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Models of Stochastic Dynamic Systems

• Discrete-Time (DT) models: at first sight, these seem ideally suited to
identification and estimation from sampled time series data that predominates
in this digital age. But, as we shall see, they do not suit all applications.

• Continuous-Time (CT) models: are theoretically problematic and more difficult
to estimate. Statistical interest has focussed on Stochastic Differential
Equation (SDE) models (e.g. Nielsen et al, 2000) for application in areas
such as finance, digital communications and ecology.

• Hybrid CT (HCT) models: In many scientific and engineering applications,
the interest is much more in the relationship between measured input stimuli
and noisy outputs than in the ‘noise’ on the data. The HCT approach that I
discuss here is most appropriate for such applications.
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Advantages of Continuous–Time Models in
Science and Engineering

• Provide good physical insight into the system properties: most conceptual
models are based on the conservation laws formulated in CT, so that the model
parameters have an immediate physical interpretation, with recognizable units

• The parameters are not a function of any sampling interval ∆t, provided this
is selected sensibly (in contrast to a DT model).

• Ideally suited for ‘stiff’ dynamic systems where the eigenvalues have widely
spread modal frequencies (often encountered in environmental science).

• Can be estimated much better from rapidly sampled data.
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• Preserve a priori knowledge and lead to more parsimonious models.

• Can cope with non-uniformly sampled data and fractional time delays.

• Includes, in the HCT algorithm, inherent, data filtering that both ensures
statistical efficiency and allows for the generation of the optimally filtered
derivatives that are required for optimal estimation.

• Can be estimated from relatively simple impulsive/step inputs and can handle
initial conditions easily.

• Can be converted to a similar performance, discrete-time model at any sampling
interval; and this DT model will always have the same dynamic properties as
the CT model.

• Ideally suited for use with the ‘hybrid’ (continuous-discrete) Kalman Filter for
use in forecasting and data assimilation with irregular sampling.
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Differential Equations and Transfer Functions

dnx(t)

dtn
+ a1

dn−1x(t)

dtn−1
+ · · ·+ anx(t) = b0

dmu(t− τ)

dtm
+ · · ·+ bmu(t− τ)

Introducing the differential operator sr = dr/dtr, this equation can
be rearranged to yield the Transfer Function form of the model:

x(t) =
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an
u(t− τ) =

B(s)

A(s)
u(t− τ)

or, when the system is affected by additive noise ξ(t),

y(t) =
B(s)

A(s)
u(t− τ) + ξ(t)
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The Hybrid Box-Jenkins Model

x(t) =
B(s)

A(s)
u(tk − τ) : CT System Model

ξ(tk) =
D(L)

C(L)
ε(tk) : DT Noise Model

ε(tk) = N (0, σ2) : White Noise Input

y(tk) = x(tk) + ξ(tk) : Measured Output

where L is the backward-shift or ’lag’ operator (sometimes B, z−1 or q−1).
Or, informally:

y(tk) =
B(s)

A(s)
u(tk − τ) +

D(L)

C(L)
ε(tk)

This is clearly nonlinear in the parameters, so iterative Pseudo-Linear Regression
(PLR) regression is used to estimate the parameters.
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PLR and Refined Instrumental Variable Estimation

The Refined Instrumental Variable algorithm for Continuous-time systems (RIVC)
is an en bloc and recursive method for estimating the parameters of the hybrid BJ
model by Maximum Likelihood using iterative PLR optimization. The statistical
assumptions about ε(tk) suggest that a suitable error function is obtained by
reference to:

ε(tk) =
C(L)

D(L)

[
y(tk)−

B(s)

A(s)
u(tk − τ)

]
which can be written as,

ε(tk) =
C(L)

D(L)A(s)
[A(s)y(tk)−B(s)u(tk − τ)]
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Minimization of a least squares criterion function in ε(k), measured at the
sampling instants, provides the basis for optimal stochastic estimation. However,
since the polynomial operators commute in this linear case, the hybrid prefilter:

f(s, L)
∧
=

C(L)

A(s)D(L)

(
note decomposed : fc(s) =

1

A(s)
; fd(L) =

C(L)

D(L)

)

can be taken inside the square brackets to yield1:

ε(tk) = A(s)yf(tk)−B(s)uf(tk − τ)

where the subscript f denotes prefiltering by the hybrid prefilter f(s, L). This
expression is linear in the parameters but it involves prefiltered variables that
require knowledge of the parameters in A(s), C(L) and D(L).

