σ

Mx(τ, σ)

where the horizon T (the upper bound for τ and σ above) may be either finite or infinite.
If T < ∞ then it will be assumed that G1(XT ) = G2(XT ) = G3(XT ) . In this case it is
most interesting to assume that X is a time-space process (t, Yt) for t ∈ [0, T ] so that
Gi = Gi(t, y) will be functions of both time and space for i = 1, 2, 3 . If T = ∞ then it will
be assumed that lim inft→∞ G2(Xt) ≤ lim supt→∞ G1(Xt) , and the common value for G3(X∞)
could formally be assigned as either of the preceding two values ( if τ and σ are allowed to
take the value ∞ ) yielding the same results as in Theorem 2.1 below. For simplicity of the
exposition, however, we will assume that τ and σ in (2.2) are finite valued.

3. The main result of the paper may now be stated as follows.

Theorem 2.1
Consider the optimal stopping game (2.3). If X is right-continuous, then the Stackelberg

equilibrium (1.3) holds with V := V ∗ = V∗ defining a measurable function. If X is right-
continuous and left-continuous over stopping times, then the Nash equilibrium (1.4) holds with

τ∗ = inf { t : Xt ∈ D1 } & σ∗ = inf { t : Xt ∈ D2 }(2.4)

where D1 = {V = G1 } and D2 = {V = G2 } .
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Proof. Both finite and infinite horizon can be treated by slight modifications of the same
method which we will therefore present without referring to horizon.

(I) In the first part of the proof we will assume that X is right-continuous, and we will
show that this hypothesis implies the Stackelberg equilibrium with V := V ∗ = V∗ defining a
measurable function. This will be done in a number of steps as follows.

1. Given ε > 0 set

(2.5) Dε
1 = {V ∗≤ G1 + ε } & Dε

2 = {V∗ ≥ G2 − ε }

and consider the stopping times

(2.6) τε = inf { t : Xt ∈ Dε
1 } & σε = inf { t : Xt ∈ Dε

2 }.

The key is to show that

(2.7) Mx(τ, σε)− ε ≤ V∗(x) ≤ V ∗(x) ≤ Mx(τε, σ) + ε

for all τ , σ , x and ε > 0 . Indeed, suppose that (2.7) is valid. Then

(2.8) V ∗(x) ≤ inf
σ

Mx(τε, σ) + ε ≤ sup
τ

inf
σ

Mx(τ, σ) + ε = V∗(x) + ε

for all ε > 0 . Letting ε ↓ 0 we see that V ∗ = V∗ and the claim follows (up to measurability
which will be derived below).

Since the first inequality in (2.7) is analogous to the third one, and since the second inequality
holds generally, we focus on establishing the third one which states that

(2.9) V ∗(x) ≤ Mx(τε, σ) + ε

for all σ , x and ε > 0 .

2. To prove (2.9) take any stopping time σ and consider the optimal stopping problem

(2.10) V̂ ∗
σ (x) = sup

τ
M̂x(τ, σ)

where we set

(2.11) M̂x(τ, σ) = Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ≤τ)

]
.

Note that the gain process Gσ in (2.10) is given by

(2.12) Gσ
t = G1(Xt) I(t<σ) + G2(Xσ) I(σ≤ t)

from where we see that Gσ is right-continuous and adapted (satisfying also a sufficient inte-
grability condition which can be derived using (2.1)). Thus general optimal stopping results of
the martingale approach (cf. [19]) are applicable to the problem (2.10). In order to make use
of these results in the Markovian setting of the present theorem (where Px forms a family of
probability measures when x runs through E ) we will first verify a regularity property of the
value function V̂ ∗

σ .
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3. We show that the function x 7→ V̂ ∗
σ (x) defined in (2.10) is measurable. The basic idea

of the proof is to embed the problem (2.10) into a setting of the Wald-Bellman equations (cf.
[19]) and then exploit the underlying Markovian structure in this context.

For this, let us first assume that the stopping times τ in (2.10) take values in a finite set,
and without loss of generality let us assume that this set equals {0, 1, . . . , N } . Introduce the
auxiliary optimal stopping problems

(2.13) V N
n (x) = sup

n≤τ≤N
ExG

σ
τ

for n = N, . . . , 1, 0 and recall that the Wald-Bellman equations in this setting read:

(2.14) SN
n = Gσ

N for n = N

(2.15) SN
n = Gσ

n ∨ Ex(S
N
n+1 | Fn) for n = N−1, . . . , 1, 0

with V N
n (x) = ExS

N
n for n = N, . . . , 1, 0 (see e.g. [19, pp. 3-6]). In particular, since V N

0 = V̂ ∗
σ

we see that

(2.16) V̂ ∗
σ (x) = ExS

N
0

for all x . Thus the problem is reduced to showing that x 7→ ExS
N
0 is measurable.

If σ is a hitting time, then by the strong Markov property of X it follows using (2.14)-
(2.15) inductively that the following identity holds:

(2.17) SN
0 = G1(x)I(0<σ) + FN(x) + G2(x)I(σ=0)

under Px , where x 7→ FN(x) is a measurable function obtained by means of the following
recursive relations:

(2.18) Fn(x) = Ex

[
G1(X1)I(1<σ) ∨ Fn−1(x)

]
+ Ex

[
G2(Xσ)I(0<σ≤ 1)

]

for n = 1, 2, . . . , N where F0 ≡ −∞ . Taking Ex in (2.17) and using (2.16) we get

(2.19) V̂ ∗
σ (x) = G1(x) Px(0<σ) + FN(x) + G2(x) Px(σ=0)

for all x . Hence we see that x 7→ V̂ ∗
σ (x) is measurable as claimed. In the case of a general

stopping time σ one can make use of the extended Radon-Nikodym theorem which states that
(x, ω) 7→ Ex(Zx | G)(ω) is measurable when (x, ω) 7→ Zx(ω) is measurable and G ⊆ F is a
σ -algebra. Applying this fact inductively in (2.15) and using (2.16) it follows that x 7→ V̂ ∗

σ (x)
is measurable as claimed. [Note that this argument also applies when σ is a hitting time,
however, the explicit formula (2.19) is no longer available if σ is a general stopping time.]

