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We show that if the transition operator Pt of a continuous time-homogeneous
(strong) Markov process X in IRn maps infinitely differentiable functions with com-
pact support to twice continuously differentiable functions for t>0 , then the action
of the infinitesimal operator A of X on its domain coincides with the action of
the differential operator D of X understood in the sense of Schwartz distributions.
Applying this fact to the process X stopped at the first exit time from a given open
subset C of IRn , we derive that the solution to Dynkin’s characteristic operator
equation of X arising from the Dirichlet problem on C can be viewed as a weak
solution to the differential operator equation of X in the sense of Schwartz distri-
butions. A useful consequence of this identification is that the solution is infinitely
differentiable on C whenever the drift and diffusion coefficients are infinitely differ-
entiable and the differential operator D of X is hypoelliptic (e.g. when D satisfies
the Hörmander condition). In particular, this is satisfied when X is a degenerate
diffusion process in IRn (in the sense that D is a degenerate parabolic operator)
so that the analytic existence results for parabolic PDEs are generally not available.
The arguments and results extend to cover more general boundary value problems of
this kind including the initial value problems as well.

1. Introduction

The purpose of the paper is to answer the question when solutions to Dynkin’s characteristic
operator equation associated with a continuous time-homogeneous (strong) Markov process X
in IRn can be viewed as weak solutions to the differential operator equation of X understood
in the sense of Schwartz distributions. The value of this identification is twofold. Firstly, by
constructing the Markov process itself and taking the expected value, we are also establishing
the existence of a weak solution. This provides a probabilistic method for constructing (weak)
solutions when the analytic existence results of PDE theory may not be available (e.g. when X
is a degenerate diffusion process in dimension two or higher). Secondly, having a weak solution
provides an opportunity for its upgrade to a strong (classic/smooth) solution. This can be
done for instance when the differential operator of X is hypoelliptic (e.g. when it satisfies the
Hörmander condition). Such an upgrade would not be possible however if the existence of a
weak solution could not be established in the first place (see e.g. [7]).
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More specifically, we consider the function

(1.1) V (x) = ExG(XτD
)

where X = (Xt)t≥0 is a continuous time-homogeneous (strong) Markov process in IRn starting
at x in C under Px , the set C ⊆ IRn is open, the set D equals IRn\C , the stopping time
τD = inf { t ≥ 0 | Xt ∈ D } is the first entry time of X into D , and G is a real-valued
continuous/measurable function defined on the boundary ∂C between the sets C and D .
The strong Markov property of X then implies that

(1.2) LV = 0 in C

where L is Dynkin’s characteristic operator of X (cf. [3, Chapter V]). Note that (1.2) holds in
great generality when V from (1.1) is only known to be measurable (and X is not necessarily
strong Feller or even Feller). We assume that the action of L is explicitly known on sufficiently
regular functions in the sense that

(1.3) L = D on C2
b

where D is a second-order differential operator given by

(1.4) D =
n∑

i=1

µi∂i +
1

2

n∑
i,j=1

(σσt)ij∂
2
ij

for some µ = (µi)1≤i≤n : IRn → IRn and σ = (σij)1≤i,j≤n : IRn → IRn×n
+ belonging to C2 .

The question then arises whether (1.2) can be viewed as

(1.5) DV
w
= 0 in C

where the derivatives are understood in the sense of Schwartz distributions (cf. [12]).
We tackle this question in two steps. Firstly, we focus on the infinitesimal operator A of

X and show that if the transition operator Pt of X maps C∞
c into C2

b for t > 0 , then
the action of A on its domain D(A) coincides with the action of D understood in the sense
of Schwartz distributions. This fact is of independent interest within the semigroup theory of
Markov processes. Secondly, we return to the original question by focussing on the process X
stopped at τD . This regains the most important (localising) feature of L which ensures that
V belongs to its domain D(L) while V fails to belong to D(A) generally. Stopping X at
τD reduces the state space of the stopped process to the closure of C so that the semigroup
arguments from the first step remain applicable. Exploiting the existence of a compact support
we then show that the sufficient condition from the first step on the transition operator of the
stopped process is satisfied and this establishes that (1.2) yields (1.5) as claimed.

The latter result can then be extended from (1.1) to more general functions

(1.6) V (x) = Ex

(
e−

∫ τD
0 λ(Xt) dtG(XτD

) +

∫ τD

0

e−
∫ t
0 λ(Xs) dsH(Xt) dt

)

where λ : IRn → [0,∞) is measurable, G : ∂C → IR is continuous/measurable, and H : C̄ →
IR is continuous, using established arguments of this kind (cf. [8, Section 7]). By the strong
Markov property of X we know that the extension of (1.2) then reads as follows

(1.7) LV −λV = −H in C .
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Extending (1.5) we obtain

(1.8) DV −λV
w
= −H in C

where the derivatives are understood in the sense of Schwartz distributions.
Similarly, in addition to more general boundary value problems (1.6) these extensions also

include the initial value problems

(1.9) V (t, x) = Ex

(
e−

∫ t
0 λ(Xs) dsG(Xt) +

∫ t

0

e−
∫ s
0 λ(Xr) drH(Xs) ds

)

for (t, x) ∈ [0,∞)×IRn where λ : IRn → [0,∞) is measurable, G : IRn → IR is continu-
ous/measurable, and H : IRn → IR is continuous. By the Markov property of X we know
that the analogue of (1.7) then reads as follows

(1.10) Vt = LV −λV +H on (0,∞)×IRn .

Extending (1.8) we obtain

(1.11) Vt
w
= DV −λV +H on (0,∞)×IRn

where the derivatives are understood in the sense of Schwartz distributions.
This establishes the existence of weak solutions to equations (1.8) and (1.11) in the sense of

Schwartz distributions using purely probabilistic methods. Moreover, if the differential operator
in either (1.8) or (1.11) is hypoelliptic (e.g. when the Hörmander condition is verifiable) and µ
& σ belong to C∞ , then the weak solutions to either (1.8) or (1.11) are infinitely differentiable
respectively. In particular, this is satisfied when X is a degenerate diffusion process in IRn

(in the sense that D is a degenerate parabolic operator) so that the analytic existence results
for parabolic PDEs are generally not available.

2. Setting

In this section we describe the setting and introduce the notation. For fuller details on the
setting and notation we refer to [3, Chapters 1-3] and [4, Chapters II-IV].

