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The Azéma-Yor Embedding in
Brownian Motion with Drift

GORAN PESKIR
�

Let B = (Bt)t�0 be standard Brownian motion started at zero, let � > 0
be given and fixed, and let � be a probability measure on IR having a strictly

positive density F 0 . Then there exists a stopping time �� of B such that

(B��+���) � �

if and only if the following condition is satisfied:

D� :=

Z
IR

e�2�x �(dx) � 1 .

Setting in this case C� = �(2�)�1 log(D�) , the following explicit formula is valid:

�� = inf

�
t > 0

�� (Bt+�t) � h�

�
max
0�r�t

(Br+�r)

��
where the map s 7! h�(s) for s > C� is expressed through its inverse by

h�1� (x) = � 1

2�
log

�
1

1�F (x)

Z 1

x

e�2�t dF (t)

�
(x2 IR)

and we set h�(s) = �1 for s � C� . This settles the question raised in [6].

In addition, it is proved that �� is pointwise the smallest possible stopping time

satisfying (B��+���) � � which generates stochastically the largest possible

maximum of the process (Bt+�t)t�0 up to the time of stopping. This minimax

property characterizes �� uniquely. The result recovers the Azéma-Yor solution of

the Skorokhod embedding problem [1] by passing to the limit when � # 0 . The

condition on the existence of a strictly positive density is imposed for simplicity,

and more general cases can be treated similarly. The line of arguments used in the

proof can be extended to treat the case of more general nonrecurrent diffusions.

1. Introduction

This note is motivated by the following question raised in [6]: Given a Brownian motion with

drift Xt = Bt + �t , and a probability measure � on IR , find a stopping time �� of (Xt)t�0
satisfying X�� � � , and determine conditions on � which make such a construction possible.

It is shown in [6] that under �> 0 , the following condition:

(1.1)

Z
IR
e�2�x �(dx) = 1

is sufficient to carry out an explicit construction of �� . Observe, however, that no � 6= �0 with

support in IR+ satisfies (1.1).
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barycentre function, the Hardy-Littlewood maximal function, non-recurrent diffusion, maximum process. (Second edition)  goran@imf.au.dk

1



The main purpose of this note is to show that the following condition:

(1.2)

Z
IR
e�2�x �(dx) � 1

is necessary and sufficient to carry out an explicit construction of �� . In addition, some extremal

properties of �� are revealed which makes it interesting for applications.

It may be noted that the simple convolution-type argument applied in the proof (following

(3.26) below) can also be used to extend the construction given in [6] to the general case of (1.2).

This procedure should also lead to the Azéma-Yor stopping time (3.3). The derivation presented

below is entirely different and reveals in a clearer manner how (1.2) is actually found.

The problem of embedding the given law � into a Markov process X = (Xt)t�0 has been

a subject of many studies. This problem was initiated by Skorokhod [15] when X is Brownian

motion, and it is usually referred to as the Skorokhod embedding problem. Rost [14] characterizes the

existence of an embedding in a general Markov process. Falkner and Fitzsimmons [5] characterize

the measures which can arise as stopped distributions of a transient right process for which semipolar

sets are polar. These results, however, do not offer an explicit construction of the stopping time.

Azéma and Yor [1] give an explicit construction of the stopping time when X is a recurrent

diffusion. Bertoin and Le Jan [3] give yet another explicit construction of the stopping time when

X is a Hunt process starting at a regular recurrent point. More general embedding problems for

martingales are posed and solved by Rogers [13]. In view of these results, the most interesting

feature in the problem above is the fact that the Brownian motion with drift is not recurrent.

The idea applied in the proof below is simple and well-known: The initial problem is first

transformed into an analogous martingale problem by composing X with its scale function (it

should be observed that the martingale problem has some new interesting features because the initial

diffusion was not recurrent); we then proceed by deriving a differential equation for the optimal

stopping boundary (this step is crucial in our approach); solving then the martingale problem, we

also solve the initial problem. Note that, in essence, no new argument is used in the proof (if

one compares it with [1] for instance) apart from the fact that we insist on deriving a differential

equation for the optimal boundary; this line of arguments clarifies the proof and makes it also more

tractable for a treatment of other non-recurrent diffusions. Actually, the main virtue of this note is

to indicate that such extensions can be worked out along the same lines.

