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We present a constructive probabilistic proof of the fact that if B = (Bt)t≥0 is
standard Brownian motion started at 0 and µ is a given probability measure on IR
such that µ({0}) = 0 then there exists a unique left-continuous increasing function
b : (0,∞) → IR∪{+∞} and a unique left-continuous decreasing function c : (0,∞) →
IR ∪ {−∞} such that B stopped at τb,c = inf { t > 0 | Bt ≥ b(t) or Bt ≤ c(t) }
has the law µ . The method of proof relies upon weak convergence arguments arising
from Helly’s selection theorem and makes use of the Lévy metric which appears to be
novel in the context of embedding theorems. We show that τb,c is minimal in the
sense of Monroe so that the stopped process Bτb,c = (Bt∧τb,c

)t≥0 satisfies natural
uniform integrability conditions expressed in terms of µ . We also show that τb,c has
the smallest truncated expectation among all stopping times that embed µ into B .
The main results extend from standard Brownian motion to all recurrent diffusion
processes on the real line.

1. Introduction

A classic problem in modern probability theory is to find a stopping time τ of a standard
Brownian motion B started at zero such that B stopped at τ has a given law µ . The
existence of a randomised stopping time τ for centred laws µ was first derived by Skorokhod
[22] and the problem is often referred to as the Skorokhod embedding problem. A few years later
Dubins [8] proved the existence of a non-randomised stopping time τ of B that also holds
for more general laws µ . Many other solutions have been found in subsequent years and we
refer to the survey article by ObÃlój [17] for a comprehensive discussion (see also [9] for financial
applications and [11] for connections to the Cantelli conjecture).

Solutions relevant to the present paper are those found by Root [19] in the setting of B
and Rost [20] in the setting of more general Markov processes and initial laws. Root [19]
showed that τ can be realised as the first entry time to a barrier and Rost [20] showed that
τ can be characterised in terms of a filling scheme dating back to Chacon & Ornstein [4]
within ergodic theory (see also [7] for a closely related construction). Subsequently Chacon [3]
showed that a stopping time arising from the filling scheme coincides with the first entry time
to a reversed barrier under some conditions. The proof of Root [19] relies upon a continuous
mapping theorem and compactness of barriers in a uniform distance topology. The methods
of Rost [20] and Chacon [3] rely on potential theory of general Markov processes. Uniqueness
of barriers was studied by Loynes [12]. He described barriers by functions of space. Reversed
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barriers can also be described by functions of time. Based on this fact McConnell [13] developed
an analytic free-boundary approach relying upon potential theoretic considerations of Rost [20]
and Chacon [3]. He proved the existence of functions of time (representing a reversed barrier)
when µ has a continuous distribution function which is flat around zero. He also showed that
these functions are unique under a Tychonov boundedness condition.

In this paper we develop an entirely different approach to the embedding problem and
prove the existence and uniqueness of functions of time for general target laws µ with no extra
conditions imposed. The derivation of τ is constructive and the construction itself is purely
probabilistic and intuitive. The method of proof relies upon weak convergence arguments for
functions of time arising from Helly’s selection theorem and makes use of the Lévy metric
which appears to be novel in the context of embedding theorems. This enables us to avoid
time-reversal arguments (present in previous approaches) and relate the existence arguments
directly to the regularity of the sample path with respect to functions of time. The fact that the
construction applies to all target laws µ with no integrability/regularity assumptions makes
the resulting embedding rather canonical and remarkable in the class of known embeddings.
Moreover, we show that the resulting stopping time τ is minimal in the sense of Monroe [14]
so that the stopped process Bτ = (Bt∧τ )t≥0 satisfies natural uniform integrability conditions
which fail to hold for trivial embeddings of any law (see e.g. [18, Exc. 5.7, p. 276]). We also show
that the resulting stopping time τ has the smallest truncated expectation among all stopping
times that embed µ into B . The same result was derived by Chacon [3] for stopping times
arising from the filling scheme when their means are finite. A converse result for stopping times
arising from barriers was first derived by Rost [21]. The main results extend from standard
Brownian motion to all recurrent diffusion processes on the real line. Extending these results to
more general Markov processes satisfying specified conditions leads to a research agenda which
we leave open for future developments.

When the process is standard Brownian motion then it is possible to check that the sufficient
conditions derived by Chacon [3, p. 47] are satisfied so that the filling scheme stopping time
used by Rost [20] coincides with the first entry time to a reversed barrier. If µ has a continuous
distribution function which is flat around zero then the uniqueness result of McConnell [13, pp.
684-690] implies that this reversed barrier is uniquely determined under a Tychonov bounded-
ness condition. When any of these conditions fails however then it becomes unclear whether a
reversed barrier is uniquely determined by the filling scheme because in principle there could be
many reversed barriers yielding the same law. One consequence of the present paper is that the
latter ambiguity gets removed since we show that the filling scheme does indeed determine a
reversed barrier uniquely for general target laws µ with no extra conditions imposed. Despite
this contribution to the theory of filling schemes (see [3] and the references therein) it needs to
be noted that the novel methodology of the present paper avoids the filling scheme completely
and focuses on constructing the reversed barrier by functions of time directly.

2. Existence

In this section we state and prove the main existence result (see also Corollary 8 below).

Theorem 1 (Existence). Let B = (Bt)t≥0 be a standard Brownian motion defined on a
probability space (Ω,F , P) with B0 = 0 , and let µ be a probability measure on (IR,B(IR))
such that µ({0}) = 0 .
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(I) If supp(µ) ⊆ IR+ then there exists a left-continuous increasing function b : (0,∞) → IR
such that Bτb

∼ µ where τb = inf { t > 0 | Bt ≥ b(t) } .

(II) If supp(µ) ⊆ IR− then there exists a left-continuous decreasing function c : (0,∞) → IR
such that Bτc ∼ µ where τc = inf { t > 0 | Bt ≤ c(t) } .

(III) If supp(µ) ∩ IR+ 6= ∅ and supp(µ) ∩ IR− 6= ∅ then there exist a left-continuous
increasing function b : (0,∞) → IR ∪ {+∞} and a left-continuous decreasing function c :
(0,∞) → IR ∪ {−∞} such that Bτb,c

∼ µ where τb,c = inf { t > 0 | Bt ≥ b(t) or Bt ≤ c(t) }
(see Figure 1 below).

Proof. We will first derive (I)+(II) since (III) will then follow by combining and further
extending the construction and arguments of (I)+(II). This will enable us to focus more clearly
on the subtle technical issues in relation to (a) the competing character of the two boundaries
in (III) and (b) the fact that one of them can jump to infinity. Neither of these technical issues
is present in (I)+(II) so that the key building block of the construction is best understood by
considering this case first.

(I)+(II) One-sided support: Clearly it is enough to prove (I) since (II) then follows by
symmetry. Let us therefore assume that supp(µ) ⊆ IR+ throughout.

1. Bounded support. Assume first that supp(µ) ⊆ [0, β] for some β < ∞ . Without loss
of generality we can assume that β belongs to supp(µ) . Let 0 = xn

0 < xn
1 < . . . < xn

mn
= β

be a partition of [0, β] such that max 1≤k≤mn(xn
k−xn

k−1) → 0 as n → ∞ . (For example, we
could take a dyadic partition defined by xn

k = k
2n β for k = 0, 1, . . . , 2n but other choices are

also possible and will lead to the same result.) Let X be a random variable (defined on some
probability space) having the law equal to µ and set

(2.1) Xn =
mn∑

k=1

xn
k I(xn

k−1 <X≤xn
k)

for n ≥ 1 . Then Xn → X almost surely and hence Xn → X in law as n → ∞ . Denoting
the law of Xn by µn this means that µn → µ weakly as n →∞ . We will now construct a
left-continuous increasing function bn : (0,∞) → IR taking values in {xn

1 , x
n
2 , . . . , x

n
mn
} such

that τbn = inf { t > 0 | Bt ≥ bn(t) } satisfies Bτbn
∼ µn for n ≥ 1 .

1.1. Construction: Discrete case. For this, set pn
k = P(xn

k−1 <X≤xn
k) for k = 1, 2, . . . , mn

with n ≥ 1 given and fixed, and let k1 denote the smallest k in {1, 2, . . . ,mn} such that
pn

k > 0 . Consider the sequential movement of two sample paths t 7→ Bt and t 7→ xn
k1

as
t goes from 0 onwards. From the recurrence of B it is clear that there exists a unique
tn1 > 0 such that the probability of B hitting xn

k1
before tn1 equals pn

k1
. Stop the movement

of t 7→ xn
k1

at tn1 and replace it with t 7→ xn
k2

afterwards where k2 is the smallest k in
{k1+1, k1+2, . . . , mn} such that pn

k > 0 . Set bn(t) = xn
k1

for t ∈ (0, tn1 ] and on the event
that B did not hit bn on (0, tn1 ] consider the movement of t 7→ Bt and t 7→ xn

k2
as t goes

from tn1 onwards. From the recurrence of B it is clear that there exists a unique tn2 > tn1
such that the probability of B hitting xn

k2
before tn2 equals pn

k2
. Proceed as before and set

bn(t) = xn
k2

for t ∈ (tn1 , t
n
2 ] . Continuing this construction by induction until tni = ∞ for some

i ≤ mn (which clearly has to happen) we obtain bn as stated above. Note that bn(t) = xn
k1
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for t ∈ (0, tn1 ] with xn
k1
→ α =: min supp(µ) as n → ∞ and bn(t) = xn

mn
for t ∈ (tni−1,∞)

since xn
mn

= β = max supp(µ) by assumption.

1.2. Construction: Passage to limit. In this way we have obtained a sequence of left-conti-
nuous increasing functions bn : (0,∞) → [α, β] satisfying bn(0+) → α as n → ∞ and
bn(+∞) = β for n ≥ 1 . We can formally extend each bn to (−∞, 0] by setting bn(t) =
bn(0+) for t ∈ (−1, 0] and bn(t) = 0 for t ∈ (−∞,−1] (other definitions are also possible).
Then { bn | n ≥ 1 } is a sequence of left-continuous increasing functions from IR into IR
such that bn(−∞) = 0 and bn(+∞) = β for all n ≥ 1 . By Helly’s selection theorem (see
e.g. [1, pp. 336-337]) we therefore know that there exists a subsequence { bnk

| k ≥ 1 } and a
left-continuous increasing function b : IR → IR such that bnk

→ b weakly as k → ∞ in the
sense that bnk

(t) → b(t) as k → ∞ for every t ∈ IR at which b is continuous. (Note that
since bn(t) = bn(0+) → α as n → ∞ for every t ∈ (−1, 0] it follows that b(0) = α by the
increase and left-continuity of b .) Restricting b to (0,∞) and considering the stopping time

(2.2) τb = inf { t > 0 | Bt ≥ b(t) }
we claim that Bτb

∼ µ . This can be seen as follows.

