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e Motivating data set are three indicators of the respiratory system of pre-term infants.

e Shown here over a period of 1000 seconds recorded at 1/10th second intervals
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Though in truth discrete, the sampling frequency is so high we treat them as continuous.

Respiration rate

50
40l
30
20

0 100 200 300 400 500 600 700 800 900

Transformed blood oxygen concentration

1000

100 -
90
80
701
60
100 200 300 400 500 600 700 800 900

Pulse rate

1000

160

140

120

0 100 200 300 400 500 600 700 800 900

Time in seconds

1000



e We would like to characterize the series by the system impulse response
e For discrete series we can apply classical spectral analysis

e Only in an open loop system does this estimate a causal response
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e A one sided (causal ) estimate of the IRF of an open loop system can be given fol-
lowing methods of Bhansali and Karavellas (1983) to construct the Wiener filter using
univariate spectral factorization.

e For a closed loop system the multivariate spectrum of the series can be factorized to
give the innovation representation of the series.

e [rom this a one-sided estimate of IRF can be constructed - shown for the Gas Furnace
example again.
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Lag

The smoothing bandwidth can be selected using a Final Prediction Error criterion.



e For an open loop system of input x; and output y; the frequency response is estimated
by the ratio of smoothed cross-spectrum to input spectrum:

Sy a(f)

T(f) =

and T'(f) is the time domain response to an input impulse.

e For a closed loop system the bivariate spectrum is factorized as

Syy(f) Sya(f)) _ .
(Sxy<f> Syy<f>) = W(f)GY(f)

corresponding to the innovations representation
m .
Ty = kz_:0 Yrei—r with b = U(f)z.
e The response of y; to an innovation impulse in x; is ¥, 4 1.

e The response of y to an impulse in @y is — {I1, ,(f)/IL,,(f)}, where II(f) = ¥ (f)~ .

o If W, ,(f) = 0 this reduces to both {V, .(f)/W..(f)}, and {Sy.(f)/Se2(f)},.



e The spectral power in the respiration series resides at very low frequencies.
e To avoid this, high frequency data is commonly smoothed and sub-sampled.

e How does the discrete innovation representation correspond to the continuous?

Ty = éo drerr o a(t) = [Ce(h)dB(t — h)
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This may be sensitive to low lag correlation and the high frequency spectrum.



e Use a discrete basis of continuous time series x(t) to construct discrete X_j, = Z¥z(¢)
o 7/ =~ where k Is a rate constant, chosen by inspection of spectrum as 0.4

e s = 2mif or Laplace operator gives basis weighting illustrated for x = 1.

Weights of Z

Weights of Via

Weights of z3

e 7 is like a back-shift of 2/k at low frequencies - no information lost as in sub-sampling.

e Implicit in Wiener’s solution of continuous time prediction - explicit in Doob p583.



e Spectrum of X}, related to that of z(t) by |Sx(g)dg = S.(f)df
where g(f) = (1/m) arctan(2n f /) is a |frequency warp

- an operation of well established and contemporary use in speech signal processing.
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e Apply lag window smoothing to warped spectrum - bandwidth chosen by FPE of X

FPE criterion Smoothed warped spectrum Smoothed warped log spectrum
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e Factorize Sx(g) = R(g)R(g)/
e Undo warp T'(f) = R(g(f))v2k/(k + 2mif)
e Normalize to W(f) = T, 'T(f)

(

e Transform to v (h) for impulse response

Response of Oxygen to Respiration
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These responses may be used to characterize the functionality of the infant respiration.



Some further technical aspects

e The frequency warp g(f) = (1/m) arctan(27 f /) is derived from
kK — 2mif
K+ 2mif

exp(2mig) =

e The warp has Jacobian
2

Eo, 2K V2K
= — d dg = df = d
A 5 (mg)dg.ordg K2+ (27 f)? / K+ 2mif /

which is the spectrum of a CAR(1) with parameter &.
e For bandwidth selection the deviance or —2 log likelihood term in the FPE is given by
kT /965_5 log det S%(g)dg
where T is the record length and S%(g) the sample warped spectrum.

e The penalty term for bandwidth selection is given for the smoothing lag window wy, by
2m? % w?
k=1
e The standard error limits are derived by simulation of the sample auto and cross-
covariances of the sample warped spectrum of a multivariate CAR(1) residual series
with unit variance. These have variance 1/(kT) and values at lags k,k + 1 have
correlation 1/2.