2. The Azéma-Yor embedding

Since our construction below extends the Azéma-Yor construction [1], we shall recall a few

basic facts in this direction for comparison.

1. Let B = (Bt)t�0 be standard Brownian motion started at zero, and let � be a centered

probability measure on IR . Assume for simplicity that � has a strictly positive density F 0 , and

denote by St = max 0�r�tBr the maximum process associated with B . Then the Azéma-Yor

solution [1] of the Skorokhod-embedding problem states that the stopping time

(2.1) �� = inf
�
t > 0 j Bt � h0(St)

	
satisfies B�� � � , if the map s 7! h0(s) is defined through its inverse by
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(2.2) h�10 (x) =
1

1�F (x)

Z 1

x
t dF (t)

for x 2 IR . The map x 7! h�10 (x) is the barycentre function of � .

2. Using that F (B��) � U(0; 1) , and substituting F (t) = v in (2.2), we see that S�� =
h�10 (B��) is equally distributed as the Hardy-Littlewood maximal function of � :

(2.3) H0(u) =
1

1�u
Z 1

u
F�1(v) dv

being defined on the probability space [0; 1] with Lebesgue measure (see [7]). From this fact, and

the well-known argument of Blackwell and Dubins [4], it follows that

(2.4) P
�
S� � s

�� P
�
S�� � s

�
for all s � 0 , whenever � is a stopping time of B satisfying B� � � and E(S�) <1 . These

facts were observed in [2], as well as that E(S��) < 1 if and only if
R1
0 x log x �(dx) < 1 .

Assuming then that this holds, it was shown in [11] (see also [16]) that if equality in (2.4) is attained

for all s � 0 , then �� � � a.s. (Equality actually can be established here if one proceeds further

by mimicking the proof of Proposition 3.3 below.) Observe that this result can also be restated as

follows: If
R1
0 x log x �(dx) <1 and � is any stopping time of B satisfying B� � � and

S� � S�� , then �� � � a.s. Thus, less formally, it says that �� is pointwise the smallest possible

stopping time satisfying B�� � � which generates stochastically the largest possible maximum

of the process B up to the time of stopping. Another equivalent formulation (closer to terms of

Hardy-Littlewood theory [7]) is that �� is pointwise the smallest possible stopping time satisfying

B�� � � and S�� � H0 , whenever � 2 L+ logL+ or H0 2 L1 . The minimax property just

described characterizes �� uniquely, and makes it also more interesting for applications, e.g. in

option pricing theory (see [11]).

3. Yet another extremal property of �� follows from the argument of Monroe [9] upon the

uniform integrability of (Bt^��)t�0 established by Azéma and Yor [2]: If �� �� is a stopping

time of B satisfying B� � � , then � = �� a.s.

3. The results and proof

The basic result of this note is contained in the following theorem. The explicit formulas (3.3)-

(3.4) appearing below should be compared with their relatives (2.1)-(2.2) above. Observe that the

latter corresponds to the limiting case � = 0 in the former. With a view of extending this result

to more general non-recurrent diffusions, we would like point out the line of arguments used in the

proof which makes the whole construction possible. Below in Proposition 3.2 and Proposition 3.3

we shall delve deeper into the structure of the stopping time (3.3) and reveal some of its extremal

properties which make it interesting for applications.

Theorem 3.1

Let B = (Bt)t�0 be standard Brownian motion started at zero, let � > 0 be given and fixed,

and let � be a probability measure on IR having a strictly positive density F 0 . Then there exists

a stopping time �� of B such that
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(3.1) (B��+���) � �

if and only if the following condition is satisfied:

(3.2) D� :=

Z
IR
e�2�x �(dx) � 1 .