1.3. Tightness. We claim that the sequence of generalised distribution functions { bn | n ≥
1 } is tight (in the sense the mass of the Lebesgue-Stieltjes measure associated with bn cannot
escape to infinity as n →∞ ). Indeed, if ε > 0 is given and fixed, then δε := µ((β−ε, β]) > 0
since β belongs to supp(µ) . Setting τβ = inf { t > 0 | Bt ≥ β } we see that there exists
tε > 0 large enough such that P(τβ ≤ tε) > 1−δε . Since bn ≤ β and hence τbn ≤ τβ this
implies that P(τbn ≤ tε) > 1−δε for all n ≥ 1 . From the construction of bn the latter
inequality implies that bn(tε) > β−ε for all n ≥ 1 . Recalling the extension of bn to (−∞, 0]
specified above where bn(−1) = 0 it therefore follows that

(2.3) bn(tε)−bn(−1) > β−ε

for all n ≥ 1 . This shows that { bn | n ≥ 1 } is tight as claimed. From (2.3) we see that
b(+∞) = β and b(−∞) = 0 so that the Lebesgue-Stieltjes measure associated with b on IR
has a full mass equal to β like all other bn for n ≥ 1 . Recalling that b(0+) = α we see that
the Lebesgue-Stieltjes measure associated with b on (0,∞) has a full mass equal to β−α .
For our purposes we only need to consider the restriction of b to (0,∞) .

1.4. Lévy metric and convergence. If b and c are left-continuous increasing functions from
IR into IR such that b(−∞) = c(−∞) = 0 and b(+∞) = c(+∞) = β , then the Lévy metric
is defined by

(2.4) d(b, c) = inf { ε > 0 | b(t−ε)−ε ≤ c(t) ≤ b(t+ε)+ε for all t ∈ IR } .

It is well known (see e.g. [1, Exc. 14.5]) that cn → b weakly if and only if d(b, cn) → 0 as
n →∞ . Defining functions

(2.5) bε(t) := b(t−ε)−ε & bε(t) := b(t+ε)+ε

for t ∈ IR we claim that

τbε ↑ τb P-a.s.(2.6)
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τbε ↓ τb P-a.s.(2.7)

as ε ↓ 0 where in (2.6) we also assume that b(0+) > 0 .

Proof of (2.6). Note first that bε′ ≤ bε′′ ≤ b so that τbε′ ≤ τbε′′ ≤ τb for ε′ ≥ ε′′ > 0 .
It follows therefore that τb− := lim ε↓0 τbε ≤ τb . Moreover by definition of τbε we can find a
sequence δn ↓ 0 as n →∞ such that Bτbε+δn ≥ bε(τbε +δn) = b(τbε−ε+δn)−ε for all n ≥ 1
with ε > 0 . Letting n →∞ it follows that Bτbε

≥ b((τbε−ε)+)−ε ≥ b(τbε−ε)−ε ≥ b(τbε−ε0)−ε
for all ε ∈ (0, ε0) with ε0 > 0 given and fixed. Since b is left-continuous and increasing it
follows that b is lower semicontinuous and hence by letting ε ↓ 0 in the previous identity we
find that Bτb− ≥ lim infε↓0 (b(τbε−ε0)−ε) ≥ b(lim infε↓0 τbε−ε0) = b(τb−−ε0) for all ε0 > 0 .

Letting ε0 ↓ 0 and using that b is left-continuous we get Bτb− ≥ b(τb−) . This implies that

τb ≤ τb− and hence τb− = τb as claimed in (2.6) above.

Proof of (2.7). Note first that b ≤ bε′ ≤ bε′′ so that τb ≤ τbε′ ≤ τbε′′ for ε′′ ≥ ε′ > 0 . It
follows therefore that τb ≤ τb+ := lim ε↓0 τbε . Moreover setting

(2.8) σb = inf { t > 0 | Bt > b(t) }

we claim that

(2.9) τb = σb P-a.s.

so that outside a P-null set we have Btn > b(tn) for some tn ↓ τb with tn > τb . Since b is
increasing each tn can be chosen as a continuity point of b , and therefore there exists εn > 0
small enough such that Btn > bεn(tn) = b(tn+εn)+εn > b(tn) for all n ≥ 1 . This shows that
τb+ ≤ tn outside the P-null set for all n ≥ 1 . Letting n → ∞ we get τb+ ≤ τb P-a.s. and
hence τb+ = τb P-a.s. as claimed in (2.7) above.

Proof of (2.9). Let us first introduce

(2.10) τb+ε = inf { t > 0 | Bt ≥ b(t)+ε }

and note that τb+ := lim ε↓0 τb+ε = σb as is easily seen from definitions (2.8) and (2.10). Next
introduce the truncated versions of (2.2) and (2.10) by setting

τ δ
b = inf { t > δ | Bt ≥ b(t) }(2.11)

τ δ
b+ε = inf { t > δ | Bt ≥ b(t)+ε }(2.12)

with δ > 0 given and fixed. Note that τ δ
b ≤ τ δ

b+ε′ ≤ τ δ
b+ε′′ for ε′′ ≥ ε′ > 0 . It follows therefore

that τ δ
b ≤ τ δ

b+ := lim ε↓0 τ δ
b+ε . To prove that

(2.13) τ δ
b = τ δ

b+ P-a.s.

it is enough to establish that

(2.14) P(τ δ
b+ > t) ≤ P(τ δ

b > t)
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for all t > 0 . Indeed, in this case we have E(τ δ
b+ ∧N) =

∫ N

0
P(τ δ

b+ > t) dt ≤ ∫ N

0
P(τ δ

b > t) dt =
E(τ δ

b ∧N) so that τ δ
b+∧N = τ δ

b ∧N P-a.s. for all N ≥ 1 . Letting N →∞ we obtain (2.13)
as claimed. Assuming that (2.13) is established note that

(2.15) σb = τb+ = lim
ε↓0

τb+ε = lim
ε↓0

lim
δ↓0

τ δ
b+ε = lim

δ↓0
lim
ε↓0

τ δ
b+ε = lim

δ↓0
τ δ
b+ = lim

δ↓0
τ δ
b = τb P-a.s

where we use that ε 7→ τ δ
b+ε and δ 7→ τ δ

b+ε are decreasing as ε ↓ 0 and δ ↓ 0 so that the two
limits commute. Hence we see that the proof of (2.9) is reduced to establishing (2.14).

Proof of (2.14). Note by Girsanov’s theorem that

P(τ δ
b+ > t) = P

(
lim
ε↓0

τ δ
b+ε > t

) ≤ lim
ε↓0

P(τ δ
b+ε > t)(2.16)

= lim
ε↓0

P(Bs < b(s)+ε for all s ∈ (δ, t])

= lim
ε↓0

P
(
Bs −

∫ s

0

ε

δ
I(0≤r≤δ) dr < b(s) for all s ∈ (δ, t]

)

= lim
ε↓0

E
[ EHε

T

EHε

T

I
(
Bs −

∫ s

0

Hε
r dr < b(s) for all s ∈ (δ, t]

)]

= lim
ε↓0

Ẽ
[ 1

EHε

T

I
(
B̃s < b(s) for all s ∈ (δ, t]

)]

where Hε
r = ε

δ
I(0≤ r≤ δ) and EHε

T = exp(
∫ T

0
Hε

r dBr− 1
2

∫ T

0
(Hε

r )
2 dr) so that dP̃ = EHε

T dP

and 1/EHε

T = exp(−∫ T

0
Hε

r dBr+
1
2

∫ T

0
(Hε

r )
2 dr) = exp(−∫ T

0
Hε

r dB̃r−1
2

∫ T

0
(Hε

r )
2 dr) = exp(− ε

δ
B̃δ

−1
2

ε2

δ
) with B̃s = Bs−

∫ s

0
Hε

r dr being a standard Brownian motion under P̃ for s ∈ [0, T ] .
From (2.16) it therefore follows that

P(τ δ
b+ > t) ≤ lim

ε↓0
E
[
exp

(
− ε

δ
Bδ− 1

2

ε2

δ

)
I
(
Bs < b(s) for all s ∈ (δ, t]

)]
(2.17)

= P(Bs < b(s) for all s ∈ (δ, t]) = P(τ δ
b > t)

using the dominated convergence theorem since Eec|Bδ| < ∞ for c > 0 . This completes the
verification of (2.14) and thus (2.7) holds as well. (For a different proof of (2.14) in a more
general setting see the proof of Corollary 8 below.)

1.5. Verification. To prove that τb from (2.2) satisfies Bτb
∼ µ consider first the case when

b(0+) > 0 . Recall that bnk
→ b weakly and therefore d(b, bnk

) → 0 as k → ∞ where d is
the Lévy metric defined in (2.4). To simplify the notation in the sequel let us set bk := bnk

for
k ≥ 1 . This yields the existence of εk ↓ 0 as k →∞ such that bεk

(t) ≤ bk(t) ≤ bεk(t) for all
t > 0 and k ≥ 1 (recall that bεk

and bεk are defined by (2.5) above). It follows therefore that
τbεk

≤ τbk
≤ τbεk for all k ≥ 1 . Letting k → ∞ and using (2.6) and (2.7) above we obtain

τb = lim k→∞ τbεk
≤ lim inf k→∞ τbk

≤ lim sup k→∞ τbk
≤ lim k→∞ τbεk = τb P-a.s. This shows

that τb = lim k→∞ τbk
P-a.s. and hence Bτb

= lim k→∞ Bτbk
P-a.s. Recalling that Bτbk

∼ µk

for k ≥ 1 and that µk → µ weakly as k →∞ we see that Bτb
∼ µ as claimed.

Consider next the case when b(0+) = 0 . With δ > 0 given and fixed set bδ := b ∨ δ and
bδ
n := bn ∨ δ for n ≥ 1 . Since bk → b weakly we see that bδ

k → bδ weakly and hence by the
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first part of the proof above ( since bδ(0+) = δ > 0 ) we know that τbδ
k
→ τbδ P-a.s. so that

Bτ
bδ
k

→ Bτ
bδ

P-a.s. as k →∞ . Moreover, since τbδ
k
→ τbk

and τbδ → τb as δ ↓ 0 we see that

(2.18) Bτ
bδ
k

→ Bτbk
& Bτ

bδ
→ Bτb

as δ ↓ 0 . From the fact that the first convergence in P-probability is uniform over all k ≥ 1
in the sense that we have

(2.19) sup
k≥1

P
(
Bτ

bδ
k

6= Bτbk

) ≤ sup
k≥1

µk((0, δ]) ≤ µ((0, δ]) → 0

as δ ↓ 0 , it follows that the limits in P-probability commute so that

(2.20) Bτb
= lim

δ↓0
Bτδ

b
= lim

δ↓0
lim
k→∞

Bτδ
bk

= lim
k→∞

lim
δ↓0

Bτδ
bk

= lim
k→∞

Bτbk
.