Let us now consider the general case when the stopping times τ from (2.10) can take
arbitrary values. Setting τn = k/2n on {(k−1)/2n < τ ≤ k/2n} one knows that each τn is
a stopping time with values in the set Qn of dyadic rationals of the form k/2n , and τn ↓ τ
as n →∞ . Hence by right-continuity of Gσ and Fatou’s lemma (using a needed integrability
condition which is derived by means of (2.1) above) one gets

(2.20) ExG
σ
τ = Ex

(
lim

n→∞
Gσ

τn

) ≤ lim inf
n→∞

ExG
σ
τn
≤ sup

n≥1
Vn(x)
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where we set

(2.21) Vn(x) = sup
τ∈Qn

ExG
σ
τ .

Taking supremum in (2.20) over all τ , and using that Vn ≤ V̂ ∗
σ for all n ≥ 1 , it follows that

(2.22) V̂ ∗
σ (x) = sup

n≥1
Vn(x)

for all x . By the first part of the proof above we know that each function x 7→ Vn(x) is
measurable, so it follows from (2.22) that x 7→ V̂ ∗

σ (x) is measurable as claimed.

4. Since the function x 7→ V̂ ∗
σ (x) is measurable, it follows that

(2.23) V̂ ∗
σ (Xρ) = sup

τ
M̂Xρ(τ, σ)

defines a random variable for any stopping time ρ which is given and fixed. On the other
hand, by the strong Markov property we have

M̂Xρ(τ, σ) = EXρ

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ≤τ)

]
(2.24)

= Ex

[
G1(Xρ+τ◦θρ)I(ρ + τ ◦ θρ < ρ + σ ◦ θρ)

+ G2(Xρ+σ◦θρ)I(ρ + σ ◦ θρ ≤ ρ + τ ◦ θρ) | Fρ

]
.

From (2.23) and (2.24) we see that

(2.25) V̂ ∗
σ (Xρ) = ess sup

τ
M̂x(ρ + τ ◦ θρ, ρ + σ ◦ θρ | Fρ)

where we set

(2.26) M̂x(τρ, σρ | Fρ) = Ex

[
G1(Xτρ)I(τρ <σρ) + G2(Xσρ)I(σρ≤τρ) | Fρ

]

with τρ = ρ + τ ◦ θρ and σρ = ρ + σ ◦ θρ (being stopping times).

5. By general optimal-stopping results of the martingale approach (cf. [19]) we know that
the supermartingale

(2.27) Ŝσ
t = ess sup

τ≥t
M̂x(τ, σ | Ft)

admits a right-continuous modification (the Snell envelope) such that

(2.28) V̂ ∗
σ (x) = ExŜ

σ
ρ

for every stopping time ρ ≤ τσ
ε where

(2.29) τσ
ε = inf { t : Ŝσ

t ≤ Gσ
t + ε } .

Moreover, by the well-known properties of the Snell envelope (stating that equality between
the essential supremum and its right-continuous modification is preserved at stopping times
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and that the essential supremum is attained over hitting times), we see upon recalling (2.25)
above that the following identity holds:

(2.30) V̂ ∗
σ (Xρ) = Ŝσ

ρ Px-a.s.

for every stopping time ρ ≤ σ . The precise meaning of (2.30) is

(2.30’) V̂ ∗
σρ(ω, )(Xρ(ω)) = Ŝσ

ρ (ω)

for ω ∈ Ω \N with Px(N) = 0 , where σ(ω) = ρ(ω) + σρ(ω, θρ(ω)) for a mapping (ω, ω′) 7→
σρ(ω, ω′) which is Fρ ⊗ F∞ -measurable and ω′ 7→ σρ(ω, ω′) is a stopping time for each ω
given and fixed. We will simplify the notation in the sequel by dropping ρ and ω from σρ(ω, )
in (2.30’) and simply writing σ instead. This also applies to the expression on the right-hand
side of (2.23) above. [Note that if σ is a hitting time then σρ(ω, ω′) = σ(ω′) for all ω & ω′

and this simplification is exact.] In particular, using (2.30) with ρ = t and the fact that Ŝσ

and Gσ are right-continuous, we see that τσ
ε from (2.29) can be equivalently defined as

(2.31) τσ
ε = inf { t ∈ Q : V̂ ∗

σ (Xt) ≤ Gσ
t + ε }

where Q is any (given and fixed) countable dense subset of the time set.

6. Setting

(2.32) V̂ ∗(x) = inf
σ

sup
τ

M̂x(τ, σ)

for x ∈ E , let us assume that the function x 7→ V̂ ∗(x) is measurable, and let us consider the
stopping time τε from (2.6) above but defined over Q for V̂ ∗ , i.e.

(2.33) τ̃ε = inf { t ∈ Q : Xt ∈ D̂ε
1 }

where D̂ε
1 = { V̂ ∗ ≤ G1+ ε} . Let a stopping time β be given and fixed, and let σ be any

stopping time satisfying σ ≥ β ∧ τ̃ε . Then for any t ∈ Q such that t < β ∧ τ̃ε we have

V̂ ∗
σ (Xt) ≥ V̂ ∗(Xt) > G1(Xt) + ε(2.34)

= G1(Xt)I(t<σ) + G2(Xσ)I(σ≤ t) + ε

= Gσ
t + ε

since t < σ so that I(σ≤ t) = 0 . Hence we see by (2.31) that β ∧ τ̃ε ≤ τσ
ε . By (2.28) and

(2.30) we can conclude that

(2.35) V̂ ∗
σ (x) = ExV̂

∗
σ (Xβ∧τ̃ε)

for any σ ≥ β ∧ τ̃ε . Taking the infimum over all such σ we obtain

(2.36) V ∗(x) ≤ V̂ ∗(x) ≤ inf
σ≥β∧τ̃ε

V̂ ∗
σ (x) = inf

σ≥β∧τ̃ε

ExV̂
∗
σ (Xβ∧τ̃ε)

for every stopping time β . In the next step we will show that the infimum and the expectation
in (2.36) can be interchanged.
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7. We show that the family of random variables

(2.37)
{

sup
τ

M̂Xρ(τ, σ) : σ is a stopping time
}

is downwards directed. Recall that a family of random variables {Zσ : σ ∈ I} is downwards
directed if for all σ1, σ2 ∈ I there exists σ3 ∈ I such that Zσ3 ≤ Zσ1 ∧Zσ2 Px -a.s. for all x .

To prove the claim, recall that by the strong Markov property we have

(2.38) M̂Xρ(τ, σ) = M̂x(ρ + τ ◦ θρ, ρ + σ ◦ θρ | Fρ).