Setting in this case C� = �(2�)�1 log(D�) , the following explicit formula is valid:

(3.3) �� = inf

�
t > 0

�� (Bt+�t) � h�

�
max
0�r�t

(Br+�r)

��
where the map s 7! h�(s) for s > C� is expressed through its inverse by

(3.4) h�1� (x) = � 1

2�
log

�
1

1�F (x)

Z 1

x
e�2�t dF (t)

�
(x2 IR)

and we set h�(s) = �1 for s � C� .

Proof. 1. Set Xt = Bt + �t . Then X = (Xt)t�0 is a diffusion process solving

(3.5) dXt = �dt + dBt

with X0 = 0 . The scale function of X is given by

(3.6) S(x) =
1

2�

�
1�e�2�x

�
for x 2 IR . Thus the process

(3.7) Zt := S(Xt) =
1

2�

�
1�e�2�Xt

�
=

1

2�

�
1�exp

��2�Bt � 2�2t
��

is a continuous local martingale. It is easily verified that Z = (Zt)t�0 solves

(3.8) dZt =
�
1�2�Zt) dBt

with Z0 = 0 . Note that Zt < (2�)�1 with Zt ! (2�)�1 P -a.s. as t ! 1 . Observe that

the diffusion coefficient in (3.8) takes value 0 at (2�)�1 ; however, the solution Z started at

zero never reaches (2�)�1 .

2. Let U be a random variable satisfying U � F , where F is the distribution function

of � . Then V := S(U) � G with

(3.9) G(x) = F
�
S�1(x)

�
for x < (2�)�1 . Suppose that �� is a stopping time of B satisfying Z�� � V . Then X�� =
S�1(Z��) � S�1(V ) = U � F . This shows that the initial (diffusion) problem is reduced to the

martingale problem of finding a stopping time �� of B satisfying

(3.10) Z�� � V .
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Note that V < (2�)�1 so that x 7! G(x) is strictly increasing and continuous on ]�1; (2�)�1]
with G(�1) = 0 and G((2�)�1) = 1 .

3. To solve the problem (3.10) we shall introduce the maximum process:

(3.11) St = max
0�r�t

Zr

and consider the following stopping time:

(3.12) �g = inf
�
t > 0 j Zt � g(St) g

with a map s 7! g(s) being defined on [0; (2�)�1] . Motivated by the properties of G , it

is natural to assume that s 7! g(s) is an increasing C1-function satisfying g(0) = �1 and

g
�
(2�)�1

�
= (2�)�1 . Our main aim in the sequel is to show how to pick up a map s 7! g�(s)

out of all admissible candidates just specified, so that (3.10) holds with �� = �g� .

4. We show that Z�g � V if and only if the inverse x 7! g�1(x) of the map s 7! g(s)
solves the following differential equation:

(3.13)
�
g�1

�0
(x) � G0(x)

1�G(x)
g�1(x) = � G0(x)

1�G(x)
x

for x < (2�)�1 . To prove this claim, we shall first verify that (see [8] and [1])

(3.14) Fg(s) := PfS�g � sg = 1 � exp

�
�
Z s

0

dt

t�g(t)
�

for all 0 � s < (2�)�1 . It is important to realize that this fact generally holds only for s < (2�)�1 ,

and depending on the magnitude of the left-hand derivative of s 7! g(s) at (2�)�1 , the distribution

function of S�g may have a jump at (2�)�1 . Observe, however, that

(3.15)
n
S�g = (2�)�1

o
=
n
Z�g = (2�)�1

o
=
�
�g = 1	

.

Hence the fact that x 7! G(x) is continuous at (2�)�1 will have for a consequence in our

derivation below that the set in (3.14) is of P -measure zero. This is a quick way of establishing

that �g <1 P -a.s. upon a proper choice of the boundary s 7! g(s) for s < (2�)�1 .