Recalling again that Bτbk
∼ µk for k ≥ 1 and that µk → µ weakly as k → ∞ we see that

Bτb
∼ µ in this case as well. Note also that the same arguments show (by dropping the symbol

B from the left-hand side of (2.19) above) that τb = lim k→∞ τbk
in P-probability. This will

be used in the proof of (III) below.

2. Unbounded support. Consider now the case when sup supp(µ) = +∞ . Let X be a ran-
dom variable (defined on some probability space) having the law equal to µ and set XN =
X ∧ βN for some βN ↑ ∞ as N → ∞ such that µ((βN − ε, βN ]) > 0 for all ε > 0
and N ≥ 1 . Let N ≥ 1 be given and fixed. Denoting the law of XN by µN we see
that supp(µN) ⊆ [0, βN ] with βN ∈ supp(µN) . Hence by the previous part of the proof
we know that there exists a left-continuous increasing function bN : (0,∞) → IR such that
BτbN

∼ µN . Recall that this bN is obtained as the weak limit of a subsequence of the sequence
of simple functions constructed by partitioning (0, βN) . Extending the same construction to
partitioning [βN , βN+1) while keeping the obtained subsequence of functions with values in
(0, βN) we again know by the previous part of the proof that there exists a left-continuous
increasing function bN+1 : (0,∞) → IR such that BτbN+1

∼ µN+1 . This bN+1 is obtained as
the weak limit of a further subsequence of the previous subsequence of simple functions. Setting
tN = inf { t > 0 | bN(t) = βN } it is therefore clear that bN+1(t) = bN(t) for all t ∈ (0, tN ] .
Continuing this process by induction and noticing that tN ↑ t∞ as N → ∞ we obtain a
function b : (0, t∞) → IR such that b(t) = bN(t) for all t ∈ (0, tN ] and N ≥ 1 . Clearly b is
left-continuous and increasing since each bN satisfies these properties. Moreover we claim that
t∞ must be equal to +∞ . For this, note that P(Bτb

≤ x) = P(BτbN
≤ x) for x < βN and

N ≥ 1 . Letting N →∞ and using that BτbN
∼ µN converges weakly to µ since XN → X

we see that P(Bτb
≤ x) = P(X ≤ x) for all x > 0 at which the distribution function of X is

continuous. Letting x ↑ ∞ over such continuity points we get P(Bτb
< ∞) = 1 . Since clearly

this is not possible if t∞ is finite we see that t∞ = +∞ as claimed. Noting that bN = b∧βN on
(0,∞) for N ≥ 1 it follows that τbN

= inf { t > 0 | Bt ≥ bN(t) } = inf { t > 0 | Bt ≥ b(t)∧βN }
from where we see that τbN

→ τb and thus BτbN
→ Bτb

as N → ∞ . Since XN → X and
thus µN → µ weakly as N → ∞ it follows that Bτb

∼ µ as claimed. This completes the
proof of (I).

(III) Two-sided support: This will be proved by combining and further extending the
construction and arguments of (I) and (II). Novel aspects in this process include the competing
character of the two boundaries and the fact that one of them can jump to infinite value.
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Figure 1. An illustration of the reversed-barrier stopping time τb,c from Theorem 1
that embeds µ into B when supp(µ) = [x1, 0] ∪ [x2, x3] ∪ [x4,∞) .

3. Bounded support. As in the one-sided case assume first that supp(µ) ⊆ [γ, β] for some
γ < 0 < β . Without loss of generality we can assume that β and γ belong to supp(µ) . Let
0 = xn

0 < xn
1 < . . . < xn

mn
= β be a partition of [0, β] such that max 1≤k≤mn(xn

k−xn
k−1) → 0

as n → ∞ , and let 0 = yn
0 > yn

1 > . . . > yn
ln

= γ be a partition of [γ, 0] such that
max 1≤j≤ln(yn

j−1− yn
j ) → 0 as n → ∞ . Let X be a random variable (defined on some

probability space) having the law equal to µ and set

(2.21) X+
n =

mn∑

k=1

xn
k I(xn

k−1 <X≤xn
k) & X−

n =
ln∑

j=1

yn
j I(yn

j ≤X <yn
j−1)

for n ≥ 1 . Then X+
n +X−

n → X almost surely and hence X+
n +X−

n → X in law as n →∞ .
Denoting the law of X+

n +X−
n by µn and recalling that X has the law µ this means that

µn → µ weakly as n → ∞ . We will now construct a left-continuous increasing function
bn : (0,∞) → IR taking values in {xn

1 , x
n
2 , . . . , x

n
mn

, +∞} and a left-continuous decreasing
function cn : (0,∞) → IR taking values in {yn

1 , yn
2 , . . . , yn

ln
,−∞} with bn(t) < +∞ or

cn(t) > −∞ for all t ∈ (0,∞) such that τbn,cn = inf { t > 0 | Bt ≥ bn(t) or Bt ≤ cn(t) }
satisfies Bτbn,cn

∼ µn for n ≥ 1 .

3.1. Construction: Discrete case. For this, set pn
k = P(xn

k−1 <X≤xn
k) for k = 1, 2, . . . , mn

and qn
j = P(yn

j ≤X <yn
j−1) for j = 1, 2, . . . , ln with n ≥ 1 given and fixed. Let k1 denote
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the smallest k in {1, 2, . . . ,mn} such that pn
k > 0 , and let j1 denote the smallest j in

{1, 2, . . . , ln} such that qn
j > 0 . Consider the sequential movement of three sample paths

t 7→ Bt , t 7→ xn
k1

and t 7→ yn
j1

as t goes from 0 onwards. From the recurrence of B it
is clear that there exists a unique tn1 > 0 such that the probability of B hitting xn

k1
before

yn
j1

on (0, tn1 ] equals pn
k1

, or the probability of B hitting yn
j1

before xn
k1

on (0, tn1 ] equals
qn
j1

, whichever happens first (including simultaneous happening). In the first case stop the
movement of t 7→ xn

k1
at tn1 and replace it with t 7→ xn

k2
afterwards where k2 is the smallest

k in {k1+1, k1+2, . . . , mn} such that pn
k > 0 (if there is no such k then make no further

replacement). In the second case stop the movement of t 7→ yn
j1

at tn1 and replace it with
t 7→ yn

j2
afterwards where j2 is the smallest j in {j1 +1, j1 +2, . . . , ln} such that qn

j > 0
(if there is no such j then make no further replacement). In the third case, when the first
and second case happen simultaneously, stop the movement of both t 7→ xn

k1
and t 7→ yn

j1
at

tn1 and replace them with t 7→ xn
k2

and t 7→ yn
j2

respectively (if there is no k2 or j2 then
make no replacement respectively). In all three cases set bn(t) = xn

k1
and cn(t) = yn

j1
for

t ∈ (0, tn1 ] . On the event that B did not hit bn or cn on (0, tn1 ] , in the first case consider
the movement of t 7→ Bt , t 7→ xn

k2
and t 7→ yn

j1
, in the second case consider the movement

of t 7→ Bt , t 7→ xn
k1

and t 7→ yn
j2

, and in the third case consider the movement of t 7→ Bt ,
t 7→ xn

k2
and t 7→ yn

j2
as t goes from tn1 onwards. If there is no k2 or j2 we can formally

set xn
k2

= +∞ or yn
j2

= −∞ respectively (note however that either k2 or j2 will always be
finite). Continuing this construction by induction until tni = ∞ for some i ≤ mn ∨ ln (which
clearly has to happen) we obtain bn and cn as stated above.

3.2. Construction: Passage to limit. For n ≥ 1 given and fixed note that bn takes value
β on some interval and cn takes value γ on some interval since both β and γ belong to
supp(µ) . The main technical difficulty is that either bn can take value +∞ or cn can take
value −∞ from some time tζ onwards as well (in which case the corresponding interval is
bounded). In effect this means that the corresponding function is not defined on (tζ ,∞) with
values in IR . To overcome this difficulty we will set b̄n(t) = β and c̄n(t) = γ for t > tζ .
Setting further b̄n = bn and c̄n = cn on (0, tζ ] we see that b̄n and c̄n are generalised
distribution functions on (0,∞) . Note that we always have either b̄n = bn or c̄n = cn (and
often both). Note also that b̄n 6= bn if and only if bn takes value +∞ and c̄n 6= cn if and only
if cn takes value −∞ . Note finally that b̄n(+∞) = β and c̄n(+∞) = γ . Applying the same
arguments as in Part 1.2 above (upon extending b̄n and c̄n to IR first) we know that there
exist subsequences { b̄nk

| k ≥ 1 } and { c̄nk
| k ≥ 1 } such that b̄nk

→ b̄ and c̄nk
→ c̄ weakly

as k →∞ for some increasing left-continuous function b̄ and some decreasing left-continuous
function c̄ .

3.3. Tightness. We claim that the sequences of generalised distribution functions { b̄n | n ≥
1 } and { c̄n | n ≥ 1 } are tight. Indeed, if ε > 0 is given and fixed, then δ′ε := µ((β−ε, β]) > 0
and δ′′ε := µ([γ, γ + ε)) > 0 since β and γ belong to supp(µ) . Setting δε := δ′ε ∧ δ′′ε and
considering τβ = inf { t > 0 | Bt ≥ β } and τγ = inf { t > 0 | Bt ≤ γ } we see that there exists
tε > 0 large enough such that P(τβ ∨ τγ ≤ tε) > 1−δε . Since τbn,cn ≤ τβ ∨ τγ this implies
that P(τbn,cn ≤ tε) > 1−δε for all n ≥ 1 . From the construction of bn and cn the latter
inequality implies that bn(tε) > β−ε and cn(tε) < γ+ε for all n ≥ 1 (note that in all these
arguments we can indeed use unbarred functions). The tightness claim then follows using the
same arguments as in Part 1.3 above.
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3.4. Verification. Applying the same arguments as in Part 1.4 above we know from Part 1.5
above that setting b̄k := b̄nk

for k ≥ 1 we have τb̄k
→ τb̄ and τc̄k

→ τc̄ in P-probability as
k → ∞ . Setting tbk = sup { t > 0 | bk(t) = β } and tck = sup { t > 0 | ck(t) = γ } by the
construction above we know that either tbk = ∞ or tck = ∞ for all k ≥ 1 . If there exists
k0 ≥ 1 such that both tbk = ∞ and tck = ∞ for all k ≥ k0 then bk = b̄k and ck = c̄k for
all k ≥ k0 so that τbk,ck

= τbk
∧ τck

= τb̄k
∧ τc̄k

→ τb̄ ∧ τc̄ = τb̄,c̄ = τb,c in P-probability as
k → ∞ where we set b := b̄ and c := c̄ . This implies that Bτbk,ck