If σ1 and σ2 are two stopping times given and fixed, set τρ = ρ + τ ◦ θρ , σ′1 = ρ + σ1 ◦ θρ

and σ′2 = ρ + σ2 ◦ θρ , and define

(2.39) B =
{

sup
τ

M̂x(τρ, σ
′
1 | Fρ) ≤ sup

τ
M̂x(τρ, σ

′
2 | Fρ)

}
.

Then B ∈ Fρ and the random variable

(2.40) σ′ := σ′1 IB + σ′2 IBc

is a stopping time. For this, note that {σ′≤ t} = ({σ′1≤ t} ∩ B) ∪ ({σ′2≤ t} ∩ Bc) = ({σ′1≤
t}∩B∩{ρ≤ t})∪ ({σ′2≤ t}∩Bc∩{ρ≤ t}) ∈ Ft since B and Bc belong to Fρ , which verifies
the claim.

Moreover, the stopping time σ′ can be written as

(2.41) σ′ = ρ + σ ◦ θρ

for some stopping time σ . Indeed, setting

(2.42) A =
{

sup
τ

M̂X0(τ, σ1) ≤ sup
τ

M̂X0(τ, σ2)
}

we see that A ∈ F0 and B = θ−1
ρ (A) upon recalling (2.38). Hence from (2.40) we get

σ′ = (ρ + σ1 ◦ θρ)IB + (ρ + σ2 ◦ θρ)IBc(2.43)

= ρ +
[
(σ1 ◦ θρ)(IA ◦ θρ) + (σ2 ◦ θρ)(IAc ◦ θρ)

]

= ρ + (σ1IA + σ2IAc) ◦ θρ

which implies that (2.41) holds with the stopping time σ = σ1 IA + σ2 IAc . (The latter is a
stopping time since {σ ≤ t} = ({σ1 ≤ t} ∩ A) ∪ ({σ2 ≤ t} ∩ Ac) ∈ Ft due to the fact that
A ∈ F0 ⊆ Ft for all t .)

Finally, we have

sup
τ

M̂Xρ(τ, σ) = sup
τ

M̂x(τρ, σ
′
1 | Fρ)IB + sup

τ
M̂x(τρ, σ

′
2 | Fρ)IBc(2.44)

= sup
τ

M̂x(τρ, σ
′
1 | Fρ) ∧ sup

τ
M̂x(τρ, σ

′
2 | Fρ)

= sup
τ

M̂Xρ(τ, σ1) ∧ sup
τ

M̂Xρ(τ, σ2)
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which proves that the family (2.37) is downwards directed as claimed.

8. It is well-known (see e.g. [19, pp. 6-7]) that if a family {Zσ : σ ∈ I} of random variables
is downwards directed, then there exists a countable subset J = {σn : n ≥ 1} of I such that

(2.45) ess inf
σ∈I

Zσ = lim
n→∞

Zσn Px-a.s.

where Zσ1 ≥ Zσ2 ≥ . . . Px -a.s. In particular, if there exists a random variable Z such that
ExZ < ∞ and Zσ ≤ Z for all σ ∈ I , then

(2.46) Ex ess inf
σ∈I

Zσ = lim
n→∞

ExZσn = inf
σ∈I

ExZσ

i.e. the order of the infimum and the expectation can be interchanged.
Applying the preceding general fact to the family in (2.37) upon returning to (2.36) we can

conclude that

(2.47) V ∗(x) ≤ V̂ ∗(x) ≤ inf
σ≥β∧τ̃ε

ExV̂
∗
σ (Xβ∧τ̃ε) = ExV̂

∗(Xβ∧τ̃ε).

In the next step we will relate the process V̂ ∗(X τ̃ε) to yet another right-continuous modification
which will play a useful role in the sequel.

9. We show that the process

(2.48) Ŝt∧τ̃ε = ess inf
σ≥t∧τ̃ε

Ŝσ
t∧τ̃ε

admits a right-continuous modification. For this, simplify the notation by setting

(2.49) Ŝε
t = Ŝt∧τ̃ε & Mσ

t = Ŝσ
t∧τ̃ε

and note that the (stopped) process Mσ is a martingale. Indeed, recalling the conclusion in
relation to (2.34) above that if σ ≥ t∧ τ̃ε then t∧ τ̃ε ≤ τσ

ε , we see that the martingale property
follows by (2.28) above (this is a well-known property of the Snell envelope).

Moreover, since by (2.30) we have

(2.50) Ŝσ
t∧τ̃ε

= sup
τ

M̂Xt∧τ̃ε
(τ, σ)

when σ ≥ t∧ τ̃ε , it follows by (2.37) and (2.48) that there exists a sequence of stopping times
{σn : n ≥ 1} satisfying σn ≥ t ∧ τ̃ε such that

(2.51) Ŝε
t = lim

n→∞
Mσn

t Px-a.s.

where Mσ1
t ≥ Mσ2

t ≥ . . . Px -a.s. Hence by the conditional monotone convergence theorem
(using the integrability condition (2.1) above) we find for s < t that

(2.52) Ex

(
Ŝε

t | Fs

)
= lim

n→∞
Ex

(
Mσn

t | Fs

)
= lim

n→∞
Mσn

s ≥ Ŝε
s

where the martingale property of Mσn and the definition of Ŝε
s are used. This shows that Ŝε

is a submartingale.

9



A well-known result in martingale theory states that the submartingale Ŝε admits a right-
continuous modification if and only if

(2.53) t 7→ ExŜ
ε
t is right-continuous.

To verify (2.53) note that by the submartingale property of Ŝε we have ExŜ
ε
t ≤ . . . ≤ ExŜ

ε
t2
≤

ExŜ
ε
t1

so that L := limn→∞ ExŜ
ε
tn exists and ExŜ

ε
t ≤ L whenever tn ↓ t as n → ∞ is

given and fixed. To prove the reverse inequality, fix N ≥ 1 and by means of (2.51) and the
monotone convergence theorem choose σ ≥ t ∧ τ̃ε such that

(2.54) ExM
σ
t ≤ ExŜ

ε
t + 1/N.

Fix δ > 0 and note that there is no restriction to assume that tn ∈ [t, t+δ] for all n ≥ 1 .
Define a stopping time σn by setting

(2.55) σn =

{
σ if σ > tn ∧ τ̃ε

t ∧ τ̃ε + δ if σ ≤ tn ∧ τ̃ε

for n ≥ 1 . Then for all n ≥ 1 we have

(2.56) ExM
σn
t = ExM

σn
tn ≥ ExŜ

ε
tn

by the martingale property of Mσn and the definition of Ŝε
tn using that σn ≥ tn∧ τ̃ε ≥ t∧ τ̃ε .