1. We consider a continuous time-homogeneous (strong) Markov process X = (Xt)t≥0 with
values in a closed subset E of IRn with a non-empty interior Eo . We assume that X0 = x
under the probability measure Px defined on a measurable space (Ω,F) for x ∈ E . By
P(t; x,A) := Px(Xt ∈ A) we denote the transition function of X for t ≥ 0 , x ∈ E and
A ∈ B(E) where B(E) denotes the Borel σ -algebra on E . We let B = B(E) denote the
Banach space of real-valued bounded measurable functions on E equipped with the supremum
norm defined by ‖f‖ = sup { |f(x)| : x ∈ E } for f ∈ B . The (forward) transition operator
Pt : B → B of X is defined by

(2.1) Ptf(x) = Exf(Xt) =

∫

E

f(y) P(t; x, dy)

for t ≥ 0 , f ∈ B and x ∈ E . The Markov property of X implies that (Pt)t≥0 is a
(contraction) semigroup of linear operators on B (cf. [3, p. 22]). We let B0 denote the family
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of f ∈ B such that lim t→0 Ptf = f in the supremum norm. It is easily seen that B0 is a
closed (Banach) subspace of B and PtB0 ⊆ B0 for all t ≥ 0 .

2. We let M = M(E) denote the Banach space of real-valued (finite) measures on B(E)
equipped with the total variation norm defined by ‖µ‖ = µ+(E)+µ−(E) where µ+ and µ−

are the positive and negative parts of µ ∈ M respectively. Letting M+ denote the family of all
non-negative (finite) measures on B(E) we have µ+ ∈ M+ and µ− ∈ M+ with µ = µ+−µ−

for µ ∈ M . The (backward) transition operator Qt : M → M of X is defined by

(2.2) Qtµ(A) =

∫

E

Px(Xt∈A)µ(dx) =

∫

E

P(t; x,A)µ(dx)

for t ≥ 0 , µ ∈ M and A ∈ B(E) . The Markov property of X implies that (Qt)t≥0 is
a (contraction) semigroup of linear operators on M (cf. [3, p. 49]). We let M0 denote the
family of µ ∈ M such that lim t→0Qtµ = µ in the total variation norm. It is easily seen that
M0 is a closed (Banach) subspace of M and QtM0 ⊆ M0 for all t ≥ 0 .

3. A natural pairing between B and M is obtained by the scalar product

(2.3) 〈f, µ〉 =

∫

E

f dµ

for f ∈ B and µ ∈ M . Then the semigroups (Pt)t≥0 and (Qt)t≥0 become adjoint to each
other in the sense that that the following identity holds

(2.4) 〈Ptf, µ〉 = 〈f,Qtµ〉
for all f ∈ B and all µ ∈ M with t ≥ 0 (cf. [9]). Note that (2.4) more explicitly reads

(2.5)

∫

E

( ∫

E

f(y) P(t; x, dy)
)
µ(dx) =

∫

E

f(y)
( ∫

E

P(t; x, dy) µ(dx)
)

for f ∈ B and µ ∈ M from where its validity is evident for t ≥ 0 .

4. The (forward) infinitesimal operator A of X is defined by

(2.6) Af = lim
t→0

Ptf−f

t

for f belonging to the domain D(A) of A for which the limit in (2.6) exists with respect to
the supremum norm. It is well known that D(A) is a dense subspace of B0 with respect to
the supremum norm. The (backward) infinitesimal operator B of X is defined by

(2.7) Bµ = lim
t→0

Qtµ−µ

t

for µ belonging to the domain D(B) of B for which the limit in (2.7) exists with respect to
the total variation norm. It is well known that D(B) is a dense subspace of M0 with respect
to the total variation norm. In view of (2.4) we see that the infinitesimal operators A and B
are adjoint to each other in the sense that the following identity holds

(2.8) 〈Af, µ〉 = 〈f,Bµ〉
for all f ∈ D(A) and all µ ∈ D(B) .
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5. It turns out that the convergence with respect to the total variation norm in (2.7) is too
strong to be of wider practical use. For this reason we may require that the limits in (2.6)
and (2.7) exist in a less demanding sense of the weak-star topology (cf. [4, Chapter V, Section
3]). For (2.6) we say that fn ∈ B converges weakly to f ∈ B if and only if 〈fn, µ〉 → 〈f, µ〉
for every µ ∈ M as n → ∞ . For (2.7) we say that µn ∈ M converges weakly to µ ∈ M
if and only if 〈f, µn〉 → 〈f, µ〉 for every f ∈ B as n → ∞ . Denoting the actions of the
weak limits in (2.6) and (2.7) by Ã and B̃ respectively, and renaming the corresponding
B0 and M0 to B̃0 and M̃0 respectively, we have D(A) ⊆ D(Ã) ⊆ B0 ⊂ B̃0 ⊆ B and
D(B) ⊆ D(B̃) ⊆ M0 ⊂ M̃0 ⊆ M with PtB̃0 ⊆ B̃0 and QtM̃0 ⊆ M̃0 for t ≥ 0 , where
B̃0 is a closed (Banach) subspace of B with respect to the supremum norm, and M̃0 is a
closed (Banach) subspace of M with respect to the total variation norm. Moreover, the weak
closures of the sets D(A), D(Ã), B0 and B̃0 coincide in B , and the weak closures of the sets
D(B), D(B̃), M0 and M̃0 coincide in M . For proofs of all these claims we refer to [3, p. 40].
Although we will not use them directly in what follows, they do play an important role for a
wider understanding of the arguments and results to be presented below.

6. For any λ > 0 given and fixed, the linear operator λI−A maps D(A) onto B0 in
a one-to-one way and its inverse Rλ := (λI−A)−1 called the resolvent of A is given by
Rλg =

∫∞
0

e−λtPtg dt for g ∈ B0 . The linear operator Rλ is bounded (i.e. continuous)
with its operator norm ‖Rλ‖ ≤ 1/λ for λ > 0 . The linear operator A is unbounded (i.e.
discontinuous) but closed in the sense that if fn ∈ D(A) and fn → f with Afn → g both in
the supremum norm as n →∞ then f ∈ D(A) and Af = g . Moreover, if f ∈ D(A) then
t 7→ Ptf is differentiable on [0,∞) with respect to the supremum norm and we have

∂tPtf = APtf = PtAf(2.9)

Ptf−f =

∫ t

0

APsf ds =

∫ t

0

PsAf ds(2.10)

for t ≥ 0 . For proofs of all these claims we refer to [3, pp 23-25]. Note that all these claims
(i) hold for B in place of A and (ii) extend to Ã and B̃ as well (see [3, p. 40]).