→ Bτb,c
in P-probability

and thus in law as well while Bτbk,ck
∼ µk with µk → µ weakly as k → ∞ then shows that

Bτb,τc ∼ µ as required. Suppose therefore that there is no such k0 ≥ 1 . This means that we
have infinitely many tbk < ∞ or infinitely many tck < ∞ for k ≥ 1 . Without loss of generality
assume that the former holds. Then we can pass to a further subsequence such that tbkl

< ∞
for all l ≥ 1 and tbkl

→ tb∞ ∈ (0,∞] as l →∞ . Set b(t) = b̄(t) for t ∈ (0, tb∞] and b(t) = ∞
for t ∈ (tb∞,∞) . Set also c(t) = c̄(t) for t > 0 and note that ckl

= c̄kl
for all l ≥ 1 . To

simplify the notation set further bl := bkl
, b̄l := b̄kl

, cl := ckl
and c̄l := c̄kl

for l ≥ 1 .
Then τb̄l

→ τb̄ in P-probability and hence τb̄l
I(τb̄ < tb∞) → τb̄ I(τb̄ < tb∞) in P-probability

as l → ∞ . Using definitions of barred functions and the fact that tbkl
→ tb∞ one can easily

verify that the previous relation implies that τbl
I(τb < tb∞) → τb I(τb < tb∞) in P-probability as

l →∞ . Since P(τb < tb∞) = 1 it follows that τbl
∧ τcl

→ τb ∧ τc in P-probability as l →∞ .
This implies that Bτbl,cl

→ Bτb,c
in P-probability as l → ∞ and hence Bτb,c

∼ µ using the
same argument as above. This completes the proof in the case when supp(µ) is bounded.

4. Half bounded support. Consider now the case when sup supp(µ) = +∞ and inf supp(µ)
=: γ ∈ (−∞, 0) (see Figure 1 above). Let X be a random variable (defined on some probability
space) having the law equal to µ and set XN = X ∧ βN for some βN ↑ ∞ as N → ∞
such that µ((βN − ε, βN ]) > 0 for all ε > 0 and N ≥ 1 . Let N ≥ 1 be given and
fixed. Denoting the law of XN by µN we see that supp(µN) ⊆ [γ, βN ] with βN and
γ belonging to supp(µN) . Hence by Parts 3.1-3.4 above we know that there exist a left-
continuous increasing function bN : (0,∞) → (0, βN ]∪{+∞} and a left-continuous decreasing
function cN : (0,∞) → [γ, 0) ∪ {−∞} such that BτbN ,cN

∼ µN .

4.1. Construction. Recall that these bN and cN are obtained as the weak limits of subse-
quences of the sequences of simple functions constructed by partitioning (γ, 0) and (0, βN) .
Extending the same construction to partitioning (γ, 0) and [βN , βN+1) while keeping the
obtained subsequence of functions with values strictly smaller than βN we again know by
Parts 3.1-3.4 above that there exist a left-continuous increasing function bN+1 : (0,∞) →
(0, βN+1] ∪ {+∞} and a left-continuous decreasing function cN+1 : (0,∞) → [γ, 0) ∪ {−∞}
such that BτbN+1,cN+1

∼ µN+1 . These bN+1 and cN+1 are obtained as the weak limits of

further subsequences of the previous subsequences of simple functions. Setting tN = inf { t >
0 | bN(t) = βN } it is therefore clear that bN+1(t) = bN(t) and cN+1(t) = cN(t) for all
t ∈ (0, tN ] . Continuing this process by induction and noticing that tN ↑ t∞ as N → ∞ we
obtain a left-continuous increasing function b : (0, t∞) → IR and a left-continuous decreasing
c : (0, t∞) → IR ∪ {−∞} such that b(t) = bN(t) and c(t) = cN(t) for all t ∈ (0, tN ] and
N ≥ 1 . Note that b is finite valued on (0, t∞) with b(t∞−) = +∞ .

4.2. Verification. To verify that b and c are the required functions consider first the case
when t∞ = ∞ . If c is finite valued then τb,c < ∞ P-a.s. and hence τbN ,cN

→ τb,c P-a.s.
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as N → ∞ . If c is not finite valued then c = cN and hence P(Bτb,c
< βN) = P(BτbN ,cN

<
βN) = 1 − µ([βN ,∞)) for all N ≥ N0 with some N0 ≥ 1 . Letting N → ∞ and using that
µ([βN ,∞)) → 0 we find that P(τb,c < ∞) = 1 and hence τbN ,cN

→ τb,c P-a.s. Thus the latter
relation always holds and hence BτbN ,cN

→ Bτb,c
P-a.s. as N →∞ . Since BτbN ,cN

∼ µN and
XN → X so that µN → µ weakly as N →∞ it follows that Bτb,c

∼ µ as required.
Consider next the case when t∞ < ∞ . To extend the function c to [t∞,∞) when

c(t∞−) > γ (note that when c(t∞−) = γ then clearly c must remain equal to γ on [t∞,∞)
as well) set tcN = sup { t > 0 | cN(t) = γ } and define c̄N(t) = cN(t) for t ∈ (0, tcN ] and
c̄N(t) = γ for t ∈ (tcN ,∞) whenever tcN < ∞ for N ≥ 1 . Applying the same arguments as
in Parts 1.2 and 1.3 above we know that there exists a subsequence { c̄Nk

| k ≥ 1 } and a left-
continuous function c̄ such that c̄Nk

→ c̄ weakly as k →∞ . Applying the same arguments
as in Part 1.4 above we know from Part 1.5 above that setting c̄k := c̄Nk

for k ≥ 1 we have
τc̄k

→ τc̄ in P-probability as k → ∞ . Moreover, we claim that tcN → ∞ as N → ∞ .
For this, suppose that tcNl

≤ T < ∞ for l ≥ 1 . Fix ε > 0 small and set cε(t) = c(t) for
t ∈ (0, t∞−ε) and cε(t) = c(t∞−ε) for t ∈ [t∞−ε, T ] . Setting bl := bNl

and cl := cNl
we

then have µ([γ, βNl
)) = P(Bτbl,cl

∈ [γ, βNl
)) ≤ P(τb,cε ≤ T ) for all l ≥ 1 . Letting l →∞ and

using that µ([γ, βNl
)) → 1 we see that P(τb,cε ≤ T ) = 1 which clearly is impossible since b

is not defined beyond t∞ . Thus tcN → ∞ as N → ∞ and hence tcNk
→ ∞ as k → ∞ .

Setting c := c̄ and ck := cNk
for k ≥ 1 and using the same arguments as in Part 3.4 above we

can therefore conclude that τck
I(τc < ∞) → τc I(τc < ∞) in P-probability as k →∞ . Since

P(τc < ∞) = 1 this shows that τck
→ τc in P-probability as k →∞ . Setting bk := bNk

and
noting that τbk

→ τb on {τb < ∞} we see that τbk,ck
→ τb,c in P-probability as k →∞ and

hence Bτb,c
∼ µ using the same argument as above. The case when sup supp(µ) ∈ (0, +∞)

and inf supp(µ) = −∞ follows in exactly the same way by symmetry.

5. Fully unbounded support. Consider finally the case when both sup supp(µ) = +∞ and
inf supp(µ) = −∞ . Let X be a random variable (defined on some probability space) having
the law equal to µ and set XN = γN ∨X ∧βN for some βN ↑ ∞ and γN ↓ −∞ as N →∞
such that µ((βN −ε, βN ]) > 0 and µ([γN , γN +ε)) > 0 for all ε > 0 and N ≥ 1 . Let
N ≥ 1 be given and fixed. Denoting the law of XN by µN we see that supp(µN) ⊆ [γN , βN ]
with βN and γN belonging to supp(µN) . Hence by Parts 3.1-3.4 above we know that there
exist a left-continuous increasing function bN : (0,∞) → (0, βN ]∪{+∞} and a left-continuous
decreasing function cN : (0,∞) → [γN , 0) ∪ {−∞} such that BτbN ,cN

∼ µN .

5.1. Construction. Recall that these bN and cN are obtained as the weak limits of subse-
quences of the sequences of simple functions constructed by partitioning (γN , 0) and (0, βN) .
Extending the same construction to partitioning (γN+1, γN ] and [βN , βN+1) while keeping
the obtained subsequence of functions with values strictly smaller than βN and strictly larger
than γN we again know by Parts 3.1-3.4 above that there exist a left-continuous increas-
ing function bN+1 : (0,∞) → (0, βN+1] ∪ {+∞} and a left-continuous decreasing function
cN+1 : (0,∞) → [γN+1, 0) ∪ {−∞} such that BτbN+1,cN+1

∼ µN+1 . These bN+1 and cN+1

are obtained as the weak limits of further subsequences of the previous subsequences of simple
functions. Setting tbN = inf { t > 0 | bN(t) = βN } and tcN = inf { t > 0 | cN(t) = γN } it
is therefore clear that bN+1(t) = bN(t) and cN+1(t) = cN(t) for all t ∈ (0, tN ] where we set
tN := tbN ∧ tcN for N ≥ 1 . Continuing this process by induction and noticing that tN ↑ t∞ as
N →∞ we obtain a left-continuous increasing function b : (0, t∞) → IR and a left-continuous
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decreasing c : (0, t∞) → IR such that b(t) = bN(t) and c(t) = cN(t) for all t ∈ (0, tN ] and
N ≥ 1 .

5.2. Verification. To verify that b and c are the required functions consider first the case
when t∞ = ∞ . Then since b(tN) ≤ βN and c(tN) ≥ γN for any A ∈ B(IR) we have
P(Bτb,c

∈ A ∩ (c(tN), b(tN))) = P(BτbN ,cN
∈ A ∩ (c(tN), b(tN))) = µ(A ∩ (c(tN), b(tN))) for

all N ≥ 1 . Letting N → ∞ and using that b(tN) ↑ ∞ and c(tN) ↓ −∞ we see that
P(Bτb,c

∈ A) = µ(A) and this shows that Bτb,c
∼ µ as required.