Since {σ>tn∧τ̃ε} and {σ≤ tn∧τ̃ε} belong to Ftn∧τ̃ε it is easily verified using (2.30) above
that Mσn

tn I(σ > tn∧ τ̃ε) = Mσ
tnI(σ > tn∧ τ̃ε) and Mσn

tn I(σ≤ tn∧ τ̃ε) = M t∧τ̃ε+δ
tn I(σ≤ tn∧ τ̃ε) for

all n ≥ 1 . Hence

(2.57) ExM
σn
tn = Ex

[
Mσ

tn I(σ>tn∧τ̃ε) + M t∧τ̃ε+δ
tn I(σ≤ tn∧τ̃ε)

]

for all n ≥ 1 . Letting n →∞ in (2.56) and using (2.57) we get

(2.58) Ex

[
Mσ

t I(σ>t∧τ̃ε) + M t∧τ̃ε+δ
t I(σ≤ t∧τ̃ε)

] ≥ L

for all δ > 0 .
By (2.30) (recall also (2.30’)) we have

M t∧τ̃ε+δ
t = Ŝt∧τ̃ε+δ

t∧τ̃ε
= V̂ ∗

t∧τ̃ε+δ(Xt∧τ̃ε) = sup
τ

MXt∧τ̃ε
(τ, δ)(2.59)

= sup
τ

EXt∧τ̃ε

[
G1(Xτ )I(τ <δ) + G2(Xδ)I(δ≤τ)

]

≤ sup
τ

EXt∧τ̃ε

[
G2(Xτ∧δ)

] → G2(Xt∧τ̃ε) = M t∧τ̃ε
t

where the convergence relation follows by

(2.60)
∣∣ sup

τ
ExG2(Xτ∧δ)−G2(x)

∣∣ ≤ Ex sup
0≤t≤δ

|G2(Xt)−G2(x)| → 0

as δ ↓ 0 upon using that X is right-continuous (at zero) and that the integrability condition
(2.1) holds. Inserting (2.59) in (2.58) and using that σ ≥ t ∧ τ̃ε it follows that

(2.61) ExM
σ
t ≥ L .
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Combining this with (2.54) we see that L ≤ ExŜ
ε
t and thus L = ExŜ

ε
t . This establishes

(2.53) and hence Ŝε admits a right-continuous modification (denoted by the same symbol) as
claimed.

Moreover, from (2.48) and (2.50) upon using (2.37) it is easily verified that equality between
the process in (2.48) and its right-continuous modification extends from deterministic times to
all stopping times (via discrete stopping times upon using that each stopping time is the limit
of a decreasing sequence of discrete stopping times). Hence by (2.30)+(2.32) and (2.48)+(2.49)
we find that

(2.62) V̂ ∗(Xβ∧τ̃ε) = Ŝε
β Px-a.s.

for every stopping time β .

10. We claim that

(2.63) Ŝτ̃ε ≤ G1(Xτ̃ε) + ε Px-a.s.

To verify this note first that τ̃ε2 ≤ τ̃ε1 for ε1 < ε2 so that the right-continuous modification
of (2.48) extends by letting ε ↓ 0 to become a right-continuous modification of the process

(2.64) Ŝt∧τ̃0− = ess inf
σ≥t∧τ̃0−

Ŝσ
t∧τ̃0−

where τ̃0− = lim ε↓0 τ̃ε is a stopping time. But then by right-continuity of Ŝ and G1(X)
on [0, τ0−) it follows that on {τ̃ε < τ̃0−} we have the inequality (2.63) satisfied. Note that
τ̃0− ≤ τ̃0 where τ̃0 is defined as in (2.33) with ε = 0 .

To see what happens on {τ̃ε = τ̃0−} , let us consider the process

(2.65) Ŝt = ess inf
σ≥t

Ŝσ
t .

We then claim that if ρn and ρ are stopping times such that ρn ↓ ρ as n →∞ then

(2.66) ExŜρ ≤ lim inf
n→∞

ExŜρn .

Indeed, for this note first (since the families are downwards and upwards directed) that

(2.67) ExŜρ = inf
σ≥ρ

sup
τ≥ρ

M̂x(τ, σ) ≤ inf
σ>ρn

sup
τ≥ρ

M̂x(τ, σ).

Taking σ > ρn we find that

M̂x(τ, σ) = Ex

[(
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ≤τ)

)
I(τ <ρn)

]
(2.68)

+ Ex

[
(G1(Xτ∨ρn)I(τ∨ρn < σ) + G2(Xσ)I(σ≤τ ∨ ρn))I(τ≥ρn)

]

= Ex

[
G1(Xτ )I(τ <ρn)

]

+ Ex

[
G1(Xτ∨ρn)I(τ ∨ ρn <σ) + G2(Xσ)I(σ≤τ ∨ ρn)

]

− Ex

[
(G1(Xτ∨ρn)I(τ ∨ ρn <σ) + G2(Xσ)I(σ≤τ ∨ ρn))I(τ <ρn)

]

= Ex

[
G1(Xτ )I(τ <ρn)−G1(Xρn)I(τ <ρn)

]

11



+ Ex

[
G1(Xτ∨ρn)I(τ ∨ ρn <σ) + G2(Xσ)I(σ≤τ ∨ ρn)

]

= Ex

[
G1(Xτ∧ρn)−G1(Xρn)

]
+ M̂x(τ ∨ ρn, σ) .

From (2.67) and (2.68) we get

ExŜρ ≤ Ex sup
ρ≤t≤ρn

|G1(Xt)−G1(Xρn)|+ inf
σ>ρn

sup
τ≥ρn

M̂x(τ, σ)(2.69)

= Ex sup
ρ≤t≤ρn

|G1(Xt)−G1(Xρn)|+ inf
σ≥ρn

sup
τ≥ρn

M̂x(τ, σ)

= Ex sup
ρ≤t≤ρn

|G1(Xt)−G1(Xρn)|+ ExŜρn

where the first equality can easily be justified by using that each σ is the limit of a strictly
decreasing sequence of discrete stopping times σm as m →∞ yielding

(2.70) sup
τ≥ρn

M̂x(τ, σ) ≥ lim sup
m→∞

sup
τ≥ρn

M̂x(τ, σm)

which is obtained directly from (2.93) below. Letting n → ∞ in (2.69) and using that the
second last expectation tends to zero since G1(X) is right-continuous and the integrability
condition (2.1) holds, we get (2.66) as claimed.