7. Recall that C∞
c = C∞

c (E) denotes the space of all infinitely differentiable functions from
E into IR having compact supports contained in Eo . Recall also that L1

loc = L1
loc(E) denotes

the space of all locally integrable functions from E into IR with respect to Lebesgue measure
λ . The distributional action (in the sense of Schwartz) of F from L1

loc on ϕ from C∞
c is

defined by the following integral expression

(2.11) 〈F, ϕ〉 =

∫

E

F ϕdλ

making F a continuous linear functional on C∞
c with respect to the supremum norm whenever

F belongs to L1 . For α = (α1, . . . , αn) ∈ INn
0 we set ∂α = ∂|α|/(∂xα1

1 . . . ∂xαn
n ) where

|α| := ∑n
i=1 αi . The distributional partial derivative ∂αF of F from L1

loc is defined through
its action on ϕ from C∞

c by

(2.12) 〈∂αF, ϕ〉 = (−1)|α|〈F, ∂αϕ〉
making ∂αF a continuous linear functional on C∞

c with respect to the supremum norm
whenever ∂αF belongs to L1 . Note that (2.12) follows using integration by parts when F
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is sufficiently smooth so that ∂αF exists in the sense of classic partial derivatives. For fuller
details see [12] and the references therein. Recall moreover that C2 = C2(E) denotes the
space of all twice continuously differentiable functions from E into IR and we let C2

b =
C2

b (E) denote its subspace consisting of all f ∈ C2 such that ∂αf is bounded on E for all
α = (α1, α2) ∈ IN2

0 with |α| ≤ 2 . Recall finally that Cb = Cb(E) denotes the subspace of
B = B(E) consisting of all continuous functions.

3. Distributional action of the infinitesimal operator

In this section we state and prove the main result of the paper (Theorem 1). This result
will be further refined and extended in the subsequent two sections.

1. We assume throughout that the setting and notation of Section 2 remain in place. Thus we
consider a continuous time-homogeneous (strong) Markov process X = (Xt)t≥0 with values in
a closed subset E of IRn with a non-empty interior Eo and having the infinitesimal operator
A defined on D(A) by (2.6) above. Recall that f belonging to D(A) is generally known
to be measurable only (as X may not be strong Feller or even Feller). We assume that the
action of A is explicitly known on sufficiently regular functions in the sense that C2

b ⊆ D(A)
and the following identity holds

(3.1) A = D on C2
b

where D is a second-order differential operator given by

(3.2) D =
n∑

i=1

µi∂i +
1

2

n∑
i,j=1

(σσt)ij∂
2
ij

for some µ = (µi)1≤i≤n : E → IRn and σ = (σij)1≤i,j≤n : E → IRn×n
+ belonging to C2 . Note

that σij can be zero for some and many of i and j although not for all of them (to exclude
trivialities). It follows from (2.12) that the distributional value DF of F from L1

loc is defined
through its action on ϕ from C∞

c by

(3.3) 〈DF, ϕ〉 = 〈F,D∗ϕ〉

where D∗ is the adjoint of D defined by

(3.4) D∗ϕ = −
n∑

i=1

∂i(µi ϕ) +
1

2

n∑
i,j=1

∂2
ij

(
(σσt)ijϕ

)

for ϕ ∈ C2 . When the equality (3.3) holds for all ϕ ∈ C∞
c we will say that the action of D

on F from L1
loc is understood in the sense of Schwartz distributions. The main result of the

paper can now be stated as follows.

Theorem 1. In the setting of Section 2 recalled above, suppose that

(3.5) Pt C
∞
c ⊆ C2

b
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for every t > 0 . Then the action of A on its domain D(A) coincides with the action of D
understood in the sense of Schwartz distributions, i.e. we have

(3.6) 〈Af, ϕ〉 = 〈f,D∗ϕ〉

for all f ∈ D(A) and all ϕ ∈ C∞
c .

Proof. Let ϕ ∈ C∞
c be given and fixed. Set dµ = ϕdλ where λ is Lebesgue measure on

IRn and note that µ belongs to M . The proof will be carried out in 5 steps as follows. Note
that the steps 2-4 are mainly included for fuller understanding and could be omitted.

1. By (2.4) and (2.6) we have

(3.7) 〈Af, µ〉 = lim
t→0

〈Ptf−f

t
, µ

〉
= lim

t→0

〈
f,
Qtµ−µ

t

〉
= lim

t→0
〈f, νt〉 = lim

t→0
νt(f) =: ν(f)

for all f ∈ D(A) where we set νt := (Qtµ−µ)/t for t > 0 . Note that νt belongs to M and
f 7→ νt(f) := 〈f, νt〉 =

∫
E

f dνt defines a continuous linear functional on B0 for every t > 0 .

2. We claim that under (3.5) we have

(3.8) sup
t>0

‖νt‖ ≤
∫

E

|ϕ∗| dλ < ∞

where we set ϕ∗ = D∗ϕ upon recaling (3.4) above. For this, fix t > 0 and recall that

(3.9) ‖νt‖ = sup
{ ∫

E

f dνt | f is measurable and −1 ≤ f ≤ 1
}

.

Setting ν̄t := ν+
t +ν−t and recalling that C∞

c is dense in L1
loc(ν̄t) (see [11, p. 69]) we find that

(3.9) can be simplified as follows

(3.10) ‖νt‖ = sup
{ ∫

E

f dνt | f ∈ C∞
c and −1 ≤ f ≤ 1

}
.

Using (2.4) and (2.10) with f ∈ C∞
c satisfying −1 ≤ f ≤ 1 given and fixed, we find that

∫

E

f dνt = 〈f, νt〉 =
〈
f,
Qtµ−µ

t

〉
=

〈Ptf−f

t
, µ

〉
=

〈1

t

∫ t

0

APsf ds, µ
〉

(3.11)

=
1

t

∫ t

0

〈
APsf, µ

〉
ds =

1

t

∫ t

0

〈
DPsf, ϕ

〉
ds =

1

t

∫ t

0

〈
Psf,D∗ϕ

〉
ds

=
1

t

∫ t

0

∫

E

(Psf)ϕ∗ dλ ds ≤ 1

t

∫ t

0

∫

E

|Psf | |ϕ∗| dλ ds ≤ ‖f‖
∫

E

|ϕ∗| dλ

≤
∫

E

|ϕ∗| dλ < ∞

where in the sixth and seventh equality we use that Psf ∈ C2
b for all s ∈ [0, t] by (3.5) above

combined with (3.1) and integration by parts respectively. Combining (3.10) and (3.11) we see
that (3.8) holds as claimed.
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3. Recalling that D(A) is dense in B0 (with respect to the supremum norm) we see from
(3.7) and (3.8) above that the principle of uniform boundedness (see [4, Theorem 6, p. 60]) is
applicable to (νt)t≥0 so that

(3.12) lim
t→0

νt(f) =: ν(f)

exists for every f ∈ B0 and defines a continuous linear functional ν on B0 satisfying

(3.13) ‖ν‖ ≤ sup
t>0

‖νt‖ < ∞ .