Consider next the case when t∞ < ∞ and assume first that either { tbN | N ≥ 1 } or
{ tcN | N ≥ 1 } is not bounded (we will see below that this is always true). Without loss
of generality we can assume (by passing to a subsequence if needed) that tcN → ∞ so that
tbN ↑ t∞ < ∞ as N → ∞ . To extend the function c to [t∞,∞) we can now connect to
the final paragraph of Part 4 above. Choosing M ≥ 1 large enough so that γM < c(t∞−)
we see that we are in the setting of that paragraph with γ = γM and hence there exists
a left-continuous decreasing function cM : (0,∞) → [γM , 0) such that Bτb,cM

∼ X ∨ γM .
Recall that this cM is obtained as the weak limit of a subsequence of the sequence of functions
embedding B into [γM , βN ] for N ≥ 1 and note that cM coincides with c on (0, t∞) .
Extending the same construction to embedding B into [γM+1, βN ] for N ≥ 1 while keeping
the subsequence of functions obtained previously we again know by the final paragraph of Part
4 above that there exists a left-continuous decreasing function cM+1 : (0,∞) → [γM+1, 0) such
that Bτb,cM+1

∼ X ∨ γM+1 . This cM+1 is obtained as the weak limit of a further subsequence

of the previous sequence of functions. Setting tcM = inf{ t > 0 | cM(t) = γM } it is therefore
clear that cM+1(t) = cM(t) for t ∈ (0, tcM) . Continuing this process by induction we obtain a
left-continuous decreasing function c : (0,∞) → IR that coincides with the initial function c
on (0, t∞) . Setting tcM = inf{ t > 0 | c(t) = γM } we see that c(tcM) = γM ↓ −∞ as M →∞ .
Hence for any A ∈ B(IR) we see that P(Bτb,c

∈ A∩(c(tcM),∞)) = P(Bτb,cM
∈ A∩(c(tcM),∞)) =

µ(A∩ (c(tcM),∞)) → µ(A) as M →∞ from where it follows that P(Bτb,c
∈ A) = µ(A) . This

shows that Bτb,c
∼ µ as required. Moreover we claim that this is the only case we need to

consider since if both { tbN | N ≥ 1 } and { tcN | N ≥ 1 } are bounded then without loss
of generality we can assume (by passing to a subsequence if needed) that tcN → tc∞ < ∞
with tc∞ > t∞ first so that tbN ↑ t∞ as N → ∞ . In this case we can repeat the preceding
construction and extend c to [t∞, tc∞) so that we again have Bτb,c

∼ µ by the same argument.
If tc∞ = t∞ however then the same argument as in the case of t∞ = ∞ above shows that the
latter relation also holds. Thus in both cases we have tbN ≤ T and tcN ≤ T for all N ≥ 1 with
T := tc∞ so that µ((γN , βN)) = P(Bτb,c

∈ (γN , βN)) = P(Bτb,c
∈ (c(tcN), b(tbN))) ≤ P(τb,c ≤ T )

for all N ≥ 1 . Letting N → ∞ and using that µ((γN , βN)) → 1 we get P(τb,c ≤ T ) = 1
which clearly is impossible since T < ∞ . It follows therefore that Bτb,c

∼ µ in all possible
cases and the proof is complete. ¤

Remark 2. Note that b from (I) and c from (II) are always finite valued since otherwise
µ(IR+) < 1 or µ(IR−) < 1 respectively. Note also that either b or c from (III) can formally
take value +∞ or −∞ respectively from some time onwards, however, when this happens
to either function then the other function must remain finite valued (note that (I) and (II)
can be seen as special cases of (III) in this sense too). Note finally that the result and proof
of Theorem 1 including the same remarks remain valid if B0 ∼ ν where ν is a probability
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measure on IR such that supp(ν) ⊆ [−p, q] with µ([−p, q]) = 0 for some p > 0 and q > 0 .

Remark 3. Since the arguments in the proof of Theorem 1 can be repeated over any
subsequence of { bn | n ≥ 1 } or { cn | n ≥ 1 } (when constructed with no upper or lower
bound on the partitions of supp(µ) as well) it follows that Bτbn,cn

not only converges to
Bτb,c

over a subsequence P-a.s. but this convergence also holds for the entire sequence in
P-probability. Indeed, if this would not be the case then for some subsequence no further
subsequence would converge P-a.s. The initial argument of this remark combined with the
uniqueness result of Theorem 10 below would then yield a contradiction. The fact that Bτbn,cn

always converges to Bτb,c
in P-probability as n →∞ makes the derivation fully constructive

and amenable to algorithmic calculations described next.

Remark 4. The construction presented in the proof above yields a simple algorithm for
computing bn and cn which in turn provide numerical approximations of b and c . Key
elements of the algorithm can be described as follows. Below we let ϕ(x) = (1/

√
2π)e−x2/2 and

Φ(x) = (1/
√

2π)
∫ x

−∞ e−y2/2 dy for x ∈ IR denote the standard normal density and distribution
function respectively.

In the one-sided case (I) when supp(µ) ⊆ IR+ recall the well-known expressions (cf. [2])

P(Bt ∈ dx , τy > t) =
1√
t

[
ϕ
( x√

t

)
−ϕ

(x−2y√
t

)]
dx =: f(t, x, y) dx(2.22)

P(τy ≤ t) = 2
[
1−Φ

( y√
t

)]
=: g(t, y)(2.23)

for t > 0 and x < y with y > 0 where we set τy = inf { t > 0 | Bt = y } . Using stationary
and independent increments of B (its Markov property) we then read from Part 1.1 of the
proof above that the algorithm runs as follows

gk(t) :=

∫ xn
k−1

−∞
g(t, xn

k−y)fk−1(y) dy(2.24)

tnk := tnk−1 + inf { t > 0 | gk(t) = pn
k }(2.25)

fk(x) :=

∫ xn
k−1

−∞
f(tnk−tnk−1, x−y, xn

k−y)fk−1(y) dy(2.26)

for k = 1, 2, . . . , mn where we initially set t0 := 0 , x0 := 0 and f0(x) dx := δ0(dx) . This
yields the time points tn1 , t

n
2 , . . . , t

n
mn

which determine bn by the formula

(2.27) bn(t) =
mn∑

k=1

xn
k I(tnk−1 < t ≤ tnk)

for t ≥ 0 . The algorithm is stable and completes within a reasonable time frame (see Figure
2 below for the numerical output when the target law µ is exponentially distributed with
intensity 1).

In the two-sided case (III) when supp(µ) ⊆ IR recall the well-known expressions (cf. [2])

P(Bt ∈ dx , τy,z > t) =
1√
t

∞∑
n=−∞

[
ϕ
(x+2n(y−z)√

t

)
−ϕ

(x+2n(y−z)−2y√
t

)]
dx(2.28)
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Figure 2. Functions bn and cn calculated using the algorithm from the proof of Theorem 1
as described in Remark 4. The first row corresponds to the target law µ which is exponentially
distributed with intensity 1 for n = 20, 100, 500 respectively with equidistant partition of
IR+ having the step size equal to 1/n and the number of time points mn equal to n . The
second row corresponds to the target law µ which is normally distributed with mean 1 and
variance 1 for n = 10, 50, 250 respectively with equidistant partition of IR having the step
size equal to 1/n and the number of time points mn+ln equal to 2n .

=: f(t, x, y, z) dx

P(τy < τz , τy,z ≤ t) = 2
∞∑

n=0

[
Φ

((2n+1)(y−z)−z√
t

)
−Φ

((2n+1)(y−z)+z√
t

)]
(2.29)

=: g(t, y, z)

P(τz < τy , τy,z ≤ t) = 2
∞∑

n=0

[
Φ

((2n+1)(y−z)+y√
t

)
−Φ

((2n+1)(y−z)−y√
t

)]
(2.30)

=: h(t, y, z)

for t > 0 and z < x < y with z < 0 < y where we set τw = inf { t > 0 | Bt = w } for
w ∈ {y, z} and τy,z = τy∧τz . Using stationary and independent increments of B (its Markov
property) we then read from Part 3.1 of the proof above that the algorithm runs as follows

gk(t) :=

∫ x̄n
k−1

ȳn
k−1

g(t, x̄n
k−z, ȳn

k−z)fk−1(z) dz(2.31)

hk(t) :=

∫ x̄n
k−1

ȳn
k−1

h(t, x̄n
k−z, ȳn

k−z)fk−1(z) dz(2.32)
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tnk := tnk−1 +
(
inf { t > 0 | gk(t) = p̄n

k } ∧ inf { t > 0 | hk(t) = q̄n
k }

)
(2.33)

fk(x) :=

∫ x̄n
k−1

ȳn
k−1

f(tnk−tnk−1, x−z, x̄n
k−z, ȳn

k−z)fk−1(z) dz(2.34)

for k = 1, 2, . . . , mn+ln where we initially set t0 := 0 , x̄n
0 := 0 , ȳn

0 := 0 , x̄n
1 := xn

1 , ȳn
1 :=

yn
1 , f0(x) dx := δ0(dx) and denoting the first infimum in (2.33) by In

k and the second infimum
in (2.33) by Jn

k this is then continued as follows: if In
k > Jn

k then x̄n
k+1 := inf { xl | xl > x̄n

k } ,
ȳn

k+1 := ȳn
k , p̄n

k+1 := p(x̄n
k+1), q̄n

k+1 := q̄n
k−hk(I

n
k ) ; if Jn

k > In
k then ȳn

k+1 := sup { yl | yl < ȳn
k } ,

x̄n
k+1 := x̄n

k , q̄n
k+1 := q(ȳn

k+1), p̄n
k+1 := p̄n

k−gk(J
n
k ) ; if In

k = Jn
k then x̄n

k+1 := inf { xl | xl > x̄n
k } ,

ȳn
k+1 := sup { yl | yl < ȳn

k } , p̄n
k+1 := p(x̄n

k+1), q̄n
k+1 := q(ȳn

k+1) where we set p(x) = pn
k for

x = xn
k and q(y) = qn

k for y = yn
k . This yields the time points tn1 , t

n
2 , . . . , t

n
mn+ln

which
determine bn and cn by the formulae

bn(t) =
mn+ln∑

k=1

x̄n
k I(tnk−1 < t ≤ tnk) & cn(t) =

mn+ln∑

k=1

ȳn
k I(tnk−1 < t ≤ tnk)(2.35)

for t ≥ 0 . The algorithm is stable and completes within a reasonable time frame (see Figure
2 above for the numerical output when the target law µ is normally distributed with mean 1
and variance 1 ).

Remark 5. Note that τb from (I) could also be defined by

(2.36) τb = inf { t > 0 | Bt = b(t) }

and that Bτb
= b(τb) . This is easily verified since b is left-continuous and increasing. The same

remark applies to τc from (II) and τb,c from (III) with Bτb,c
being equal to b(τb,c) or c(τb,c) .

From (2.8) and (2.9) we also see that these inequalities and equalities in the definitions of the
stopping times can be replaced by strict inequalities and that all relations remain valid almost
surely in this case. Similarly, in all these definitions we could replace left-continuous functions
b and c with their right-continuous versions defined by b(t) := b(t+) and c(t) := c(t+) for
t > 0 respectively. All previous facts in this remark remain valid in this case too.

Remark 6. If µ({0}) =: p > 0 in Theorem 1 then we can generate a random variable
ζ independently from B such that ζ takes two values 0 and ∞ with probabilities p and
1−p respectively. Performing the same construction with the stopped sample path t 7→ Bt∧ζ

yields the existence of functions b and c as in Theorem 1 with Bζ = (Bt∧ζ)t≥0 in place of
B = (Bt≥0)t≥0 . The resulting stopping time may be viewed as randomised through the initial
condition.