5. To derive (3.14), we may use the fact that

(3.16) H(St)�(St�Zt)H
0(St)

is a continuous local martingale whenever H 2 C2 , which is easily verified by Itô formula. We

shall apply this fact with H"(s) =
R s
0 h"(r) dr where h : [0; (2�)�1[ ! IR+ is any bounded

C1-function which is zero on [0; "] . Then the process (3.16) is uniformly bounded and therefore

it is a uniformly integrable martingale. Thus by the optional sampling theorem we get

(3.17) E
�
H"(S�g)

�
= E

�
(S�g�Z�g)H

0
"(S�g)

�
.

Integrating by parts, the left-hand side in (3.17) becomes
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(3.18) E
�
H"(S�g)

�
=

Z 1=2�

0
H"(s) dFg(s) = H"(s)Fg(s)

���1=2�
0

�
Z 1=2�

0
Fg(s�) dH"(s)

= H"(1=2�) �
Z 1=2�

0
Fg(s�) dH"(s) =

Z 1=2�

0

�
1�Fg(s�)

�
h"(s) ds .

On the other hand, the right-hand side in (3.17) is equal to

(3.19) E
�
(S�g�Z�g)H

0
"(S�g)

�
= E

��
S�g�g(S�g)

�
H 0

"(S�g)
�

=

Z 1=2�

0

�
s�g(s)�h"(s) dFg(s) .

Letting " # 0 in (3.18) and (3.19), we find that

(3.20)

Z 1=2�

0

�
1�Fg(s�)

�
h(s) ds =

Z 1=2�

0

�
s�g(s)�h(s) dFg(s)

for all bounded C1-functions h : [0; (2�)�1[ ! IR+ . This shows that

(3.21)
dFg

ds
(s) =

1�Fg(s)

s�g(s)
for 0 < s < (2�)�1 . The equation (3.21) is easily solved, and since clearly Fg(0) = 0 , this

leads to (3.14) above.

6. Suppose now that Z�g � V for some g . Then by (3.15) we find that P (S�g = (2�)�1) = 0 ,

and therefore (3.14) holds for s = (2�)�1 as well. This implies that

(3.22) 1 � G(x) = P
�
Z�g >x

	
= P

�
g(S�g)>x

	
= P

�
S�g >g�1(x)

	
= exp

�
�
Z g�1(x)

0

dt

t�g(t)
�

= exp

�
�
Z x

�1
dr

g0
�
g�1(r)

��
g�1(r)�r�

�
for all x < (2�)�1 upon substituting g(t) = r . Differentiating over x in (3.22), we see that

(3.23)
G0(x)

1�G(x)
=

1

g0
�
g�1(x)

��
g�1(x)�x�

for all x < (2�)�1 , and this equation is equivalent to (3.13). On the other hand, if g solves

(3.13), or equivalently (3.23), then the final equality in (3.22) follows upon integrating in (3.23).

This proves the claim above.

7. The general solution of (3.13) is given by

(3.24) g�1(x) =
1

1�G(x)

�
C �

Z x

�1
t dG(t)

�
where C 2 IR is a constant. Since G((2�)�1) = 1 , and we want g�1

�
(2�)�1

�
= (2�)�1 ,

we see that the following identity must hold:
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(3.25) C = E(V ) =

Z 1=2�

�1
t dG(t) .

This gives the following explicit expression:

(3.26) g�1� (x) =
1

1�G(x)

Z 1=2�

x
t dG(t)

for x < (2�)�1 . Hence we see that g�1� (�1) = E(V ) , and thus g�
�
E(V )

�
= �1 , so

everything agrees fine if E(V ) = 0 . Observe, however, that the whole preceding construction can

be carried out in exactly the same way also for those functions g� for which 0 � E(V ) < (2�)�1 .

The identity (3.14) holds then for all s 2 [E(V ); (2�)�1[ with Fg(E(V )) = 0 . The given �g� is

then described as follows: Let Z first hit E(V ) , and then starting afresh, the time �g� is obtained

by adding on that time also the time needed for Zt � g�(St) to happen. More formally, this can

be described by �� = �s� +�g� ���s� , where we set s� = E(V ) and �s� = inf f t > 0 j Zt = s� g .

