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Nonparametric spectral density estimation was a major
theme.

E.g. lag window kernel estimate of spectral density s(A)

of short memory time series x;, 1 = 1,...,n :

R 1 n—1
s(A) = o _Z_ k (hu) c (u) cos (uM),

Tu=1—n
where ¢ (u) is lag-u sample autocovariance of x;, kernel
k (u) satisfies

k(0) =1

and bandwidth h satisfies h — 0, nh — oo as n — oo.

Choice of k was a popular topic, maybe more than h.

Consistency, MSE and CLT were discussed.



e.g.

M Priestley (1962) Basic considerations in the estimtion
of spectra. Technometrics

M Priestley (1962) The role of bandwidth in spectral
analysis. Appl Statist.

focussed on relatively practical issues.

More theoretical contributions included

E Parzen (1957) On consistent estimates of the spectrum
of a stationary time series. Ann. Math. Statist.

E Parzen (1958) On asymptotically efficient consistent

estimates of the spectral density function of a stationary
time series. JRSSB.



Asymptotics used local smoothness and properties of ker-
nel to get MSE rate that is slower than parametric, but
can get abitrarily close to parametric rate.

Much more recently, for long memory time series, where
s(A) ~ A7 as A — 04, |d| < 1/2,
analogous theory was developed for estimating d under

analogous local smoothness conditions on ratio s(\) /A2,

Also extensions to higher-order spectra etc.



Interestingly nonparametric spectral density estimation
largely developed before, and influenced, nonparametric
probability density and regression etsimation.

e.g Parzen modified his earlier spectral work in

E Parzen (1962) On estimation of a probability density
function and mode. Ann. Math. Statist.



Kernel estimate of pdf f(x) of x; given iid sequence

r;=1,...,n:

f@ =5 (57

where the kernel K (u) satisfies
K (u)du =1

and may be thought of as the Fourier inverse of the previ-
ous lag window kernel k used in spectral estimation, and
bandwidth h is essentially as before, so satisfies h — 0,

nh — oo as n — oo.

Vast literature on these (and other) nonparametric prob-
ability density estimates, with many consistency, MSE
and CLT results, using similar ideas to those used in the
spectral theory, but with otherwise quite different proofs.

Choice of bandwidth h, eg by rule of thumb, cross-validation
etc has been a much bigger theme than in the spectral
analysis literature.



Much of the methods and theory for pdf estimation ex-
tend relatively straightforwardly to estimating m (z) in
stochastic-design nonparametric regression

yi =m(x;)+e, i=1,..,n,

where most simply x; and e;, and thus y;, form iid se-

quences.

E.g. Nadaraya-Watson estimate

i (z) =5,
K (50)




Much of pdf and regression theory has been extended
to short memory time series case, e.g. Markov, mixing

series.

Due to local properties of estimate, first-order asymptotic
results (i.e. CLT, MSE) are the same as in iid case.

But with sufficient degree of long memory, quite different
asymptotics results.

Also extensions to nonstationary series, eg unit roots.



Fixed-design nonparametric regression model is
v .
Y; = m - +e,1=1,...,n,

where m (x) is now defined on (0,1) and most simply
the e; are iid.

Note that the y; = vy;,, form a triangular array.
The division by n in m (%) Is needed to ensure suffi-

cient accumulation of information to achieve consistent

estimation.



M Priestley and M Chao (1972) On non-parametric func-
tion fitting. JRSSB.

Kernel estimate
_ 1 n x—1i/n
Tr) = — K )
) =S ( . )

where K (x) and h are as in pdf and stochastic design

regression.

Essentially formalizes old idea of a moving mean, e.g.
take K (x) to be uniform kernel on (—1,1)

An alternative is

n .
.:1yiK (zr: }’i/n>
n

Rr ()

m(x) =




Consistency, MSE, CLT results established, analogous to
those for spectrum, pdf and stochastic-design regression
estimates.

Though the model assumes an ordering of data y;,

1
Y; = m (—) +e, 1=1,...,n,

n
is not fully a 'time series model’ if e; are iid.

Extension to short memory e; : same rate of convergence
as in iid case, but asymptotic variance different.

Extension to short memory e; : rate of convergence slower.



Nonstationary time series extension: e.g.

(1— L)dyi =m (i) +e, 1=1,...,n,
n

where nonstationary values of d, i.e. d > 1/2, are possi-
ble.