Remark 7. Two main ingredients in the proof of Theorem 1 above are (i) embedding
in discrete laws and (ii) passage to the limit from discrete to general laws. If the standard
Brownian motion B is replaced by a continuous (time-homogeneous) Markov process X we
see from the proof above that (i) can be achieved when

(2.37) t 7→ Px(τy < τz , τy,z ≤ t) & t 7→ Px(τz < τy , τy,z ≤ t)
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are continuous on IR+ and Px(τy,z > t) ↓ 0 as t ↑ ∞ for all −∞ ≤ z < x < y ≤ ∞ with
|z| ∧ |y| < ∞ and Px(X0 = x) = 1 where we set τw = inf { t > 0 | Xt = w } for w ∈ {y, z}
and τy,z = τy ∧ τz . We also see from the proof above that (ii) can be achieved when

(2.38) τb = σb P0-a.s. & τc = σc P0-a.s.

where the first equality holds for any left-continuous increasing function b with τb = inf { t >
0 | Xt ≥ b(t) } and σb = inf { t > 0 | Xt > b(t) } , and the second equality holds for any
left-continuous decreasing function c with τc = inf { t > 0 | Xt ≤ c(t) } and σc = inf { t >
0 | Xt < c(t) } . In particular, by verifying (2.37) and (2.38) in the proof of Corollary 8 below
we will establish that the result of Theorem 1 extends to all recurrent diffusion processes X
in the sense of Itô and McKean [10] (see [2, Chapter II] for a review). This extension should
also hold for non-recurrent diffusion processes X and ‘admissible’ target laws µ (cf. [15])
as well as for more general standard Markov processes X satisfying suitable modifications of
(2.37) and (2.38) in the admissible setting. We leave precise formulations of these more general
statements and proofs as informal conjectures open for future developments.

Corollary 8. The result of Theorem 1 remains valid if the standard Brownian motion B
is replaced by any recurrent diffusion process X .

Proof. As pointed out above the proof can be carried out in the same way as the proof of
Theorem 1 if we show that (2.37) and (2.38) are satisfied. Note that Px(τy,z > t) ↓ 0 as t ↑ ∞
for all −∞ ≤ z < x < y ≤ ∞ with |z| ∧ |y| < ∞ since X is recurrent. Recall also that all
recurrent diffusions are regular (see [2, Chapter II] for definitions).

1. We first show that the functions in (2.37) are continuous. Clearly by symmetry it is
enough to show that the first function is continuous. For this, set F (t) = Px(τy < τz , τy,z ≤ t)
for t ≥ 0 where −∞ ≤ z < x < y < ∞ are given and fixed. Since t 7→ F (t) is increasing
and right-continuous we see that it is enough to disprove the existence of t1 > 0 such that
F (t1)−F (t1−) = Px(τy < τz , τy = t1) > 0 . Since this implies that Px(τy = t1) > 0 we
see that it is enough to show that the distribution function t 7→ Px(τy ≤ t) is continuous
for x < y in IR given and fixed. For this, let p denote the transition density of X with
respect to its speed measure m in the sense that Px(Xt ∈ A) =

∫
A

p(t; x, y) m(dy) holds for
all t > 0 and all A ∈ B(IR) . It is well known (cf. [10, p. 149]) that p may be chosen to
be jointly continuous (in all three variables). Next note that for any s > 0 given and fixed
the mapping t 7→ Ex

[
PXs(τy ≤ t)

]
=

∫
IR

Pz(τy ≤ t) p(s; x, z) m(dz) is increasing and right-
continuous on (0,∞) so that G(t, s) := Ex

[
PXs(τy = t)

]
=

∫
IR

Pz(τy = t) p(s; x, z) m(dz) = 0
for all t ∈ (0,∞) \ Cs where the set Cs is at most countable. Setting C := ∪s∈Q+Cs where
Q+ denotes the set of rational numbers in (0,∞) , we see that the set C is at most countable
and G(t, s) = 0 for all t ∈ (0,∞) \ C and all s ∈ Q+ . Since each z 7→ p(s; x, z) is a
density function integrating to 1 over m(dz) and s 7→ p(s; x, z) is continuous on (0,∞) ,
we see by Scheffé’s theorem (see e.g. [1, p. 215]) that G(t, sn) → G(t, s) as sn → s in (0,∞)
for any t > 0 fixed. Choosing these sn from Q+ for given s > 0 it follows therefore that
G(t, s) = 0 for all t ∈ (0,∞)\C and all s > 0 . By the Markov property we moreover see that
Px(τy = t+s) ≤ Px(τy ◦θs = t) = G(t, s) = 0 and hence Px(τy = t+s) = 0 for all t ∈ (0,∞)\C
and all s > 0 . Since the set C is at most countable it follows that Px(τy = t) = 0 for all
t > 0 . This implies that F is continuous and the proof of (2.37) is complete.

16



2. We next show that the equalities in (2.38) are satisfied. Clearly by symmetry it is enough
to derive the first equality. Note that replacing B by X in the proof of (2.9) above and using
exactly the same arguments yields the first equality in (2.38) provided that (2.14) is established
for X in place of B . This shows that the first equality in (2.38) reduces to establishing that

(2.39) P0(σ
δ
b > t) ≤ P0(τ

δ
b > t)

for all t > 0 where σδ
b = inf { t > δ | Xt > b(t) } and τ δ

b = inf { t > δ | Xt ≥ b(t) } for δ > 0
given and fixed. Observe that σδ

b coincides with τ δ
b+ := lim ε↓0 τ δ

b+ε where τ δ
b+ε = inf { t > δ |

Xt ≥ b(t)+ε } as is easily seen from the definitions so that (2.39) is indeed equivalent to (2.14)
as stated above.

To establish (2.39) consider first the case when b is flat on some time interval I ⊆ (δ,∞)
and denote the joint value of b on I by y meaning that b(t) = y for all t ∈ I . Consider
the stopping times τ := inf { t > δ | Xt = y } and σ := inf { t > τ | Xt > y } . Since X is
recurrent we know that both τ and σ are finite valued under P0 . Note that σ = τ +ρ ◦ θτ

where ρ := inf { t > 0 | Xt > y } is a stopping time. By the strong Markov property of X
applied at τ we thus have P0(σ = τ) = P0(ρ ◦ θτ = 0) = PXτ (ρ = 0) = Py(ρ = 0) = 1 where
the final equality follows since X is regular (cf. [2, p. 13]). Hence we see that Xτ+t > y for
infinitely many t in each (0, ε] for ε > 0 with P0 -probability one. In particular, this shows
that on the set {σδ

b >t} with t > 0 given and fixed the sample path of X stays strictly below
b on the time interval I \ sup(I) with P0 -probability one for each time interval I ⊆ (δ, t) on
which b is flat. Since (δ, t) can be written as a countable union of disjoint intervals on each
of which b is either flat or strictly increasing, we see that the previous conclusion implies that

P0(σ
δ
b > t) ≤ P0(Xs < b(s+h) for all s ∈ (δ, t))(2.40)

≤ P0(Xr−h < b(r) for all r ∈ (δ+h, t+h))

≤ P0(Xr−h < b(r) for all r ∈ (δ+h0, t])

for any h ∈ (0, h0) where h0 ∈ (0, δ/2) is given and fixed. By the Markov property and
Scheffé’s theorem applied as above we find that

P0(Xr−h < b(r) for all r ∈ (δ+h0, t])(2.41)

= E0

[
PXδ/2−h

(Xr−δ/2 < b(r) for all r ∈ (δ+h0, t])
]

=

∫

IR

Py(Xr−δ/2 < b(r) for all r ∈ (δ+h0, t]) p(δ/2−h; 0, y) m(dy)

−→
∫

IR

Py(Xr−δ/2 < b(r) for all r ∈ (δ+h0, t]) p(δ/2; 0, y) m(dy)

= E0

[
PXδ/2

(Xr−δ/2 < b(r) for all r ∈ (δ+h0, t])
]

= P0(Xr < b(r) for all r ∈ (δ+h0, t])

as h ↓ 0 . Combining (2.40) and (2.41) we get

(2.42) P0(σ
δ
b > t) ≤ P0(Xr < b(r) for all r ∈ (δ+h0, t])
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for all h0 ∈ (0, δ/2) . Letting h0 ↓ 0 in (2.42) we find that

(2.43) P0(σ
δ
b > t) ≤ P0(Xr < b(r) for all r ∈ (δ, t]) = P0(τ

δ
b > t)

for all t > 0 . This establishes (2.39) and hence τb = σb P0 -a.s. as explained above. The proof
of (2.38) is therefore complete. ¤

Note that the claims of Remarks 2-6 extend to the setting of Corollary 8 with suitable mod-
ifications in Remark 4 since the process no longer has stationary and independent increments
and some of the expressions may no longer be available in closed form.

In the setting of Theorem 1 or Corollary 8 let Fµ denote the distribution function of µ .
The following proposition shows that (i) jumps of b or c correspond exactly to flat intervals
of Fµ ( i.e. no mass of µ ) and (ii) flat intervals of b or c correspond exactly to jumps of
Fµ ( i.e. atoms of µ ). In particular, from (i) we see that if Fµ is strictly increasing on IR+

then b is continuous, and if Fµ is strictly increasing on IR− then c is continuous. Similarly,
from (ii) we see that if Fµ is continuous on IR+ then b is strictly increasing, and if Fµ is
continuous on IR− then c is strictly decreasing.

Proposition 9 (Continuity). In the setting of Theorem 1 or Corollary 8 we have:

b(t+) > b(t) if and only if µ((b(t), b(t+))) = 0(2.44)

b(t) = b(t−ε) for some ε > 0 if and only if µ({b(t)}) > 0(2.45)

c(t+) < c(t) if and only if µ((c(t+), c(t))) = 0(2.46)

c(t) = c(t−ε) for some ε > 0 if and only if µ({c(t)}) > 0(2.47)

for any t > 0 given and fixed.

Proof. All statements follow from the construction and basic properties of b and c derived
in the proof of Theorem 1. ¤

3. Uniqueness

In this section we state and prove the main uniqueness result. Note that the result and
proof remain valid in the more general case addressed at the end of Remark 2 and the method
of proof is also applicable to more general processes (cf. Remark 7).

Theorem 10 (Uniqueness). In the setting of Theorem 1 or Corollary 8 the functions b
and c are uniquely determined by the law µ .

Proof. To simplify the exposition we will derive (I) in full detail. It is clear from the proof
below that the same arguments can be used to derive (II) and (III).