Observe that the more complicated form of this stopping time when E(V ) > 0 has been formalised

in terms of the initial process X by assigning the value �1 to h� in (3.3) above.

8. These considerations showed that the following condition:

(3.27) 0 � E(V ) < (2�)�1

is sufficient to solve the martingale problem (3.10). Note that the second inequality is trivial, and

the first one is equivalently written as

(3.28) E
�
e�2�U

�
� 1

which is exactly the condition (3.2). However, this condition is necessary as well, as is easily seen

from the fact that the process

(3.29) exp
�
�2�Bt�2�2t

�
is a continuous local martingale (by the optional sampling theorem and Fatou’s lemma). Thus the

condition (3.2) is necessary and sufficient, and the martingale problem (3.10) is solved.

9. It remains to transfer this solution back to the initial problem. For this, note that from the

definition of the stopping time �� and the process Z , we have

(3.30) �� = inf
�
t > 0 j Zt � g�(St)

	
= inf

�
t > 0 j Xt �

�
S�1�g�� S

�
(X�

t )
	

where we denote X�
t = sup 0�r�tXr and define g�(s) = �1 for s�E(V ) if E(V )> 0 .

Setting h� = S�1 �g�� S , we see that

(3.31) h�1� (x) = S�1
�
g�1�

�
S(x)

��
= S�1

�
1

1�F (x)

Z 1

x
S(t) dF (t)

�
by means of (3.9). Now using that S�1(z) = �(2�)�1 log(1�2�z) , we end up with the formula
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(3.4). This can be then formally expressed in terms of the map s 7! h�(s) by assigning the value

�1 as described above in the lines following (3.26). The proof is complete.

Remarks: 1. It is easily verified by Jensen’s inequality that under condition (3.2) any random

variable U 6� 0 satisfying U � � must also satisfy E(U) > 0 . This expectation may be +1 .

Moreover, it easily follows by the Burkholder-Davis-Gundy inequality and the optional sampling

theorem (see e.g. [12]) that E(U) <1 if and only if E(��) <1 ; then E(��) = ��1E(U) .

In this case E(max 0�t��� jXtj) <1 and the process (Xt^��)t�0 is uniformly integrable.

2. Observe that the function x 7! h�1� (x) appearing in (3.4) may be viewed as an extension

of the Hardy-Littlewood function (2.2) from the case of standard Brownian motion (when �=0 )

to the case of Brownian motion with drift � > 0 . It may be interesting to examine a role of this

extension in the context of Hardy-Littlewood theory [7].

Our next aim is to explore the minimax property stated in Section 2 above in the case of

Brownian motion with drift.

Proposition 3.2 (The minimax property)

Under the assumptions of Theorem 3.1, let � be any stopping time of B satisfying

(3.32) (B�+��) � � .

Then the following inequality holds:

(3.33) P

�
max
0�t��(Bt+�t) � s

�
� P

�
max
0�t���

(Bt+�t) � s

�
for all s � 0 . Suppose, moreover, that � satisfies

(3.34)

Z 1

0
x �(dx) < 1 .

If � is any stopping time of B satisfying (3.32) and

(3.35) E

�
max
0�t��

(Bt+�t)

�
= E

�
max
0�t���

(Bt+�t)

�
then the following inequality holds:

(3.36) �� � � P -a.s.

Remarks: 1. Observe from (3.33) and integration by parts that the left-hand expectation in

(3.35) is always smaller than the right-hand one. Clearly, under (3.34) the condition (3.35) is

equivalent to the fact that equality in (3.33) is attained for all s � 0 , or in other words, that

(3.37) max
0�t��

(Bt+�t) � max
0�t���

(Bt+�t) .

Thus, the result above shows that �� is pointwise the smallest possible stopping time which

generates stochastically the largest possible maximum of the Brownian motion with drift up to the

time of stopping. Observe that this minimax property characterizes �� uniquely, and that equality
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in (3.36) actually holds (see the proof of Proposition 3.3 below). Moreover, a slight modification of

the argument below (if dealing with (Zt)t�0 instead of (Xt)t�0 in part (II) of the proof) shows

that (3.36) (with equality) is still valid under (3.37) even if (3.34) fails. The minimax property is

of interest for applications whenever one wishes to stop the process at a prescribed law as soon as

possible after the highest point feasible was reached (for more details see e.g. [11]).