In the standard notation this means that ν ∈ B∗
0 and by the Hahn-Banach theorem (see [4,

pp 62-63]) there exists ν̂ ∈ B∗ with ‖ν̂‖ = ‖ν‖ such that ν̂ = ν on B0 . Recalling that
B∗ is isometrically isomorphic to the space ba consisting of all finitely additive real-valued
(finite) measures on E equipped with the total variation norm (see [4, pp 258-259]), we can
conclude that ν̂(f) =

∫
E

f dν̂ for f ∈ B with some ν̂ ∈ ba . In particular this shows that
ν(f) =

∫
E

f dν̂ for f ∈ B0 where ν̂ ∈ ba . While certainly revealing this line of argument
seems to be inconclusive however due to not knowing a priory whether the finitely additive
measure ν̂ is countably additive. Motivated by this question we will now take a different tack
and examine the limiting functional ν more directly by focusing on the left-hand side of its
definition in (3.7) above.

4. Applying (3.7) to f ∈ C2
b from D(A) and making use of (3.1) we find that

(3.14) ν(f) = lim
t→0

νt(f) = 〈Af, µ〉 = 〈Df, µ〉 = 〈f,D∗ϕ〉 =

∫

E

fϕ∗ dλ

where in the penultimate equality we use integration by parts. It follows from (3.14) that

(3.15) |ν(f)| ≤ ‖f‖
∫

E

|ϕ∗| dλ

for all f ∈ C2
b . Recalling that C2

b is dense in Cb (with respect to the supremum norm) and
ν is continuous on D(A) we find by (3.14) and (3.15) that (3.14) extends as follows

(3.16) ν(f) =

∫

E

fϕ∗ dλ

for all f ∈ D(A)∩Cb . Combining (3.7) and (3.16) we see that (3.6) holds for all f ∈ D(A)∩Cb .

5. In the final step we focus on f belonging to D(A)\Cb when the arguments from the
previous step are not applicable. Note moreover that the general arguments developed in this
step are applicable in the previous step as well. For this, fix t > 0 and recall that νt ∈ M so
that νt = ν+

t −ν−t with ν±t ∈ M+ and ρt := (1/t)
∫ t

0
Qsµ

∗ds ∈ M where dµ∗ = D∗ϕ dλ so
that ρt = ρ+

t −ρ−t with ρ±t ∈ M+ . Then κt := ν+
t +ν−t +ρ+

t +ρ−t ∈ M+ . Using that C∞
c is

dense in L1(κt) we know that for every f ∈ B0 there exists fε ∈ C∞
c such that fε → f in

L1(κt) and therefore in L1(σt) as well when ε ↓ 0 for any σt ∈ {ν+
t , ν−t , ρ+

t , ρ−t } . It follows
therefore using the same arguments as above that

νt(f) = 〈f, νt〉 =

∫

E

f dνt =

∫

E

f dν+
t −

∫

E

f dν−t =:

∫

E

fε dν+
t −

∫

E

fε dν−t + d(ε)(3.17)
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=

∫

E

fε dνt + d(ε) = 〈fε, νt〉+ d(ε) =
〈
fε,
Qtµ−µ

t

〉
+ d(ε)

=
〈Ptfε−fε

t
, µ

〉
+ d(ε) =

〈1

t

∫ t

0

APsfε ds, µ
〉

+ d(ε)

=
1

t

∫ t

0

〈
DPsfε, ϕ

〉
ds + d(ε) =

1

t

∫ t

0

〈
Psfε,D∗ϕ

〉
ds + d(ε)

=
1

t

∫ t

0

〈
fε,Qsµ

∗〉 ds + d(ε) =
〈
fε,

1

t

∫ t

0

Qsµ
∗ds

〉
+ d(ε)

= 〈fε, ρt〉+ d(ε) =

∫

E

fε dρt + d(ε)

=

∫

E

fε dρ+
t −

∫

E

fε dρ−t + d(ε) −→
∫

E

f dρ+
t −

∫

E

f dρ−t

=

∫

E

f dρt =
〈
f,

1

t

∫ t

0

Qsµ
∗ds

〉
=

〈1

t

∫ t

0

Psf ds, µ∗
〉

for f ∈ B0 as ε ↓ 0 . Letting t ↓ 0 and using that Ptf → f (with respect to the supremum
norm) for f ∈ B0 we see from (3.17) that

(3.18) ν(f) = lim
t→0

νt(f) = lim
t→0

〈1

t

∫ t

0

Psf ds, µ∗
〉

= 〈f, µ∗〉 = 〈f,D∗ϕ〉

for all f ∈ B0 . Combining (3.7) and (3.18) we see that (3.6) holds for all f ∈D(A) as claimed
and this completes the proof. ¤

Example 2. Suppose that X = (Xt)t≥0 is a unique weak solution to the SDE system

(3.19) dXt = µ(Xt) dt + σ(Xt) dBt (X0 =x)

where Xt belongs to IRn , µ = (µi)1≤i≤n belongs to IRn , σ = (σij)1≤i,j≤n belongs to IRn×n
+ ,

and Bt is a standard Brownian motion in IRn for t ≥ 0 with n ≥ 1 given and fixed. Then
X is a (strong) Markov process (cf. [1, Theorem 5.1, p. 14]) having the infinitesimal operator A
satisfying (3.1) with D given in (3.2) above (as is readily verified by Itô’s formula for instance).
Moreover, if µ and σ belong to C2

b with locally Lipschitz µ′′ and σ′′ , then it is well known
(cf. [1, Section 10, p. 28] and/or [10, Theorem 40, p. 310 & Theorem 70, p. 343]) that the
solution X to (3.19) can be constructed such that the flow x 7→ Xx

t is C2 on IRn and

(3.20) x 7→ Ptf(x) = Exf(Xt) = Ef(Xx
t ) belongs to C2

b on IRn

for t > 0 given and fixed whenever f ∈ C∞
c . This shows that the sufficient condition (3.5) in

Theorem 1 is satisfied in this case. Consequently, by the result of Theorem 1 we can conclude
that the action of A on its domain D(A) coincides with the action of D understood in the
sense of Schwartz distributions (i.e. (3.6) holds). Setting

(3.21) V (t, x) = Exf(Xt)

for t ≥ 0 and x ∈ E we see by combining the previous conclusion with (2.9) above that

(3.22) Vt
w
= DV on (0,∞)×IRn

with V (0, x) = f(x) for x ∈ E whenever f ∈ D(A) . Note that Vt in (3.22) exists in the
strong (classic) sense. We will extend (3.22) beyond f in D(A) in Section 5 below.
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4. Extension to boundary value problems

In this section we show how the result of Theorem 1 can be applied to boundary value
problems as discussed in Section 1 above.