Returning to the question of {τ̃ε = τ̃0−} , consider the Borel set D̂0
1 = {V̂ ∗ = G1} and

choose compact sets K1 ⊆ K2 ⊆ . . . ⊆ D̂0
1 such that τn := inf { t : Xt ∈ Kn } satisfy τn ↓ τ̃0

Px -a.s. as n → ∞ . (The latter is a well-known consequence of the fact that each probability
measure on E is tight.) Since each Kn is closed we have Ŝτn = V̂ ∗(Xτn) = G1(Xτn) by right-
continuity of X for all n ≥ 1 . Hence by (2.66) we find

(2.71) ExŜτ̃0 ≤ lim inf
n→∞

ExŜτn = lim inf
n→∞

ExG1(Xτn) = ExG1(Xτ̃0)

by right-continuity of G1(X) using also the integrability condition (2.1) above. Since Ŝτ̃0 ≥
G1(Xτ̃0) Px -a.s. by definition, we see from (2.71) that Ŝτ̃0 = G1(Xτ̃0) Px -a.s. Moreover, if we
consider the Borel set D̂ε

1 = {V̂ ∗≤ G1+ ε} and likewise choose stopping times τ ε
n satisfying

τ ε
n ↓ τ̃ε Px -a.s. then the same arguments as in (2.71) show that

ExG1(Xτ̃0−) = Ex lim
ε↓0

G1(Xτ̃ε) ≤ Ex lim inf
ε↓0

Ŝτ̃ε ≤ lim inf
ε↓0

ExŜτ̃ε(2.72)

≤ lim inf
ε↓0

(
lim inf
n→∞

ExŜτε
n

) ≤ lim inf
ε↓0

(
lim inf
n→∞

ExG1(Xτε
n
) + ε

)

= ExG1(Xτ̃0−)

upon using that G1(Xτ̃ε) ≤ Ŝτ̃ε Px -a.s. and applying Fatou’s lemma. Hence all the inequalities
in (2.72) are equalities and thus

(2.73) G1(Xτ̃0−) = lim inf
ε↓0

Ŝτ̃ε Px-a.s.

Since τ̃ε ↑ τ̃0− as ε ↓ 0 , we see from (2.73) that G1(Xτ̃0−) = Ŝτ̃0− Px -a.s. on {τ̃ε = τ̃0−} .
This implies that τ̃0 ≤ τ̃0− and thus τ̃0 = τ̃0− both Px -a.s. on {τ̃ε = τ̃0−} . Recalling also
that Ŝτ̃0 = G1(Xτ̃0) Px -a.s. we finally see that on {τ̃ε = τ̃0−} one has Ŝτ̃ε = Ŝτ̃0 = G1(Xτ̃0) =
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G1(Xτ̃ε) ≤ G1(Xτ̃ε) + ε Px -a.s. so that (2.63) holds as claimed. [Note that (2.63) can also be
obtained by showing that Ŝ defined in (2.65) admits a right-continuous modification. This
proof can be used instead of parts 9 and 10 above which focused on exploiting the submartingale
characterisation (2.53) above.]

11. Inserting (2.62) into (2.47) and using (2.63) we get

V ∗(x) ≤ V̂ ∗(x) ≤ ExŜ
ε
β = Ex

[
Ŝτ̃ε I(τ̃ε≤β) + Ŝβ I(β<τ̃ε)

]
(2.74)

≤ Ex

[(
G1(Xτ̃ε)+ε

)
I(τ̃ε <β) + G2(Xβ)I(β<τ̃ε) +

(
G3(Xτ̃ε)+ε

)
I(τ̃ε =β)

]

≤ Mx(τ̃ε, β) + ε

for every stopping time β . Proceeding as in (2.8) above we find that V̂ ∗ = V ∗ = V∗ and thus
(2.63) yields (2.9) with τ̃ε in place of τε .

12. To derive (2.9) with τε from (2.6), first note that τε ≤ τ̃ε and recall from (2.47) that

(2.75) V ∗(x) ≤ ExV
∗(Xβ∧τ̃ε)

for every stopping time β . From general theory of Markov processes (upon using that t 7→
Xt∧τ̃ε is right-continuous and adapted) it is known that (2.75) implies that V ∗ is finely lower
semi-continuous up to τ̃ε in the sense that

(2.76) V ∗(x) ≤ lim inf
t↓0

V ∗(Xt∧τ̃ε) Px-a.s.

This in particular implies (since X τ̃ε is a strong Markov process) that

(2.77) V ∗(Xτ ) ≤ lim inf
t↓0

V ∗(Xτ+t) Px-a.s. on {τ <τ̃ε}

for every stopping time τ . Indeed, setting Yt = Xt∧τ̃ε and

(2.78) A =
{

V ∗(x) ≤ lim inf
t↓0

V ∗(Yt)
}

& B =
{

V ∗(Yτ ) ≤ lim inf
t↓0

V ∗(Yτ+t)
}

we see that B = θ−1
τ (A) and Bc = θ−1

τ (Ac) so that the strong Markov property of Y implies

(2.79) Px(B
c) = Px(θ

−1
τ (Ac)) = Ex

[
Ex(IAc ◦ θτ | Fτ )

]
= ExEXτ (IAc) = ExPXτ (A

c) = 0

since Py(A
c) = 0 for all y . Hence (2.77) holds as claimed. In particular, if (2.77) is applied

to τε , we get

(2.80) V ∗(Xτε) ≤ G1(Xτε) + ε Px-a.s. on {τε <τ̃ε}.

With this new information we can now revisit (2.74) via (2.75) upon using (2.63) and (2.80).
This gives

V ∗(x) ≤ ExV
∗(Xβ∧τε) = Ex

[
V ∗(Xτε)I(τε≤β) + V ∗(Xβ)I(β<τε)

]
(2.81)

= Ex

[
V ∗(Xτε)I(τε≤β, τε <τ̃ε) + Ŝτ̃ε I(τε≤β, τε = τ̃ε) + V ∗(Xβ)I(β<τε)

]

≤ Ex

[(
G1(Xτε)+ε

)
I(τε≤β, τε < τ̃ε) +

(
G1(Xτ̃ε)+ε

)
I(τε≤β, τε = τ̃ε)
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+ G2(Xβ)I(β<τε)
]

≤ Ex

[(
G1(Xτε)+ε

)
I(τε <β) + G2(Xβ)I(β<τε) +

(
G3(Xτε)+ε

)
I(τε =β)

]

≤ Mx(τε, β) + ε

for every stopping time β . This completes the proof of (2.9) when the function x 7→ V̂ ∗(x)
from (2.32) is assumed to be measurable.

