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Summary

@ Nonstationary Time Series
@ Multitude of Representations
@ Possibilities from Applied Computational Harmonic Analysis

@ Tests of Stationarity

Nonstationary Time Series. (©U. Bristol 1/32



Time Series

Time series are everywhere.
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Time Series

Time series are everywhere.

We want to

@ model them,
@ estimate parameters,
@ check model fit, and try other models™.

@ forecast future values.

We need models!

* Or change the data, or the sampling mechanism: another story.
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Example Time Series: Data Source

MIDAS: Met Office Integrated Data Archive System
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Example Time Series: Data Source

MIDAS: Met Office Integrated Data Archive System
Originates from the UK Meteorological Office
Distributed through the NERC British Atmospheric Data Centre

Acknowledgement and thanks is due.
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Hourly Wind Speeds at Cardinham, Bodmin, Cornwall
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First Differences of Wind Speed
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Time Series Models

“The classical methods of time series analysis . .. are all
based on two crucial assumptions, namely that:

(a) all series are stationary (at least to order 2), or can
be reduced to stationarity . ..
(b) all models are linear, ..."

Priestley (1981), page 816.
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Nonstationary Series

“However, stationarity and linearity are
... approximations to the real situation.”
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Nonstationary Series

“However, stationarity and linearity are
... approximations to the real situation.”

and
“...first establish some method of characterizing
... hon-stationary processes, . ..we describe
... hon-stationary processes based on the theory of
evolutionary spectra. This approach was developed by
Priestley (1965b, 1966, 1967)"

Priestley (1981), page 816.
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Oscillatory Function (Priestley, 1981, Def. 11.2.1)

“The function of t, ¢+(w) will be said to be an
oscillatory function if, for some (necessarily unique) 6(w),
it may be written in the form

¢t(w) _ At(w)eiﬂ(w)t’

where A(w) is of the form

Ar(w) = /oo e™dK,,(u),

—00

with |dK,(u)| having an absolute maximum at u=10."
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Oscillatory Process (Priestley, 1981, Def. 11.2.2)

“If there exists a family of oscillatory functions {¢:(w)}
in terms of which the process {X(t)} has a
representation of the form

X(t) = / T pe(w)dZ(w),

where Z(w) is an orthogonal process with
E[|dZ(w)|?] = du(w), then {X(t)} will be termed an
oscillatory process.”
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Evolutionary Power Spectra (Priestley, 1981, Def. 11.2.3)

“We define the evolutionary power spectrum at time t
dH¢(w) by

dHy(w) = |Ac(w)Pdp(w).”
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“We define the evolutionary power spectrum at time t
dH¢(w) by

dHy(w) = |Ac(w)Pdp(w).”

When X(t) is stationary and 6(w) = w then dH;(w) reduces to the
regular spectrum, h(w).
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Evolutionary Power Spectra (Priestley, 1981, Def. 11.2.3)

“We define the evolutionary power spectrum at time t
dH¢(w) by

dHy(w) = |Ac(w)Pdp(w).”

When X(t) is stationary and 6(w) = w then dH;(w) reduces to the
regular spectrum, h(w).

H;(w) is the integrated time-frequency spectrum.

Assuming smoothness the evolutionary spectral density function is

he(w) = Hé(w).
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Stationarity Tests (Priestley & Subba Rao, 1969, JRSS-B)

@ Use Priestley’s (1965) ‘double-window’ estimator: h;(w).
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@ Use Priestley’s (1965) ‘double-window’ estimator: h;(w).
@ Define Y(t,w) = log h(w).

© Then, approximately, E{Y(t,w)} = log h¢(w),

@ And, crucially, var{ Y (t,w)} = o2.

In other words

Y(t,w) = log ht(w) + €(t,w),
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Stationarity Tests (Priestley & Subba Rao, 1969, JRSS-B)

@ Use Priestley’s (1965) ‘double-window’ estimator: h;(w).
@ Define Y(t,w) = log h(w).

© Then, approximately, E{Y(t,w)} = log h¢(w),

@ And, crucially, var{ Y (t,w)} = o2.

In other words
Y (£,w) = log hi(w) + €(,w),

which we can discretize over a set of times ty,...,t; and
frequencies w1, ...,wy to get the nice linear model:

H:Yj=p+ai+ B+ i+ e

in an obvious way.
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Stationarity Tests (Priestley & Subba Rao, 1969, JRSS-B)

@ Use Priestley’s (1965) ‘double-window’ estimator: h;(w).
@ Define Y(t,w) = log h(w).