1. Consider the function

(4.1) V (x) = ExG(XτD
)

where X = (Xt)t≥0 is a continuous time-homogeneous (strong) Markov process in IRn starting
at x in C under Px , the set C ⊆ IRn is open, the set D equals IRn\C , the stopping time
τD = inf { t ≥ 0 | Xt ∈ D } is the first entry time of X into D , and G is a real-valued
continuous/measurable function defined on the boundary ∂C between the sets C and D .
We will assume moreover that X is a unique weak solution to the SDE system (3.19) above
where µ and σ belong to C2

b with locally Lipschitz µ′′ and σ′′ . By the arguments recalled
in Example 2 above we then know that the flow

(4.2) x 7→ Xx
t is C2 on C̄

for every t > 0 given and fixed.

2. Recall that Dynkin’s characteristic operator L of X is defined by

(4.3) Lf(x) = lim
U↓x

Exf(XσU
)−f(x)

ExσU

for f belonging to the domain D(L) of L where the limit is taken over a given family of
open sets U ⊂ C shrinking down to x ∈ C and σU = inf { t ≥ 0 | Xt /∈ U } is the first exit
time of X from U . The strong Markov property of X applied at σU implies that

ExV (XσU
) = Ex EXσU

G(XτD
) = ExEx

(
G(XτD

)◦θσU
| FX

σU

)
(4.4)

= ExG(XσU+τD◦θσU
) = ExG(XτD

) = V (x)

for every open set U ⊆ C containing any given and fixed x ∈ C . Using (4.4) in (4.3) we see
that V belongs to D(L) and we have

(4.5) LV = 0 in C .

Note however that V does not belong to the domain D(A) of the infinitesimal operator A
of X so that the result of Theorem 1 above is not directly applicable to V . A key advantage
of (4.3) in comparison with (2.6) is that XσU

appearing in (4.3) belongs to C̄ while Xt

appearing in (2.6) through (2.1) may also be outside C̄ so that the strong Markov property
of X at t can no longer be used to derive that Ptf = f for all t > 0 close to zero (which
would imply that the limit in (2.6) exists and equals zero as in (4.5) above).

3. Motivated by the simple observations stated above, let a compact set K ⊆ C be given
and fixed, set L = IRn\K , and consider the stopped process XτL = (Xt∧τL

)t≥0 where τL =
inf { t ≥ 0 |Xt ∈ L } is the first entry time of X into L under Px for x ∈ K . Then XτL
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is a continuous time-homogeneous (strong) Markov process in E := K starting at x in K
under Px . By PτL

t we denote the (forward) transition operator of XτL defined by

(4.6) PτL
t f(x) = Exf(Xt∧τL

)

for t ≥ 0 , f ∈ B and x ∈ K (recall (2.1) above). By AτL we denote the (forward) infini-
tesimal operator of XτL defined by

(4.7) AτLf = lim
t→0

PτL
t f−f

t

for f belonging to D(AτL) (recall (2.6) above). The strong Markov property of X applied
at t ∧ τL implies that

PτL
t V (x) = ExV (Xt∧τL

) = Ex Et∧τL
G(XτD

) = ExEx

(
G(XτD

)◦θt∧τL
| FX

t∧τL

)
(4.8)

= ExG(Xt∧τL+τD◦θt∧τL
) = ExG(XτD

) = V (x)

for all x ∈ K and t > 0 . Using (4.8) in (4.7) we see that V belongs to D(AτL) and we have

(4.9) AτLV = 0 in K .

Note that (4.9) can be seen as a localised version of (4.5) expressed in terms of an infinitesimal
operator rather than the characteristic operator. Moreover, it is readily verified (using Itô’s
formula for instance) that

(4.10) AτL = D on C2
b

where D is the second-order differential operator given by (3.2) above. The question whether
(4.5) can be viewed as

(4.11) DV
w
= 0 in C

where the derivatives are understood in the sense of Schwartz distributions has therefore been
reduced to the question whether (4.9) can be viewed in this way on any compact set K ⊆ C
given and fixed. This reduction makes the result of Theorem 1 above applicable if we can verify
that the sufficient condition (3.5) is satisfied. We now show that this is the case.

Lemma 3. In the setting of Section 2 recalled above, we have

(4.12) PτL
t C∞

c ⊆ C2
b

for every t > 0 .

Proof. Let ϕ ∈ C∞
c be given and fixed. Without loss of generality we can assume that

ϕ = 0 on K\Kε where Kε = {x ∈ K | d(x, ∂K) ≥ ε } for some ε > 0 given and fixed where
d denotes the Euclidean distance on IRn . Let x ∈ Ko be given and fixed. Then for any t > 0
given and fixed we have

(4.13) PτL
t ϕ(x) = Exϕ(Xt∧τL

) = Exϕ(Xt)I(t<τL) + Exϕ(XτL
)I(t≥τL) = Eϕ(Xx

t )I(t<τx
L)
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where we use that XτL
∈ ∂K so that ϕ(XτL

) = 0 . Reducing dimension n to 1 for simplicity
of the notation in what follows, we see from (4.13) that for h > 0 sufficiently small so that
x+h ∈ Ko we have

(4.14) PτL
t ϕ(x+h)− PτL

t ϕ(x) = E
[
ϕ(Xx+h

t )I(t<τx+h
L )−ϕ(Xx

t )I(t<τx
L)

]
.

Note that the integrand on the right-hand side of (4.14) can be written as follows

ϕ(Xx+h
t )I(t<τx+h

L )−ϕ(Xx
t )I(t<τx

L) = ϕ(Xx+h
t )I(t<τx+h

L )I(τx
L <t)(4.15)

+ ϕ(Xx+h
t )I(t<τx+h

L )I(τx
L = t)

+ ϕ(Xx+h
t )I(t<τx+h

L )I(τx
L >t)

− ϕ(Xx
t )I(t<τx

L) .