13. If x 7→ V̂ ∗(x) is not assumed to be measurable, then the proof above can be repeated
with reference only to Ŝσ and Ŝ under Px with x given and fixed. In exactly the same way
as above this gives the identity V̂ ∗(x) = V ∗(x) = V∗(x) for this particular and thus all x . But
then the measurability follows from the following general fact: If V ∗ = V∗ then V := V ∗ = V∗
defines a measurable function.

To derive this fact consider the optimal stopping game (2.2)+(2.3) when X is a discrete-
time Markov chain, so that τ and σ (without loss of generality) take values in {0, 1, 2, . . . } .
The horizon N (the upper bound for τ and σ in (2.2)+(2.3) above) can be either finite or
infinite. When N is finite the most interesting case is when Gi = Gi(x, n) for i = 1, 2, 3
with G1(x,N) = G2(x,N) = G3(x,N) for all x . When N is infinite then

(2.82) lim inf
n→∞

G2(Xn) ≤ lim sup
n→∞

G1(Xn)

as stipulated following (2.3) above, and the common value for G3(X∞) could formally be
assigned as either of the two values in (2.82) ( if τ and σ are allowed to take the value ∞ ).

Then the following Wald-Bellman equations are valid:

(2.83) Vn(x) = G1(x) ∨ TVn−1(x) ∧G2(x)

for n = 1, 2, . . . where V0 is set to be either G1 or G2 . This yields VN = V ∗ = V∗ with
V∞ = limn→∞ Vn if N = ∞ (see [8] for details).

Recalling that T denotes the transition operator defined by

(2.84) TF (x) = ExF (X1)

one sees that x 7→ TF (x) is measurable whenever F is so (and ExF (X1) is well defined for
all x ). Applying this argument inductively in (2.83) we see that x 7→ VN(x) is a measur-
able function. Thus, optimal stopping games for discrete-time Markov chains always lead to
measurable value functions.

To treat the case of general X , let Qn denote the set of all dyadic rationals k/2n in
the time set, and for a given stopping time τ let τn be defined by setting τn = k/2n on
{ (k−1)/2n < τ ≤ k/2n } . Then each τn is a stopping time taking values in Qn and the
following inequality is valid:

(2.85) Mx(τ, σ) ≤ Mx(τn, σ) + Ex|G1(Xτ )−G1(Xτn)|
for every stopping time σ ∈ Qn (meaning that σ takes values in Qn ). Indeed, this can be
derived as follows:

Mx(τ, σ)−Mx(τn, σ)(2.86)
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= Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ, τ 6= τn)

−G1(Xτn)I(τn <σ)−G2(Xσ)I(σ<τn)−G3(Xτn)I(τn =σ, τn 6=τ)
]

≤ Ex

[(
G1(Xτ )−G1(Xτn)

)
I(τ <σ)

+ G1(Xτn)
(
I(τ <σ)−I(τn <σ)−I(τn =σ, τn 6=τ)

)

+ G2(Xσ)
(
I(σ<τ)+I(τ =σ, τ 6=τn)−I(σ<τn)

)]

= Ex

[(
G1(Xτ )−G1(Xτn)

)
I(τ <σ) +

(
G1(Xτn)−G2(Xσ)

)
I(τ <σ<τn)

]

being true for any stopping times τ , σ and τn such that τ ≤ τn . In particular, if σ ∈ Qn

(and τn is defined as above), then {τ <σ<τn } = ∅ so that (2.86) becomes

Mx(τ, σ) ≤ Mx(τn, σ) + Ex

[(
G1(Xτ )−G1(Xτn)

)
I(τ <σ)

]
(2.87)

≤ Mx(τn, σ) + Ex|G1(Xτ )−G1(Xτn)|

as claimed in (2.85) above.
Let τ ∗n and σ∗n denote the optimal stopping times (in the Nash sense) for the optimal

stopping game (2.2)+(2.3) with the time set Qn , and let Vn(x) denote the corresponding
value of the game, i.e.

(2.88) Vn(x) = Mx(τ
∗
n, σ∗n)

for all x . (From (2.83) one sees that such optimal stopping times always exist in the discrete-
time setting.) By the first part above (applied to the Markov chain (Xt)t∈Qn ) we know that
x 7→ Vn(x) is measurable.

Setting εn(x, τ) = Ex|G1(Xτ )−G1(Xτn)| we see that (2.85) reads

(2.89) Mx(τ, σ) ≤ Mx(τn, σ) + εn(x, τ)

for every τ and every σ ∈ Qn . Hence we find that

(2.90) Mx(τ, σ
∗
n) ≤ Mx(τn, σ

∗
n) + εn(x, τ) ≤ Mx(τ

∗
n, σ∗n) + εn(x, τ) = Vn(x) + εn(x, τ).

This implies that

(2.91) inf
σ

Mx(τ, σ) ≤ lim inf
n→∞

Vn(x)

since εn(x, τ) → 0 by right-continuity of X and the fact that τn ↓ τ as n →∞ (using also
the integrability condition (2.1) above). Taking the supremum over all τ we conclude that

(2.92) V∗(x) ≤ lim inf
n→∞

Vn(x)

for all x .
On the other hand, similarly to (2.86) one finds that

Mx(τ, σ)−Mx(τ, σn) ≥ Ex

[(
G2(Xσ)−G2(Xσn)

)
I(σ<τ)(2.93)

+
(
G2(Xσn

)−G1(Xτ ))I(σ<τ <σn)
]
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for any stopping times τ , σ and σn such that σ ≤ σn . If σn is defined analogously to τn

above (with σ in place of τ ), then (2.93) yields the following analogue of (2.89) above:

(2.94) Mx(τ, σ) ≥ Mx(τ, σn)− δn(x, σ)

where δn(x, σ) = Ex|G2(Xσ)−G2(Xσn)| → 0 as n →∞ for the same reasons as above. This
analogously yields

(2.95) lim sup
n→∞

Vn(x) ≤ V ∗(x)

for all x . Thus, if V ∗ = V∗ then by (2.92) and (2.95) we see that V := V ∗ = V∗ satisfies

(2.96) V (x) = lim
n→∞

Vn(x)

for all x . Since each Vn is measurable we see that V is measurable as claimed. This completes
the first part of the proof.