2. Note that (3.33) holds without additional assumptions on the size of max 0�t��(Bt+�t)
(compare it with Proposition 2.2 in [11]). This fact is intuitively clear as there is no recurrence.

Proof. (I): Set Xt = Bt + �t and let Zt = S(Xt) where x 7! S(x) is the scale function

of X given by (3.6). Clearly, for (3.33) it is enough to prove that

(3.38) P

�
max
0�t��

Zt � s

�
� P

�
max
0�t���

Zt � s

�
for all 0 < s < (2�)�1 . Recall also from the proof above that Z� � G , and that

(3.39) �� = inf
�
t > 0 j Zt � g�(St)

	
where s 7! g�(s) for s > E(V ) is given through (3.26), and we set g�(s) = �1 for s�E(V ) .

To prove (3.38) we will modify the well-known argument of Blackwell and Dubins [4]. Observe

that our proof below in essence is the same as the proof of Proposition 2.2 in [11], and we include

it here merely for completeness. In the sequel we use the notation (3.11).

By Doob’s maximal inequality (see e.g. [12]) we have

(3.40) sPfS�^t � sg �
Z
fS�^t�sg

Z�^t dP

for all t > 0 with s > 0 given and fixed. Since Zt < (2�)�1 for all t , we may use Fatou’s

lemma, and by letting t ! 1 in (3.40), we get

(3.41) sPfS� � sg �
Z
fS��sg

Z� dP .

Setting A = fS� � sg , we have

(3.42)

Z
A
Z� dP �

Z
A

�
Z�_x

�
dP =

Z
A

�
x + (Z��x)+

�
dP

� x P (A) +

Z
(Z��x)+ dP = x P (A) +

Z
fZ�>xg

Z� dP � x PfZ�>xg

= x
�
P (A) � PfZ� > xg

�
+

Z
fZ�>xg

Z� dP

for all x 2 IR . Thus, if we choose x such that P (A) � PfZ� >xg = 0 , or in other words,

G(x) = 1�P (A) , then by (3.41) and (3.42) we get

(3.43) sPfS� � sg �
Z
fZ�>xg

Z� dP .
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Since G(Z�) � U(0; 1) by our assumption (3.32), we have

(3.44)

Z
fZ�>xg

Z� dP =

Z
fG(Z�)>G(x)g

G�1
�
G(Z�)

�
dP

=

Z 1

G(x)
G�1(v) dv =

Z 1

1�P (A)
G�1(v) dv .

On the other hand, since G(Z��) � U(0; 1) , we have

(3.45) PfS���sg = Pfg�1
� (Z��)�sg = P

�
1

1�G(Z��)

Z 1

G(Z��)
G�1(v) dv � s

�
= �

�
u 2 [0; 1]

�� 1

1� u

Z 1

u
G�1(v) dv � s

�
= 1 � u�

where u� is the smallest u in [0; 1] for which

(3.46)
1

1� u

Z 1

u
G�1(v) dv � s

since the function on the left-hand side in (3.46) is increasing in u .

From (3.43) and (3.44) we now see that

(3.47) sP (A) �
Z 1

1�P (A)
G�1(v) dv

and therefore u� � 1�P (A) . This by (3.45) shows that

(3.48) PfS� � sg= P (A) � 1�u� = PfS�� � sg

and the proof of (3.38) is complete. Thus (3.33) is established.

(II): Due to its complexity and length, we shall only outline a proof of (3.36) which follows

the line of arguments from [11]. Once the idea is properly understood, we believe that the text

indicated below should be completed with no difficulties.