We now claim that the first two terms on the right-hand side of (4.15) are equal to zero for
all sufficiently small h > 0 . For this, recall the known fact (cf. [10, Theorem 37, p. 301]) that
the flow x 7→ Xx can be chosen to be continuous in the topology of uniform convergence on
compacts in the sense that

(4.16) sup
0≤s≤t

∣∣Xxn
s −Xx

s

∣∣ → 0

whenever xn → x in K as n → ∞ . Combining (4.16) with the fact that Xx
τL

belongs
to the set of points at ∂K that are regular for L (cf. [2, Theorem 11.4, p. 62]) we see that
I(t < τx+h

L )I(τx
L < t)I(Xx

t ∈ Kε) = 0 for all sufficiently small h > 0 . Moreover, using the
fact that ϕ = 0 on K\Kε combined with that fact that x 7→ Xx

t is continuous on K , we
also see that ϕ(Xx+h

t )I(t < τx+h
L )I(τx

L < t)I(Xx
t /∈Kε) = 0 for all sufficiently small h > 0 .

This shows that the first term on the right-hand side of (4.16) equals zero for all sufficiently
small h > 0 . Similarly, using the fact that ϕ = 0 on K \Kε combined with the fact
that Xx

t ∈ ∂K when τx
L = t and the fact that x 7→ Xx

t is continuous on K , we see that
ϕ(Xx+h

t )I(t<τx+h
L )I(τx

L = t) = 0 for all sufficiently small h > 0 . This shows that the second
term on the right-hand side of (4.16) equals zero for all sufficiently small h > 0 . Finally, using
the fact that ϕ = 0 on K \Kε combined with the fact that x 7→ Xx

t is continuous on K ,
we see that ϕ(Xx+h

t )I(t< τx+h
L )I(τx

L >t)I(Xx
t /∈Kε) = 0 for all sufficiently small h > 0 . On

the other hand, if τx
L > t with Xx

t ∈Kε then d((Xs)0≤s≤t, ∂K) ≥ δ > 0 for some δ small
enough because the points at ∂K can be assumed to be regular for L (by the choice of K in
the first place). Using (4.16) this shows that if τx

L > t with Xx
t ∈Kε then τx+h

L > t so that
ϕ(Xx+h

t )I(t<τx+h
L )I(τx

L >t)I(Xx
t ∈Kε) = ϕ(Xx+h

t )I(τx
L >t)I(Xx

t ∈Kε) = ϕ(Xx+h
t )I(τx

L >t) for
all sufficiently small h > 0 . Inserting these conclusions back into (4.15) we get

(4.17) ϕ(Xx+h
t )I(t<τx+h

L )−ϕ(Xx
t )I(t<τx

L) =
(
ϕ(Xx+h

t )−ϕ(Xx
t )

)
I(t<τx

L)

for all sufficiently small h > 0 . This shows that

lim
h→0

ϕ(Xx+h
t )I(t<τx+h

L )−ϕ(Xx
t )I(t<τx

L)

h
= lim

h→0

ϕ(Xx+h
t )−ϕ(Xx

t )

h
I(t<τx

L)(4.18)

= ϕ′(Xx
t ) ∂xX

x
t I(t<τx

L)
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with ∂xX
x
0 = 1 . Using this fact in (4.14) we find by the mean value theorem and the dominated

convergence theorem that ∂xPτL
t ϕ(x) exists and is given by

∂xPτL
t ϕ(x) = lim

h→0

PτL
t ϕ(x+h)− PτL

t ϕ(x)

h
= E

[
ϕ′(Xx

t ) ∂xX
x
t I(t<τx

L)
]

(4.19)

= Ex

[
ϕ′(Xt) ∂xXt I(t<τL)

]
= Ex

[
ϕ′(Xt∧τL

) ∂xXt∧τL

]

for all x ∈ K0 . In particular, this shows that x 7→ PτL
t ϕ(x) is C1

b on K for every ϕ ∈ C∞
c

(cf. [10, Theorem 70, p. 343]). Using the same arguments we similarly find that ∂2
xP

τL
t ϕ(x)

exists and is given by

∂2
xP

τL
t ϕ(x) = lim

h→0

∂xPτL
t ϕ(x+h)− ∂xPτL

t ϕ(x)

h
(4.20)

= E
[(

ϕ′′(Xx
t )(∂xX

x
t )2+ϕ′(Xx

t )∂2
xX

x
t

)
I(t<τx

L)
]

= Ex

[(
ϕ′′(Xt)(∂xXt)

2+ϕ′(Xt)∂
2
xXt

)
I(t<τL)

]

= Ex

[
ϕ′′(Xt∧τL

)(∂xXt∧τL
)2+ϕ′(Xt∧τL

)∂2
xXt∧τL

]

for all x ∈ K0 . In particular, this shows that x 7→ PτL
t ϕ(x) is C2

b on K for every ϕ ∈ C∞
c

(cf. [10, Theorem 70, p. 343]) as claimed and the proof is complete. ¤

We can now answer the question addressed prior to Lemma 3 above.

Corollary 4. In the setting of Section 2 recalled above, consider the function V defined
in (4.1) above. We then have

(4.21) DV
w
= 0 in C

where D is the second-order differential operator given by (3.2) above and the derivatives in
(4.21) are understood in the sense of Schwartz distributions.

Proof. For any ϕ ∈ C∞
c given and fixed we know that the support of ϕ is contained in

K for some compact set K . Setting L = IRn\K and considering the stopped process XτL

as in (4.6) above, we know by (4.12) in Lemma 3 that the sufficient condition (3.5) in Theorem
1 is satisfied with PτL

t in place of Pt for t > 0 . By the result of Theorem 1 we therefore know
that the equality (3.6) holds with AτL in place of A . Recalling (4.9) this in turn means that
(4.21) is satisfied as claimed and the proof is complete. ¤

4. The conclusion (4.21) of Corollary 4 extends from (4.1) to more general functions

(4.22) V (x) = Ex

(
e−

∫ τD
0 λ(Xt) dtG(XτD

) +

∫ τD

0

e−
∫ t
0 λ(Xs) dsH(Xt) dt

)

for x ∈ C where the setting is the same as following (4.1) above and λ : IRn → [0,∞) is
measurable, G : ∂C → IR is continuous/measurable, and H : C̄ → IR is continuous. This
can be done by introducing the killed process X̂ = (X̂t)t≥0 defined by

X̂t = Xt if t < ζ(4.23)
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= ∆ if t ≥ ζ

for t ≥ 0 where ζ := inf { t ≥ 0 |At ≥ e } for At :=
∫ t

0
λ(Xs) ds and e ∼ Exp(1) realised

independently from X (i.e. the driving Brownian motion B in (3.19) above) while ∆ is a
cemetery point (coffin state) added externally to E and all functions from the extended state
space E ∪ {∆} to R take value 0 on ∆ by definition. The killed process X̂ is (strong)
Markov and the characteristic operator L̂ of X̂ is given by

(4.24) L̂ = L− λI

where L is the characteristic operator of X and I is the identity operator. From (4.23) we
see that (4.22) can be rewritten as follows

(4.25) V (x) = Ex

(
G(X̂τD

) +

∫ τD

0

H(X̂t) dt
)

=: V G(x) + V H(x)

where V G(x) = ExG(X̂τD
) and V H(x) = Ex

∫ τD

0
H(X̂t) dt for x ∈ C . Using the strong Markov

property of X̂ as in (4.4) we find that V G belongs to D(L̂) and by (4.5) we have

(4.26) L̂V G = LV G− λV G = 0 in C .