1. Let us assume that b1 : (0,∞) → IR+ and b2 : (0,∞) → IR+ are left-continuous increa-
sing functions such that Xτb1

∼ µ and Xτb2
∼ µ where τb1 = inf { t > 0 | Xt ≥ b1(t) } and

τb2 = inf { t > 0 | Xt ≥ b2(t) } . We then need to show that b1 = b2 . For this, we will first
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show that b := b1 ∧ b2 also solves the embedding problem in the sense that Xτb
∼ µ where

τb = inf { t > 0 | Xt ≥ b(t) } . The proof of this fact can be carried out as follows.

2. Let A = { x ∈ supp(µ) | µ({x}) > 0 } and for any given x ∈ A set `i(x) = inf { t ∈
(0,∞) | b1(t) = x } and ri(x) = sup { t ∈ (0,∞) | b1(t) = x } when i = 1, 2 . By (2.45) we
know that [`i(x), ri(x)] is a non-empty interval. Moreover, note that the functions `i and ri

are also well defined on supp(µ)\A (with the convention inf ∅ = sup ∅ = +∞ ) in which case
we have `i = ri for i = 1, 2 . With this notation in mind consider the sets

G1,1 = { x ∈ supp(µ)\A | `1(x) < `2(x) }(3.1)

G1,2 = { x ∈ A | r1(x) < r2(x) }(3.2)

G1,3 = { x ∈ A | `1(x) < `2(x) & r1(x) = r2(x) }(3.3)

G2,1 = { x ∈ supp(µ)\A | `2(x) ≤ `1(x) }(3.4)

G2,2 = { x ∈ A | r2(x) < r1(x) }(3.5)

G2,3 = { x ∈ A | `2(x) < `1(x) & r1(x) = r2(x) }(3.6)

G2,4 = { x ∈ A | `1(x) = `2(x) & r1(x) = r2(x) } .(3.7)

Set G1 := G1,1 ∪G1,2 ∪G1,3 and G2 := G2,1 ∪G2,2 ∪G2,3 ∪G2,4 . Note that G1 and G2 are
disjoint and supp(µ) = G1 ∪G2 . Setting τ1 := τb1 and τ2 := τb2 we claim that

(3.8) P(Xτ1∈ G1 , Xτ2∈ G2) = 0 .

Indeed, if Xτ1 ∈ G1 then Xτ1 = b1(τ1) ≥ b2(τ1) so that τ2 ≤ τ1 , while if Xτ2 ∈ G2 then
Xτ2 = b2(τ2) ≥ b1(τ2) so that τ1 ≤ τ2 . Since G1 and G2 are disjoint this shows that the set
in (3.8) is empty and thus has P-probability zero as claimed. From (3.8) we see that

(3.9) P(Xτ1∈ G1) = P(Xτ1∈ G1 , Xτ2∈ G1) .

Since Xτ1 ∼ Xτ2 this is further equal to

(3.10) P(Xτ2∈ G1) = P(Xτ2∈ G1 , Xτ1∈ G1) + P(Xτ2∈ G1 , Xτ1∈ G2)

from where we also see that

(3.11) P(Xτ1∈ G2 , Xτ2∈ G1) = 0 .

It follows therefore that

(3.12) P(Xτ1∈ G2) = P(Xτ1∈ G2 , Xτ2∈ G2) .

From (3.9) and (3.12) we see that the sets Ω1 = {Xτ1 ∈ G1 , Xτ2 ∈ G1 } and Ω2 = {Xτ1 ∈
G2 , Xτ2∈ G2 } form a partition of Ω with P-probability one. Moreover, note that for ω ∈ Ω1

we have Xτ1(ω) ∈ G1 so that τ2(ω) ≤ τ1(ω) and hence τb(ω) = τ2(ω) , and for ω ∈ Ω2 we
have Xτ2(ω) ∈ G2 so that τ1(ω) ≤ τ2(ω) and hence τb(ω) = τ1(ω) . This implies that for
every C ∈ B(supp(µ)) we have

P(Xτb
∈ C) = P({Xτ2∈ C} ∩ Ω1) + P({Xτ1∈ C} ∩ Ω2)(3.13)
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= P(Xτ1∈ G1 , Xτ2∈ C ∩G1) + P(Xτ1∈ C ∩G2 , Xτ2∈ G2)

= P(Xτ2∈ C ∩G1) + P(Xτ1∈ C ∩G2)

= µ(C ∩G1) + µ(C ∩G2) = µ(C)

where we also use (3.11) in the third equality. This shows that Xτb
∼ µ as claimed.

3. To conclude the proof we can now proceed as follows. Since b ≤ bi we see that Xτb
≤ Xτbi

for i = 1, 2 . Moreover, since Xτb
∼ Xτbi

from the latter inequality we see that Xτb
= Xτbi

P-a.s. for i = 1, 2 . As clearly this is not possible if for some t > 0 we would have b1(t) 6= b2(t)
it follows that b1 = b2 and the proof is complete. ¤

4. Minimality

In this section we show that the stopping time from Theorem 1 or Corollary 8 is minimal
in the sense of Monroe (see [14, p. 1294]).

Proposition 11 (Minimality). In the setting of Theorem 1 or Corollary 8 let τ = τb,c

with c = −∞ if supp(µ) ⊆ IR+ and b = +∞ if supp(µ) ⊆ IR− . Let σ be any stopping
time such that

Xσ ∼ Xτ(4.1)

σ ≤ τ P-a.s.(4.2)

Then σ = τ P-a.s.

Proof. Since
∫ N

0
P(σ ≥ t) dt = E(σ ∧N) ≤ E(τ ∧N) =

∫ N

0
P(τ ≥ t) dt for all N ≥ 1 by

(4.2) above, we see that it is enough to show that P(σ ≥ t) ≥ P(τ ≥ t) or equivalently

(4.3) P(σ < t) ≤ P(τ < t)

for all t > 0 . For this, note that from (4.1) and (4.2) combined with the facts that b and c
are left-continuous increasing and decreasing functions respectively it follows that

P(σ < t) = P
(
σ < t, Xσ ∈ (c(t), b(t))

)
+ P

(
σ < t, Xσ /∈ (c(t), b(t))

)
(4.4)

≤ P
(
Xσ ∈ (c(t), b(t))

)
+ P

(
σ < t, τ ≤ σ,Xσ /∈ (c(t), b(t))

)

= P
(
Xτ ∈ (c(t), b(t))

)
+ P

(
σ < t, τ = σ,Xσ /∈ (c(t), b(t))

)

≤ P
(
τ < t, Xτ ∈ (c(t), b(t))

)
+ P

(
τ < t, Xτ /∈ (c(t), b(t))

)

= P(τ < t)

for all t > 0 proving the claim. ¤

Corollary 12 (Uniform integrability). In the setting of Theorem 1 let τ = τb,c with
c = −∞ if supp(µ) ⊆ IR+ and b = +∞ if supp(µ) ⊆ IR− .

If
∫

x µ(dx) = 0 then {Bt∧τ | t ≥ 0 } is uniformly integrable.(4.5)
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If 0 <
∫

x µ(dx) < +∞ then {B+
t∧τ | t ≥ 0 } is uniformly integrable.(4.6)

If −∞ <
∫

x µ(dx) < 0 then {B−
t∧τ | t ≥ 0 } is uniformly integrable.(4.7)

Proof. The statement (4.5) follows by combining Proposition 11 above and Theorem 3 in
[14, p. 1294]. The statements (4.6) and (4.7) follow by combining Proposition 11 above and
Theorem 3 in [5, p. 397]. This completes the proof. ¤

Proposition 13 (Finiteness). In the setting of Theorem 1 suppose that supp(µ)∩IR+ 6= ∅
and supp(µ) ∩ IR− 6= ∅ .

If sup supp(µ) < ∞ then there exists T > 0 such that b(t) = +∞(4.8)

for all t > T if and only if −∞ ≤ ∫
x µ(dx) < 0 .

If inf supp(µ) > −∞ then there exists T > 0 such that c(t) = −∞(4.9)

for all t > T if and only if 0 <
∫

x µ(dx) ≤ +∞ .

Proof. It is enough to prove (4.8) since (4.9) then follows by symmetry. For this, suppose
first that b(t) = +∞ for all t > T with some minimal T > 0 . Since sup supp(µ) < ∞ we
know that b(T ) < ∞ . Set b1(t) = b(t) for t ∈ (0, T ] and b1(t) = b(T ) for t > T . Set
c1(t) = c(t) for t ∈ (0, T ] and c1(t) = c(T ) for t > T (recall that c must be finite valued).
Then |Bt∧τb1,c1

| ≤ b(T ) ∨ (−c(T )) < ∞ for all t ≥ 0 so that {Bt∧τb1,c1
| t ≥ 0 } is uniformly

integrable and hence EBτb1,c1
= 0 . Note that Bτb,c

≤ Bτb1,c1
and moreover Bτb,c

< Bτb1,c1
on

the set of a strictly positive P-measure where B hits b1 after T before hitting c1 . This
implies that EBτb,c

< EBτb1,c1
= 0 as claimed in (4.8) above.

Conversely, suppose that EBτb,c
< 0 and consider first the case when c(t) = −∞ for t > T

with some T > 0 at which c(T ) > −∞ . Set c1(t) = c(t) for t ∈ (0, T ] and c1(t) = c(T )
for t > T . Since Bτb,c1

≤ sup supp(µ) < ∞ when b is finite valued we see that |Bt∧τb,c1
| ≤

sup supp(µ) ∨ (−c(T )) < ∞ for all t ≥ 0 so that {Bt∧τb,c1
| t ≥ 0 } is uniformly integrable

and hence EBτb,c1
= 0 . Note that Bτb,c

≥ Bτb,c1
so that EBτb,c

≥ 0 and this contradicts
the hypothesis. Next consider the case when c(t) > −∞ for all t ≥ 0 . Set cn(t) = c(t) for
t ∈ (0, n] and cn(t) = −∞ for t > n with n ≥ 1 . Set dn(t) = c(t) for t ∈ (0, n] and
dn(t) = c(n) for t > n with n ≥ 1 . Then as above EBτb,dn

= 0 and since Bτb,cn
≥ Bτb,dn

it follows that EBτb,cn
≥ 0 for all n ≥ 1 . Moreover, since Bτb,cn

≤ sup supp(µ) < ∞ for all
n ≥ 1 when b is finite valued by Fatou’s lemma we get

(4.10) EBτb,c
= E lim

n→∞
Bτb,cn

≥ lim sup
n→∞

EBτb,cn
≥ 0

and this contradicts the hypothesis. Thus in both cases we see that b cannot be finite valued
and this completes the proof. ¤

5. Optimality

In this section we show that the stopping time from Theorem 1 has the smallest truncated
expectation among all stopping times that embed µ into B . The same optimality result for
stopping times arising from the filling scheme when their means are finite was derived by Chacon
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[3, p. 34] using a different method of proof. The proof we present below is based on a recent proof
of Rost’s optimality result [21] given by Cox & Wang [6, Section 5]. The verification technique
we employ avoids stochastic calculus and invokes a general martingale/Markovian result to
describe the supermartingale structure. This technique applies in the setting of Corollary 8 as
well and should also be of interest in other/more general settings of this kind.