1This filter can be related directly to the optimal Kalman filter (Young, 1979)
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The RIVC Algorithm: PLR Model

The RIVC algorithm (Young & Jakeman, 1980; Young, 2011) is the continuous-
time equivalent of the earlier RIV algorithm (Young, 1976) for discrete-time
transfer function model estimation. Here, the TF system estimation model at the
kth sampling instant is written in the following Pseudo-Linear Regression form:

y
(n)
f (tk) = φT (tk)ρ + ε(tk)

where,

φT (tk) = [−y(n−1)f (tk) · · · − y(0)f (tk) u
(m)
f (tk − τ) · · ·u(0)f (tk − τ)]

ρ = [a1 . . . an b0 . . . bm]
T

Note that all of the variables in this PLR have to be prefiltered, but the hybrid
prefilter is straightforward to implement in Matlab
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The RIVC Algorithm: Iterative Optimization
• The RIVC estimation algorithm involves ML optimization of parameter vector θ = [ρ η]T ,

where η is the vector of ARMA model parameters, i.e.,

θ̂ = argmin
θ
L(θ , y , u)

in which y and u are the input and output vectors. As usual, L(θ , y , u) is the likelihood

based on the sum of squares of ε(tk),

• The optimization involves iterative solution of the optimal IV normal equations for the system

parameter vector ρ based on the PLR relationship. At the jth iteration, with N samples:

ρ̂
j
N =

[
(Φ̂

j

N)
T
Φ
j
N

]−1
(Φ̂

j

N)
T
y
j
N OR ρ

j
N = ρ

j−1
N +

[
(Φ̂

j

N)
T
Φ
j
N

]−1
(Φ̂

j

N)
T
e
j
N

where Φ̂(tk) is the optimal IV matrix. In order to implement the hybrid prefiltering, this

solution involves concurrent update of the ARMA model parameter estimate η̂j, using the

IVARMA algorithm (Young, 2011), and exploits the asymptotic independence of ρ and η in

the ML estimation of Box-Jenkins models (see D. A. Pierce, 1972).
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Simulation Example

x(t) =
0.5

s2 + 0.5s+ 0.5
u(t− 5)

y(tk) = x(tk) + ε(tk)

The equivalent discrete-time model is obtained using the ’zero-order hold’
assumption for the intersample behaviour of the input (exactly true for step
inputs). At a sampling interval of ∆t = 0.25, the model takes the form:

y(tk) =
0.01496 + 0.01434L

1− 1.853L+ 0.8825L2
u(tk − 20) + ε(tk); ε(tk) = N (0, σ2)

with σ2 set to give a N/S ratio of 0.5 by standard deviation. Note how this
involves one additional parameter. The step response is shown in the next slide.
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Noise-free and noisy step responses of the example system.
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Typical estimated CT and converted DT model time responses.
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Monte Carlo ensemble: direct from RIVC estimation.
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Monte Carlo ensemble: indirect, converted from DT estimation.
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MCS Comparison: Direct and Indirect Estimation of CT System

Parameter â1 â2 b̂0 % Failure

True Values 0.5 0.5 0.5

Direct RIVC Estimates 0.503 0.502 0.502 No Failures
MCS standard deviation 0.039 0.025 0.027

Single Run estimated standard error 0.034 0.021 0.023

Indirect from DT Estimation 0.502 0.501 0.501 12% Failures
MCS standard deviation 0.033 0.029 0.029