From Remark 1 following the proof of Theorem 3.1 above we know that under the condition

(3.34) the right-hand side expectation in (3.35) is finite. Motivated by facts from [11], consider

the following optimal stopping problem:

(3.49) sup
�
E

�
max
0�t��

Xt �
Z �

0
c(Xt) dt

�
where the map x 7! c(x) is defined by

(3.50) c(x) =
F 0(x)S0(x)

2
�
1�F (x)

�
S0
 
S�1

�
1

1�F (x)

Z 1

x
S(t) dF (t)

�! .

Then it is possible to verify that the map s 7! h�(s) given through its inverse by
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(3.51) h�1� (x) = S�1

 
1

1�F (x)
Z 1

x
S(t) dF (t)

!
(x2 IR)

is the maximal solution of the following first-order nonlinear differential equation:

(3.52) g0(s) =
S0
�
g(s)

�
2 c
�
g(s)

��
S(s)�S�g(s)��

which stays strictly below the diagonal in IR2 , and thus by the maximality principle (see [10])

the stopping time �� is optimal for the problem (3.49). (Observe that the maps in (3.51) and

(3.4) coincide.) Then under the assumption (3.32) above, together with (3.35) being finite, one can

extend the idea and argument used in Corollary 2.3 in [11] and prove first that

(3.53) E

�Z �

0
c(Xt) dt

�
= E

�Z ��

0
c(Xt) dt

�
as well that (3.36) then in essence follows from the optimality of �� within the problem (3.49).

The key equation in this process is

(3.54)
1

2
H 00(x) + �H 0(x) = c(x)

which is treated easily in this context. We omit all remaining details for simplicity.

We shall conclude our considerations by examining yet another extremal property of �� which

extends the argument of Monroe [9] to the Brownian motion with drift.

Proposition 3.3

Under the assumptions of Theorem 3.1, let � be any stopping time of B satisfying (3.32).

If � � �� , then � = �� P -a.s.

Proof. Set Xt = Bt+ �t and let Zt = S(Xt) where x 7! S(x) is the scale function of X
given by (3.6). Recall that Z = (Zt)t�0 is a continuous local martingale satisfying Zt < (2�)�1

for all t . Choose a localization sequence of bounded stopping times (
n)n�1 for Z . Then

(Zt^
n)t�0 is a uniformly integrable martingale for all n � 1 . Thus by the fact that Z�� � Z�

and the optional sampling theorem, we get

(3.55)

Z
fZ���zg

Z�� dP =

Z
fZ��zg

Z� dP = lim
n!1

Z
fZ�^
n�zg

Z�^
n dP

= lim
n!1

Z
fZ�^
n�zg

Z��^
n dP =

Z
fZ��zg

Z�� dP

for all z 2 IR . We now claim that this implies that fZ���zg = fZ��zg P -a.s. for all z 2 IR ,

which in turn easily shows that Z�� = Z� P -a.s.

For this, note by (3.32) and (3.55) that

(3.56)

Z
fZ���zg

(Z���z) dP =

Z
fZ��zg

(Z���z) dP =

Z
fZ��z ; Z���zg

(Z���z) dP
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+

Z
fZ��z ; Z��<zg

(Z���z) dP �
Z
fZ���zg

(Z���z) dP

with a strict inequality if PfZ��z; Z��<zg > 0 . Thus fZ��zg � fZ���zg P -a.s., and since

these two sets have equal P -probability, this proves the claim above.

Let now � be any stopping time of B satisfying � � � � �� . Then by the optional

sampling theorem, and the fact that Z�� = Z� P -a.s., we get

(3.57) (Z��n)+ � E
�
(Z���n)+

��F�

�
= E

�
(Z��n)+

��F�

�
= (Z��n)+

for all n � 1 . Letting n ! 1 we see that Z� � Z� P -a.s. Clearly, this is only possible

if � = �� P -a.s. The proof is complete.

Remark: Observe that no uniform integrability condition is needed for this result (recall

Remark 1 following Theorem 3.1). This is in contrast with the case when the drift is zero (recall

Subsection 3 of Section 2) and can be intuitively explained by absence of recurrence (recall also

Remark 2 stated after Proposition 3.2).
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