Similarly, the strong Markov property of X applied at σU as in (4.4) above implies that

ExV
H(X̂σU

) = Ex EX̂σU

(∫ τD

0

H(X̂t) dt
)

= Ex Ex

(∫ τD

0

H(X̂t) dt ◦ θσU

∣∣FX
σU

)
(4.27)

= Ex

(∫ τD◦θσU

0

H(X̂t+σU
) dt

)
= Ex

(∫ σU+τD◦θσU

σU

H(X̂t) dt
)

= Ex

(∫ τD

0

H(X̂t) dt−
∫ σU

0

H(X̂t) dt
)

= V H(x)− Ex

(∫ σU

0

H(X̂t) dt
)

for every open set U ⊆ C containing any given and fixed x ∈ C . Using (4.27) in (4.3) we see
that V H belongs to D(L̂) and we have

(4.28) L̂V H(x) = lim
U↓x

ExV
H(X̂σU

)−V H(x)

ExσU

= − lim
U↓x

Ex

(∫ σU

0
H(X̂t) dt

)

ExσU

= −H(x)

for x ∈ C where in the last equality we use that H is continuous. This shows that

(4.29) L̂V H = LV H− λV H = −H in C .

Combining (4.25) with (4.26) and (4.29) we see that V belongs to D(L) and we have

(4.30) LV −λV = −H in C .

Note as in (4.5) above however that V does not belong to the domain D(A) of the infinitesimal
operator A of X so that the result of Theorem 1 above is not directly applicable to V .

14



5. Proceeding in the same way as in (4.6)-(4.9) above with X̂ in place of X , we find that
V G belongs to D(ÂτL) and we have

(4.31) ÂτLV G = AτLV G− λV G = 0 in K

where K ⊆ C is any compact set and L = IRn\K . Similarly, applying the same arguments
as in (4.27) and (4.28) above we find that V H belongs to D(ÂτL) and we have

(4.32) ÂτLV H = AτLV H− λV H = −H in K .

Combining (4.25) with (4.31) and (4.32) we see that V belongs to D(AτL) and we have

(4.33) AτLV − λV = −H in K .

Recalling (4.10) hence we see that the question whether (4.30) can be viewed as

(4.34) DV −λV
w
= −H in C

where the derivatives are understood in the sense of Schwartz distributions has therefore been
reduced to the question whether (4.33) can be viewed in this way on any compact set K ⊆ C
given and fixed. This reduction makes the result of Theorem 1 above applicable if we can verify
that the sufficient condition (3.5) is satisfied. The latter can be done by applying the result of
Lemma 3 as in the proof of Corollary 4 above.

Corollary 5. In the setting of Section 2 recalled above, consider the function V defined
in (4.22) above. We then have

(4.35) DV −λV
w
= −H in C

where D is the second-order differential operator given by (3.2) above and the derivatives in
(4.35) are understood in the sense of Schwartz distributions.

Proof. For any ϕ ∈ C∞
c given and fixed we know that the support of ϕ is contained in

K for some compact set K . Setting L = IRn\K and considering the stopped process XτL

as in (4.6) above, we know by (4.12) in Lemma 3 that the sufficient condition (3.5) in Theorem
1 is satisfied with PτL

t in place of Pt for t > 0 . By the result of Theorem 1 we therefore know
that the equality (3.6) holds with AτL in place of A . Recalling (4.33) this in turn means that
(4.35) is satisfied as claimed and the proof is complete. ¤

Remark 6. The fact that V from (4.22) satisfies (4.35) is claimed to be ‘obvious’ in the
proof of Corollary 8.2 in [13]. The background arguments given in the proof of Theorem 8.1 in
[13] leading to this conclusion seem to invoke approximations of the degenerate parabolic PDEs
by the (non-degenerate) elliptic PDEs upon making use of the previously established bounds
in the PDE literature on the derivatives of the solutions that are independent of the ellipticity
of the approximating PDEs (cf. Theorem 10.1 in [13]). The present paper partly grew out
from our inability to follow the arguments in [13] and desire to produce simpler and/or more
canonical (probabilistic) arguments which would also be applicable in greater generality. The
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derivation of (4.35) outlined in the proof of Corollary 5 above relies upon the general result of
Theorem 1 above. This approach is different from the approach undertaken in [13].

6. Having a weak solution V from (4.22) to the equation (4.35) provides an opportunity
for its upgrade to a strong (classic/smooth) solution. This can be done when the differential
operator D of X given by (3.2) above is hypoelliptic, e.g. when it satisfies the Hörmander
condition (cf. [5]). For this, note that D can be rewritten as the ‘sum of squares’ as follows

(4.36) D =
n∑

i=1

µi∂i +
1

2

n∑
i,j=1

(σσt)ij∂
2
ij = D0 +

m∑
i=1

D2
i

where Di is a first-order differential operator given by

(4.37) Di =
n∑

j=1

βij∂j

for 0 ≤ i ≤ m with the coefficients βij expressed explicitly as

β0j = µj − 1

2

n∑

k,l=1

σlk ∂lσjk (1≤j≤n)(4.38)

βij = 1√
2
σji (1≤ i≤m) (1≤j≤n)(4.39)

and m = n (generally m could also differ from n in (4.36) above). Identifying Di with
(βi1, . . . , βin) we see that each Di may be viewed as a function from C to IRn defined by
Di(x) = (βi1(x), . . . , βin(x)) for x ∈ C and 0 ≤ i ≤ n . The Lie bracket of Di and Dj

understood as differential operators is defined by

(4.40) [Di, Dj] = DiDj−DjDi

for 0 ≤ i, j ≤ n . The smallest vector space in IRn that (i) contains all D0, D1, . . . , Dn

understood as vectors in IRn and (ii) is closed under the Lie bracket operation (4.40) is referred
to as the Lie algebra generated by D0, D1, . . . , Dn and is denoted by Lie(D0, D1, . . . , Dn) . In
other words Lie(D0, D1, . . . , Dn) = span {Di, [Di, Dj], [[Di, Dj], Dk], . . . | 0 ≤ i, j, k, . . . ≤ n} .
Note that Lie(D0, D1, . . . , Dn) may be viewed as a function from C into the family of linear
subspaces of IRn whose (algebraic) dimensions could also be strictly smaller than n .