(II) In the second part of the proof we will assume that X is right-continuous and left-
continuous over stopping times, and we will show that these hypotheses imply the Nash equi-
librium (1.4) with τ∗ and σ∗ from (2.4).

1. Since X is right-continuous we know by the first part of the proof above that V ∗ = V∗
with V := V ∗ = V∗ defining a measurable function which by (2.7) satisfies

(2.97) Mx(τ, σε)− ε ≤ V (x) ≤ Mx(τε, σ) + ε

for all τ , σ , x and ε > 0 . Recalling from (2.5)+(2.6) that

(2.98) τε = inf { t : Xt ∈ Dε
1 }

where Dε
1 = {V ≤ G1+ ε} , we will now show that the second inequality in (2.97) implies

(2.99) V (x) ≤ Mx(τ0, σ)

for all σ and x , where τ0 = inf { t : Xt ∈ D0
1 } with D0

1 = {V = G1 } . (Note that τ0

coincides with τ∗ in the notation above.)

2. It is clear from the definitions that τε ↑ τ0− as ε ↓ 0 where τ0− is a stopping time
satisfying τ0− ≤ τ0 . We will now show that τ0− = τ0 Px -a.s. For this, let us first establish
the following general fact: If ρn and ρ are stopping times such that ρn ↑ ρ as n →∞ , then

(2.100) ExV (Xρ) ≤ lim inf
n→∞

ExV (Xρn).

To see this recall from the first part of the proof above that V (Xβ) = V̂ (Xβ) = Ŝβ = V̌ (Xβ) =

Šβ for every stopping time β , where V̌ and Š are defined analogously to V̂ and Ŝ but

with M̌x(τ, σ) = Ex

[
G1(Xτ ) I(τ ≤ σ) + G2(Xσ) I(σ < τ)

]
in place of M̂x(τ, σ) and with the

order of the supremum and the infimum being interchanged. Hence we find that

(2.101) ExV (Xρn) = ExŜρn = sup
τ≥ρn

inf
σ≥ρn

M̂x(τ, σ) ≥ sup
τ≥ρ

inf
σ≥ρn

M̂x(τ, σ).
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Taking τ ≥ ρ we find that

M̂x(τ, σ) = Ex

[(
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ≤τ)

)
I(σ≤ρ)

]
(2.102)

+ Ex

[(
G1(Xτ )I(τ <σ∨ρ) + G2(Xσ∨ρ)I(σ∨ρ≤τ)

)
I(σ>ρ)

]

= Ex

[
G2(Xσ)I(σ≤ρ)

]

+ Ex

[
G1(Xτ )I(τ <σ∨ρ) + G2(Xσ∨ρ)I(σ∨ρ≤τ)

]

− Ex

[(
G1(Xτ )I(τ <σ∨ρ) + G2(Xσ∨ρ)I(σ∨ρ≤τ)

)
I(σ≤ρ)

]

= Ex

[
G2(Xσ)I(σ≤ρ)−G2(Xρ)I(σ≤ρ)

]

+ Ex

[
G1(Xτ )I(τ <σ∨ρ) + G2(Xσ∨ρ)I(σ∨ρ≤τ)

]

= Ex

[
G2(Xσ∧ρ)−G2(Xρ)

]
+ M̂x(τ, σ∨ρ).

From (2.101) and (2.102) we get

ExV (Xρn) ≥ inf
σ≥ρn

Ex

[
G2(Xσ∧ρ)−G2(Xρ)

]
+ sup

τ≥ρ
inf
σ≥ρ

M̂x(τ, σ)(2.103)

= ExV (Xρ) + inf
ρn≤σ≤ρ

Ex

[
G2(Xσ)−G2(Xρ)

]
.

Letting n →∞ and using that the final expectation tends to zero since X is left-continuous
over stopping times and the integrability condition (2.1) holds, we get (2.100) as claimed.

Applying (2.100) to τε and τ0− , and recalling from the first part of the proof above that
V (Xτε) ≤ G1(Xτε) + ε Px -a.s. it follows that

(2.104) ExV (Xτ0−) ≤ lim inf
ε↓0

ExV (Xτε) ≤ lim inf
ε↓0

Ex

[
G1(Xτε) + ε

]
= ExG1(Xτ0−)

upon using that G1(X) is left-continuous over stopping times (as well as the integrability
condition (2.1) above). Since on the other hand we have V (Xτ0−) ≥ G1(Xτ0−) we see from
(2.104) that V (Xτ0−) = G1(Xτ0−) and thus τ0 ≤ τ0− Px -a.s. proving that τ0 = τ0− Px -a.s.
as claimed.

3. Motivated by passing to the limit in (2.97) for ε ↓ 0 , we will now establish the following
general fact: If τn and τ are stopping times such that τn ↑ τ then

(2.105) lim sup
n→∞

Mx(τn, σ) ≤ Mx(τ, σ)

for every stopping time σ given and fixed. To see this, note that

Mx(τ, σ)−Mx(τn, σ)(2.106)

= Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ, τ 6=τn)

−G1(Xτn)I(τn <σ)−G2(Xσ)I(σ<τn)−G3(Xτn)I(τn =σ, τn 6= τ)
]

≥ Ex

[(
G1(Xτ )−G1(Xτn)

)
I(τ <σ)

+ G1(Xτn)
(
I(τ <σ)+I(τ =σ, τ 6=τn)−I(τn <σ)

)

+ G2(Xσ)
(
I(σ<τ)−I(σ<τn)−I(τn =σ, τn 6=τ)

)]
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= Ex

[(
G1(Xτ )−G1(Xτn)

)
I(τ <σ) +

(
G2(Xσ)−G1(Xτn)

)
I(τn <σ < τ)

]

≥ −Ex|G1(Xτ )−G1(Xτn)| − Ex

[(
sup

t
|G2(Xt)|+ sup

t
|G1(Xt)|)I(τn <σ<τ

)]
.

Letting n → ∞ and using the fact that the final two expectations tend to zero since G1(X)
is left-continuous over stopping times and the integrability condition (2.1) holds, we see that
(2.105) follows as claimed.

Applying (2.105) to τε and τ0 upon letting ε ↓ 0 in (2.97) we get (2.99). The inequality

(2.107) Mx(τ, σ0) ≤ V (x)

can be established analogously. Combining (2.99) and (2.107) we get (1.4) and the proof is
complete. ¤

3. Concluding remarks

The following example shows that the Nash equilibrium (1.4) may fail when X is right-
continuous but not left-continuous over stopping times.

