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The Bartlett-Priestley Window
What it is for

I Professor Priestley made many contributions to Time Series.

I One contribution that bears his name is the Bartlett-Priestley
window.

I This is used to smooth the peridogram to make it a consistent
estimator of the spectrum.

I I was fascinated by spectral analysis because
I Peridicities would show up in the periodogram, which is

essentially the squared magnitude of the DFT of the signal.
I The DFT values of a stationary signal are largely uncorrelated,

making frequency domain analysis easier than time domain.
I Higher order cumulant properties can be derived making it

possible to prove asymptotic normality.

I One day I shall get my head round the DWT.



The Bartlett-Priestley Window
Definition

I The Bartlett-Priestley window is defined as

WN(θ) = MKBP(Mθ), |θ| ≤ π

=

{
3M
4π

(
1− M2θ2

π2

)
, |θ| ≤ π

M ,

0, o.w.

for time series (d=1), where M is a ‘bandwidth’ parameter.

I In d-dimensions,

WN(θ) = M1 · · ·MdKBP(M1θ1, . . . ,Mdθd)

KBP(θ) =

{
d(d+2)Γ(d/2)

4Γ(1/2)dπd

(
1− ‖θ‖

2

π2

)
, ‖θ‖ ≤ π,

0, o.w.



The Bartlett-Priestley Window
Properties of KBP(θ)

I Non-negative valued

I Integrates to one

I Peak at θ = 0

I Support on (−π, π]d
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I Quadratic ⇒ optimality



The Bartlett-Priestley Window
How it works

f̂ (ω) =

∫
(−π,π]d

IN(θ)WN(ω − θ)dω, ω ∈ (−π, π]d ,

Weighted average of periodogram values IN(θ) near ω.



The Bartlett-Priestley Window
Optimality

I Mean square error (minimised over M):

min
M

E[(f̂ (ω)− f (ω))2] ≈
(

1 +
d

4

)
(2π)

4d
d+4 d−

d
d+4

[
(1 + η(2ω))2f (ω)4

d∏
i=1

f
(2)
ii (ω)

] 2
d+4

{∫
Rd

K (θ)2dθ

[∫
Rd

‖θ‖2K (θ)dθ

] d
2

} 4
d+4

C (K ) Smaller is better

I KBP(θ) has smallest C (K ) among all K (θ) that is
non-negative and integrates to one.



The Bartlett-Priestley Window
Proof of optimality

For any K (θ) ≥ 0,
∫
Rd K (θ)dθ = 1, choose δ > 0 so that∫

Rd

‖θ‖2Kδ(θ)dθ =

∫
Rd

‖θ‖2KBP(θ)dθ (Same bias)

where Kδ(θ) = δdK (δθ1, . . . , δθd). Then
∫
Rd Kδ(θ)dθ = 1

⇒
∫
Rd

(
1− ‖θ‖

2

π2

)
KBP(θ)dθ =

∫
Rd

(
1− ‖θ‖

2

π2

)
Kδ(θ)dθ

⇒
∫

KBP(θ)2dθ ≤
∫

KBP(θ)Kδ(θ)dθ ≤

√∫
KBP(θ)2dθ

∫
Kδ(θ)2dθ

⇒
∫
Rd

KBP(θ)2dθ ≤
∫
Rd

Kδ(θ)2dθ ⇒ C (KBP) ≤ C (Kδ) = C (K ).

(Smaller variance) (Smaller MSE)



Scale Invariance of C(K)
Further details

I C (K ) is MSE miminised over M which is a vector of scale
parameters. You can expect that C (Kδ) = C (K ) for any
δ > 0.

I “More specifically” (as Professor Priestley would write),∫
Rd

Kδ(θ)dθ =

∫
Rd

δdK (δθ1, . . . , δθd)dθ =

∫
Rd

K (θ)dθ = 1,

∫
Rd

‖θ‖2Kδ(θ)dθ =

∫
Rd

‖θ‖2δdK (δθ1, . . . , δθd)dθ =
1

δ2

∫
Rd

‖θ‖2K (θ)dθ,∫
Rd

Kδ(θ)2dθ =

∫
Rd

δ2dK (δθ1, . . . , δθd)2dθ = δd
∫
Rd

K (θ)2dθ,

C (Kδ) = δd
∫
Rd

K (θ)2dθ

[
1

δ2

∫
Rd

‖θ‖2K (θ)dθ

] d
2

= C (K ).