Corollary 7. In the setting of Section 2 recalled above, consider the function V defined
in (4.22) above. Suppose moreover that µ = (µi)1≤i≤n and σ = (σij)1≤i,j≤n belong to C∞ on
C . If the Hörmander condition

(4.41) dimLie(D0, D1, . . . , Dn) = n

holds on C , then V belongs to C∞ on C whenever H does so. In this case we have

(4.42) DV −λV = −H in C

where D is the second-order differential operator given by (3.2) above.
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Proof. By (4.35) in Corollary 5 we know that V is a weak solution to the equation (4.42)
in the sense of Schwartz distributions. By (4.41) and Theorem 1.1 in [5] we know that the
differential operator D−λI is hypoelliptic in C . Combining these two facts we can then
conclude that the weak solution V to the equation (4.42) belongs to C∞ on C whenever H
does so. This completes the proof. ¤

5. Extension to initial value problems

In this section we show how the result of Theorem 1 can be applied to initial value problems
as discussed in Section 1 above.

1. Consider the function

(5.1) V (t, x) = Ex

(
e−

∫ t
0 λ(Xs) dsG(Xt) +

∫ t

0

e−
∫ s
0 λ(Xr) drH(Xs) ds

)

for (t, x) ∈ [0,∞)× IRn where X = (Xt)t≥0 is a continuous time-homogeneous (strong)
Markov process in IRn starting at x under Px , the function λ : IRn → [0,∞) is measurable,
the function G : IRn → IR is continuous/measurable, and the function H : IRn → IR is
continuous. We will moreover assume that X is a unique weak solution to the SDE system
(3.19) above where µ and σ belong to C2

b with locally Lipschitz µ′′ and σ′′ .

2. The conclusion (4.35) of Corollary 5, which in turn relies upon the result of Theorem 1,
can be applied to the function V from (5.1). This can be done by introducing a backward
time-space process X̄ = (X̄t)t≥0 defined as a flow by

(5.2) X̄ t,x
s = (t−s,Xx

s )

for s ≥ 0 where (t, x) ∈ [0,∞)×IRn is given and fixed. Setting C = (0,∞)×IRn so that
D = IRn+1\C = (−∞, 0]×IRn we see that

(5.3) τ t,x
D = inf { s ≥ 0 | X̄s ∈ D }

equals t so that (5.1) can be rewritten as follows

(5.4) V (x̄) = Ex̄

(
e−

∫ τD
0 λ(X̄s) dsG(X̄τD

) +

∫ τD

0

e−
∫ s
0 λ(X̄r) drH(X̄s) ds

)

for x̄ = (t, x) ∈ C where we extend definitions of λ , G and H by setting λ(x̄) := λ(x) ,
G(x̄) := G(x) and H(x̄) := H(x) for x̄ = (t, x) ∈ C . Note that the function V in (5.4) has
the same structure as the function V in (4.22) above. From (5.2) it is clear that the differential
operator D̄ of X̄ (in the sense of (3.1) above) is given by

(5.5) D̄ = −∂t + D

where D is the second-order differential operator given by (3.2) above. Combining these facts
then leads to the following conclusion.

Corollary 8. In the setting of Section 2 recalled above, consider the function V defined
in (5.1) above. We then have

(5.6) Vt
w
= DV −λV +H in C
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where D is the second-order differential operator given by (3.2) above and the derivatives in
(5.6) are understood in the sense of Schwartz distributions.

Proof. Recall that (5.1) can be rewritten as (5.4) which in turn has the same structure as
(4.22) above. It follows therefore from (4.35) in Corollary 5 above upon recalling (5.5) that

(5.7) D̄−λV = −Vt+DV −λV
w
= −H in C .

Rearranging terms in (5.7) we obtain (5.6) as claimed and the proof is complete. ¤

3. To upgrade the weak solution (5.1) to the equation (5.6) using the Hörmander condition
as in Corollary 7 above, note that the differential operator D̄ of X̄ given in (5.5) above can
be rewritten as the ‘sum of squares’ as follows

(5.8) D̄ = −∂0 +
n∑

i=1

µi∂i +
1

2

n∑
i,j=1

(σσt)ij∂
2
ij = D̄0 +

n∑
i=1

D̄2
i

where D̄i is a first-order differential operator given by

(5.9) D̄i =
n∑

j=0

βij∂j

for 0 ≤ i ≤ n with the coefficients βij expressed explicitly as

(5.10) β00 = −1 & βi0 = 0 (1≤ i≤n)

in addition to (4.38) and (4.39) above (with m = n ). Viewing D̄i as functions from C to
IRn+1 this amounts to setting

(5.11) D̄0 = (−1, β01, . . . β0n) & D̄i = (0, βi1, . . . , βin) (1≤ i≤n) .

Note that Lie(D̄0, D̄1, . . . , D̄n) can be viewed as a function from C into the family of linear
subspaces of IRn+1 whose (algebraic) dimensions could also be strictly smaller than n+1 .

Corollary 9. In the setting of Section 2 recalled above, consider the function V defined
in (5.1) above. Suppose moreover that µ = (µi)1≤i≤n and σ = (σij)1≤i,j≤n belong to C∞ on
C . If the (parabolic) Hörmander condition

(5.12) dimLie(D̄0, D̄1, . . . , D̄n) = n+1

holds on C , then V belongs to C∞ on C whenever H does so. In this case we have

(5.13) Vt = DV −λV +H in C

where D is the second-order differential operator given by (3.2) above.

Proof. By (5.6) in Corollary 8 we know that V is a weak solution to the equation (5.13)
in the sense of Schwartz distributions. By (5.12) and Theorem 1.1 in [5] we know that the
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differential operator D̄−λI = −∂t+D−λI is hypoelliptic in C . Combining these two facts
we can then conclude that the weak solution V to the equation (5.13) belongs to C∞ on C
whenever H does so. This completes the proof. ¤

Remark 10. Note that the conclusions (5.6) and (5.13) in Corollary 8 and Corollary 9 re-
spectively do not require that the function G belongs to the domain D(A) of the infinitesimal
operator A of X . These conclusions thus improve upon those derived at the end of Example
2 using the general semigroup theory. Note however that Vt in (5.6) is only claimed to exist
in the weak sense while Vt in (5.13) exists in the strong (classic) sense as well.

Example 11. A rich family of degenerate two-dimensional diffusion processes arising in
quickest detection problems to which the results of the present paper are applicable can be found
in [6] and further related papers. These examples served as a main motivation for deriving the
results of the present paper.
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