MCS results based on 100 realizations, using using a square wave input signal
with 1020 input-output samples, sampling interval ∆t = 0.25 secs.; and additive
white noise. Failures are caused by an estimated DT model with a negative real
root, probably due to the short sample size and high noise level.
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MCS Results for RIVC: Highly Coloured Additive Noise

Parameter â1 â2 b̂0

True Values 0.5 0.5 0.5 -0.98 0.20

Direct RIVC Estimates 0.500 0.500 0.505 -0.979 0.196
MCS standard deviation 0.043 0.020 0.029 0.004 0.020

Single run estimated standard error 0.039 0.018 0.029 0.004 0.020

Indirect from DT Estimation 0.493 0.497 0.501 -0.978 0.195
MCS standard deviation 0.045 0.024 0.032 0.005 0.022

MCS results based on 100 realizations, using a square wave input signal with
2420 input-output samples, sampling interval ∆t = 0.25 secs.; but highly coloured
additive noise generated by an ARMA(1,1) process, introducing significant
autocorrelation up to lag 60.
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Direct and Indirect Estimation from Rapidly Sampled Data

Parameter â1 â2 b̂0 % Failure

True Values 0.5 0.5 0.5

Direct RIVC Estimates ρ̂ 0.500 0.501 0.501 No Failures
MCS standard deviation SD 0.025 0.017 0.018

Single run estimated standard error SE 0.026 0.017 0.017
Indirect from DT Estimation ρ̂ 0.497 0.491 0.491 54% Failures

MCS standard deviation SD 0.035 0.046 0.046

MCS results based on 100 realizations, using a square wave input signal with
4000 input-output samples, sampling interval ∆t = 0.025 secs. (10 times faster
sampling rate). Failures are caused by either: (i) roots of DT model too close to
the unit circle; or (ii) an estimated DT model with a negative real root.
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Data-Based Mechanistic Modelling Using RIVC
Practical Example I: Ventilated Chamber Dynamics
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Data from experiment in a force-ventilated chamber.
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The RIVC algorithm identifies a second order CT system with the following
estimated TF model:

∆T (t) =
1.9519s+ 0.08828

s2 + 2.9487s+ 0.11045
∆Ti(t) =

1.9519s+ 0.08828

(s+ 2.911)(s+ 0.0379)
∆Ti(t)

• This can be decomposed by partial fraction expansion into a negative feedback
connection of two first order processes with steady-state gains of {0.669, 0.130}
and widely spaced time constants of {0.343, 26.35} minutes. The reason for
the presence of the longer time constant in this model is that the installation
is not effectively insulated by the outer chamber which, instead, acts as a
temperature buffer zone with its own heat transfer characteristics.

• Using the inductive Data-Based Mechanistic (DBM) modelling approach, it is
straightforward to relate the model to the differential equation model obtained
by invoking the classical theory of heat transfer.
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Practical Example II: Rainfall-Flow Modelling
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Figure 6: Rainfall and flow data for the Canning River, W.A.
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Figure 7: Comparison of SRIVC modelling results for the Canning

River, with and without initial condition estimation.
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Practical Example III: Global Climate Modelling
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Measured Data
80th order MAGICC and reduced 9th order model responses: RT

2=0.82

Single input,1st order DBM model response: RT
2=0.85

MAGICC, reduced order MAGICC and DBM model comparison.
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Conclusions
1. The hybrid continuous-time BJ model, coupled with the optimal RIVC method

for its identification and estimation, provides an additional approach to time
series modelling that is not well known in the statistical/time series community.

2. When considering the stochastic modelling and forecasting of physical systems,
there are advantages in utilizing continuous time (CT) models because they
are more easily interpretable in physical terms than discrete-time, black box
models.

3. Other advantages of CT modelling include the uniquely defined parameter
values that are independent of the sampling interval, as well as the ability to
handle: non-uniformly and rapidly sampled data; ‘stiff’ dynamic systems with
wide ranging eigenvalues; and data with significant initial conditions.

4. The DBM approach using CT models can add a degree of mechanistic credibility
that acts as an additional validation of the resultant models.
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