Theorem 14. In the setting of Theorem 1 or Corollary 8 let τ = τb,c with c = −∞ if
supp(µ) ⊆ IR+ and b = +∞ if supp(µ) ⊆ IR− . If σ is any stopping time such that Bσ ∼ Bτ

then we have

(5.1) E(τ ∧ T ) ≤ E(σ ∧ T )

for all T > 0 .

Proof. Let Pt,x denote the probability measure under which Pt,x(Xt = x) = 1 and consider
the function H defined by

(5.2) H(t, x) = Pt,x

(
τ≤T )

for (t, x) ∈ [0, T ]×IR with T > 0 given and fixed. Extend H outside [0, T ] by setting
H(t, x) = 0 for t > T and x ∈ IR . Define the (right) inverse ρ of b and c by setting

ρ(x) = inf { t > 0 | b(t) ≥ x } if x ≥ b(0+)(5.3)

= inf { t > 0 | c(t) ≤ x } if x ≤ c(0+)

Then x 7→ ρ(x) is right-continuous and increasing on [b(0+),∞) and left-continuous and
decreasing on (−∞, c(0+)] . Set D = (−∞, c(0+)] ∪ [b(0+),∞) to denote the domain of ρ
and note that ρ(x) ≥ 0 for all x ∈ D .

1. For x ∈ D such that ρ(x) ≤ T and t ≤ ρ(x) we have H(s, x) = 1 for all s ∈ [t, ρ(x)] .
Hence we see that the following identity holds

(5.4) ρ(x)−t =

∫ ρ(x)

t

H(s, x) ds

whenever t ≤ ρ(x) ≤ T . Since H ≤ 1 we see that this identity extends as

(5.5) ρ(x)−t ≤
∫ ρ(x)

t

H(s, x) ds

for ρ(x) < t ≤ T . Since ρ(x)−t = (T−t)+ − (T−ρ(x))+ for t ∨ ρ(x) ≤ T and H(s, x) = 0
for s > T it is easily verified using the same arguments as above that (5.4) and (5.5) yield

(5.6) (T−t)+ ≤
∫ ρ(x)∧T

t

H(s, x) ds + (T−ρ(x))+

for all t ≥ 0 and x ∈ D . Let us further rewrite (5.6) as follows

(5.7) (T−t)+ ≤ F (t, x) + G(x)
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where the functions F and G are defined by

F (t, x) =

∫ T

t

H(s, x) ds(5.8)

G(x) = (T−ρ(x))+ −
∫ T

ρ(x)∧T

H(s, x) ds(5.9)

for t ≥ 0 and x ∈ D .

2. It is easily seen from definitions of τ and ρ (using that b and c are increasing and
decreasing respectively) that ρ(Xτ ) ≥ τ . Combining this with the fact that H(s, x) = 1 for
all s ∈ [t, ρ(x) ∧ T ] and x ∈ D we see that equality in (5.6) is attained at (τ, Xτ ) . Since
(5.7) is equivalent to (5.6) it follows that

(5.10) (T−τ)+ = F (τ,Xτ ) + G(Xτ ) .

We now turn to examining (5.7) for other stopping times.

3. To understand the structure of the function F from (5.8) define

(5.11) Dt = { (s, x) ∈ IR+×IR | x ≥ b(t+s) or x ≤ c(t+s) }
and note by time-homogeneity of X that

(5.12) H(t, x) = Pt,x

(
τ≤T ) = Px

(
τt≤T−t)

for (t, x) ∈ [0, T ]×IR where we set

(5.13) τt = inf { s > 0 | Xs ∈ Dt+s }
with respect to the probability measure Px under which Px(X0 = x) = 1 . Hence we see that

F (t, x) =

∫ T

t

H(s, x) ds =

∫ T

t

Px

(
τs≤T−s) ds(5.14)

=

∫ T−t

0

Px

(
τT−s≤s) ds = Ex

∫ T−t

0

Zs ds

for (t, x) ∈ [0, T ]×IR where we set

(5.15) Zs = I
(
τT−s≤s)

for s ∈ [0, T−t] . Noting that each Zs is Fs -measurable where Fs = σ(Xr | 0 ≤ r ≤ s) we
can now invoke a general martingale/Markovian result and conclude that

(5.16) Mt := F (t,Xt) +

∫ t

0

Zs ds

is a martingale with respect to Ft for t ∈ [0, T ] . Indeed, for this note that by the Markov
property of X we have

Ex(Mt+h | Ft) = Ex

(
F (t+h,Xt+h)+

∫ t+h

0

Zs ds | Ft

)
(5.17)
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= Ex

(
EXt+h

( ∫ T−t−h

0

Zs ds
)

+

∫ t+h

0

Zs ds | Ft

)

= Ex

(
Ex

( ∫ T−t−h

0

Zs ds ◦ θt+h | Ft+h

)
+

∫ t+h

0

Zs ds | Ft

)

= Ex

( ∫ T

0

Zs ds | Ft

)
= Ex

( ∫ T

t

Zs ds | Ft

)
+

∫ t

0

Zs ds

= Ex

( ∫ T−t

0

Zs ds ◦ θt | Ft

)
+

∫ t

0

Zs ds

= EXt

( ∫ T−t

0

Zs ds
)

+

∫ t

0

Zs ds

= F (t, Xt) +

∫ t

0

Zs ds = Mt

for all 0 ≤ t ≤ t+h ≤ T showing that (5.16) holds as claimed. Extend the martingale M to
(T,∞) by setting Mt = MT for t > T . Since F (t, x) = 0 for t > T and x ∈ IR this is
equivalent to setting Zs = 0 for s > T in (5.16) above. Since Zs ≥ 0 for all s ≥ 0 we see
from (5.16) that F (t,Xt) is a supermartingale with respect to Ft for t ≥ 0 .

4. We next note that

(5.18)

∫ t∧τ

0

Zs ds = 0

for all t ≥ 0 . Indeed, this is due to the fact that τT−s = inf { r > 0 | Xr ∈ DT−s+r } ≥
inf { r > 0 | Xr ∈ D0 } = τ for all s ∈ [0, τ ∧ T ) since b is increasing and c is decreasing.
Hence from (5.15) we see that Zs = 0 for all s ∈ [0, τ) and this implies (5.18) as claimed.
Combining (5.16) and (5.18) we see that F (t ∧ τ, Xt∧τ ) is a martingale with respect to Ft∧τ

for t ≥ 0 .

5. Taking now any stopping time σ such that Xσ ∼ Xτ it follows by (5.10), (5.18), (5.16)
and (5.7) using the optional sampling theorem that

E(T−τ)+ = EF (τ, Xτ ) + EG(Xτ ) = EMτ + EG(Xσ)(5.19)

= EMσ + EG(Xσ) ≥ EF (σ,Xσ) + EG(Xσ) ≥ E(T−σ)+.

Noting that E(T−τ)+ = T − E(τ ∧ T ) and E(T−σ)+ = T − E(σ ∧ T ) we see that this is
equivalent to (5.1) and the proof is complete. ¤

Remark 15. In the setting of Theorem 1 if
∫

x2 µ(dx) < ∞ then EB2
τ < ∞ and hence

Eτ < ∞ since τ is minimal (Section 4). If moreover Eσ < ∞ then by Itô’s formula and
the optional sampling theorem we know that Eσ = Eτ . When

∫
x2 µ(dx) = ∞ however it

is not clear a priori whether the ‘expected waiting time’ for τ compares favourably with the
‘expected waiting time’ for any other stopping time σ that embeds µ into B . The result of
Theorem 14 states the remarkable fact that τ has the smallest truncated expectation among
all stopping times σ that embed µ into B (note that this fact is non-trivial even when Eτ
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and Eσ are finite). It is equally remarkable that this holds for all laws µ with no extra
conditions imposed.

The optimality result of Theorem 14 extends to more general concave functions using stan-
dard techniques.

Corollary 16 (Optimality). In the setting of Theorem 1 or Corollary 8 let τ = τb,c with
c = −∞ if supp(µ) ⊆ IR+ and b = +∞ if supp(µ) ⊆ IR− and let F : IR+ → ĪR be a
concave function such that EF (τ) exists. Then we have

(5.20) EF (τ) ≤ EF (σ)

for any stopping time σ such that Xσ ∼ Xτ .

Proof. By (5.1) we know that

(5.21)

∫ t

0

P(τ >s) ds ≤
∫ t

0

P(σ>s) ds

for all t ≥ 0 . It is easy to check using Fubini’s theorem that for any non-negative random
variable ρ we have

(5.22) EF (ρ) = F (0)−
∫ ∞

0

∫ t

0

P(ρ>s) dsF ′(dt)

whenever F is a concave function satisfying tF ′(t) → 0 as t ↓ 0 and F ′(t) → 0 as t →∞
where F ′ denotes the right derivative of F . Applying (5.22) to τ and σ respectively,
recalling that F ′(dt) defines a negative measure, and using (5.21) we get (5.20) for those
functions F . The general case then follows easily by tangent approximation (from the left)
and/or truncation (from the right) using monotone convergence. ¤

Remark 17. In addition to the temporal optimality of b and c established in (5.20) there
also exists their spatial optimality arising from the optimal stopping problem

(5.23) sup
0≤τ≤T

E
(
|Bτ | − 2

∫ Bτ

0

Fµ(x) dx
)

where Fµ denotes the distribution function of µ . Indeed McConnell [13, Section 5] shows
that (under his conditions) the optimal stopping time in (5.23) equals

(5.24) τ∗ = inf { t ∈ [0, T ] | Bt ≥ b(T−t) or Bt ≤ c(T−t) }

where b and c are functions from Theorem 1 (compare (5.23) with the optimal stopping
problem derived in [16]). This can be checked by Itô-Tanaka’s formula and the optional sampling
theorem from the local time reformulation of (5.23) that reads

(5.25) sup
0≤τ≤T

E
( ∫

IR

`x
τ ν(dx)−

∫

IR

`x
τ µ(dx)

)
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where ` is the local time of B and ν is a probability measure on IR such that supp(ν) ⊆
[−p, q] with µ([−p, q]) = 0 for some p > 0 and q > 0 . Since the existence and uniqueness
result of Theorem 1 and Theorem 10 with B0 ∼ ν remain valid in this case as well (recall
Remark 2 and the beginning of Section 3) we see that McConnell [13, Section 5] implies that
(under his conditions) the resulting stopping time (5.24) is optimal in (5.25).
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