Example 3.1. Let the state space E of the process X be [−1, 1] . If X starts at
x ∈ (−1, 1) let X be a standard Brownian motion until it hits either −1 or 1 ; at this time
let X start afresh from 0 as an independent copy of B until it hits either −1 or 1 ; and so
on. If X starts at x ∈ {−1, 1} let X stay at the same x for the rest of time.

It follows that X is a right-continuous strong Markov process which is not left-continuous
over stopping times. Indeed, if we consider the first hitting time ρε of X to bε under Px for
x ∈ (−1, 1) given and fixed, where bε equals either −1+ ε or 1− ε for all ε > 0 sufficiently
small, then ρε ↑ ρ as ε ↓ 0 so that ρ is a stopping time, however, the value Xρε = bε does
not converge to Xρ = 0 as ε ↓ 0 , implying the claim.

Let G1(x) = x(x+1)−1 and G2(x) = −x(x−1)+1 for x ∈ [−1, 1] , and let G3 be
equal to G1 on [−1, 1] . Note that Gi(−1) = −1 and Gi(1) = 1 for i = 1, 2, 3 . To
include stopping times τ and σ which are allowed to take the value ∞ below, let us set
G3(X∞) = lim sup t→∞ G1(Xt) . Note that G3(X∞) ≡ 1 under Px when x ∈ (−1, 1] and
G3(X∞) ≡ −1 under Px when x = −1 .

It is then easily seen (using the first part of Theorem 2.1 above) that V ∗(x) = V∗(x) = x
for all x ∈ [−1, 1] with τε = inf { t : Xt≤a1

ε or Xt≥b1
ε } (where a1

ε <b1
ε satisfy G1(a

1
ε) = a1

ε−ε
and G1(b

1
ε) = b1

ε−ε ) and σε = inf { t : Xt ≤ a2
ε or Xt ≥ b2

ε } (where a2
ε < b2

ε satisfy G2(a
2
ε)

= a2
ε+ε and G2(b

2
ε) = b2

ε+ε ) being approximate stopping times satisfying (2.7) above. (Note
that ai

ε ↓ −1 and bi
ε ↑ 1 as ε ↓ 0 for i = 1, 2 .)

Thus the Stackelberg equilibrium (1.3) holds with V (x) = x for all x ∈ [−1, 1] . It is clear,
however, that the Nash equilibrium fails as it is impossible to find stopping times τ∗ and σ∗
satisfying (1.4) above. [ Note that the natural candidates τ ≡ ∞ and σ ≡ ∞ are ruled out
since Mx(∞,∞) = 1 for x ∈ (−1, 1] and Mx(∞,∞) = −1 for x = −1 .]

The methodology used in the proof of Theorem 2.1 above (second part) extends from the
Markovian approach to the martingale approach for optimal stopping games. For the sake of
completeness we will formulate the analogous results of the martingale approach.
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Let (Ω,F , (Ft)t≥0, P) be a filtered probability space such that (Ft)t≥0 is right-continuous
and F0 contains all P-null sets from F . Given adapted stochastic processes G1, G2, G3 on
(Ω,F , (Ft)t≥0, P) satisfying G1

t ≤ G3
t ≤ G2

t for all t and the integrability condition

(3.1) E sup
t
|Gi

t| < ∞ (i = 1, 2, 3)

consider the optimal stopping game where the sup-player chooses a stopping time τ to max-
imise, and the inf-player chooses a stopping time σ to minimise, the expected payoff

(3.2) M(τ, σ | Ft) = E
[
G1

τ I(τ <σ) + G2
σ I(σ<τ) + G3

τ I(τ =σ) | Ft

]

for each t given and fixed. Note that if F0 is trivial ( in the sense that P(F ) equals either
0 or 1 for all F ∈ F0 ) then M(τ, σ | F0) equals E

[
G1

τ I(τ <σ) + G2
σ I(σ <τ) + G3

τ I(τ =σ)
]

and this expression is then denoted by M(τ, σ) for all τ and σ .
Define the upper value and the lower value of the game by

(3.3) V ∗
t = ess inf

σ≥t
ess sup

τ≥t
M(τ, σ | Ft) & V t

∗ = ess sup
τ≥t

ess inf
σ≥t

M(τ, σ | Ft)

where the horizon T (the upper bound for τ and σ above) may be either finite or infinite.
If T < ∞ then it is assumed that G1

T = G2
T = G3

T . If T = ∞ then it is assumed that
lim inf t→∞ G2

t ≤ lim sup t→∞ G1
t , and the common value for G3

∞ could formally be assigned as
either of the preceding two values ( if τ and σ are allowed to take the value ∞ ).

Theorem 3.2
Consider the optimal stopping game (3.3). If Gi is right-continuous for i = 1, 2, 3 then

the Stackelberg equilibrium holds in the sense that

(3.4) V ∗
t = V t

∗ P-a.s.

with Vt := V ∗
t = V t

∗ defining a right-continuous process (modification) for t ≥ 0 . Moreover,
the stopping times

(3.5) τε = inf { t : Vt ≤ G1
t + ε } & σε = inf { t : Vt ≥ G2

t − ε }

satisfy the following inequalities:

(3.6) M(τ, σε | Ft)− ε ≤ M(τε, σε | Ft) ≤ M(τε, σ | Ft) + ε

for each t and every ε > 0 . If Gi is right-continuous and left-continuous over stopping times
for i = 1, 2, 3 then the Nash equilibrium holds in the sense that the stopping times

(3.7) τ∗ = inf { t : Vt = G1
t } & σ∗ = inf { t : Vt = G2

t }

satisfy the following inequalities:

(3.8) M(τ, σ∗ | Ft) ≤ M(τ∗, σ∗ | Ft) ≤ M(τ∗, σ | Ft)

for each t and all stopping times τ and σ .
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Proof. The first part of the theorem (Stackelberg equilibrium) was established in [18]
(under slightly more restrictive conditions on integrability and the common value at the end
of time but the same method extends to cover the present case without major changes). The
second part of the theorem (Nash equilibrium) can be derived using the same arguments as in
the second part of the proof of Theorem 2.1 above. ¤

Note that the second part of Theorem 3.2 (Nash equilibrium) is applicable to all Lévy
processes (without additional hypotheses on the jump structure).
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rale sans l’hypothèse de Mokobodski. Stochastics 13 (25-44).

[19] Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Prob-
lems. Lectures in Mathematics, ETH Zürich. Birkhäuser.
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