© Then, approximately, E{Y(t,w)} = log h¢(w),

@ And, crucially, var{ Y (t,w)} = o2.

In other words
Y (£,w) = log hi(w) + €(,w),

which we can discretize over a set of times ty,...,t; and
frequencies w1, ...,wy to get the nice linear model:

H:Yj=pu+ai+ B+ +¢€j

in an obvious way.
Approximately €;; " N(0, 02) if t;,w; spaced out enough.
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Test Procedure and Modern Implementation

Test stationarity by inferring whether o; = 0 and v;; = 0, Vi, .
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Test Procedure and Modern Implementation

Test stationarity by inferring whether o; = 0 and v;; = 0, Vi, .
Implementation: stationarity() in fractal R package.
Uses improved multitaper estimate: reduces bias.

fractal posted in 2007. By Bill Constantine & Donald Percival of
the Applied Physics Laboratory, U of Washington, USA.

Thirty-eight years after the Priestley and Subba Rao paper!
Way ahead of their time!

p-value for Cardinham data using stationarity() is 9 x 10719,
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Parzen and Priestley’s Vision

“Parzen (1959) has pointed out that if there exists a

representation X(t) = [ ¢+(w)dZ(w), then there is a
multitude of different representations of the process, each

representation based on a different family of functions.”
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Parzen and Priestley’s Vision

“Parzen (1959) has pointed out that if there exists a

representation X(t) = [ ¢+(w)dZ(w), then there is a
multitude of different representations of the process, each
representation based on a different family of functions.”

“The situation is in some ways similar to the selection of
a basis for a vector space.”

“"However, if the process is non-stationary this choice
[complex exponential family| of family of functions is no

longer valid.”
Priestley (1981) p. 822.
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Priestley's Oscillatory Functions

From p. 824 Priestley settles on #(w) = w and

Pe(w) = Ap(w)e™t.

Nonstationary Time Series. (©U. Bristol 15 / 32



Priestley's Oscillatory Functions

From p. 824 Priestley settles on #(w) = w and

Pe(w) = Ap(w)e™t.

This captures uniformly modulated processes A:(w) = C(t).
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Semi-Stationary Processes

Consider linear filter with frequency response function I'(w).
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Semi-Stationary Processes

Consider linear filter with frequency response function I'(w).

Stationary processes have useful property that h(Y)(w;) is
unaffected by w # wy, i.e. A (wy) = |M(w1) 2 (w1), ...

Priestley mimics stationary case and approx. useful property.

He achieves this by A;(w) slowly evolving fn. of t —>
semi-stationary processes.

Today, related to locally stationary processes; also has the
advantage of permitting estimation.
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Heisenberg-Gabor uncertainty principle

“more accurately we estimate h:(w) as a function of time
the less accurately we can determine it as a function of
frequency, ”

Priestley, 1981, p. 835 (Daniells, 1965 and Tjgstheim, 1976).
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Heisenberg-Gabor uncertainty principle

“more accurately we estimate h:(w) as a function of time
the less accurately we can determine it as a function of
frequency, ”

Priestley, 1981, p. 835 (Daniells, 1965 and Tjgstheim, 1976).

To estimate time-varying behaviour, we will necessarily have to
sacrifice some frequency resolution.

In some situations ‘local Fourier’ highly inappropriate
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Other Possibilities

Single Bases:

@ Fourier

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).
log T frequency bands, T time steps

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:
e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).
log T frequency bands, T time steps

@ Walsh series

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).
log T frequency bands, T time steps

@ Walsh series

Libraries or Dictionaries of Bases (richer signal analysis)

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).
log T frequency bands, T time steps

e Walsh series
Libraries or Dictionaries of Bases (richer signal analysis)

@ Local Cosine or Sine bases

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).
log T frequency bands, T time steps

e Walsh series
Libraries or Dictionaries of Bases (richer signal analysis)

@ Local Cosine or Sine bases

@ Wavelet packet library

Nonstationary Time Series. (©U. Bristol 18 / 32



Other Possibilities

Single Bases:

e Fourier (of course).
T /2 frequencies, T time steps

e Wavelets, O(N).
log T frequency bands, T time steps

e Walsh series
Libraries or Dictionaries of Bases (richer signal analysis)

@ Local Cosine or Sine bases

@ Wavelet packet library

“Adapted waveform analysis” of Coifman, fast O(N log N)
transforms.
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Bell Function for Local Cosine Bases

I i
M
- -

L

05 05 o« 1 18

37

Nonstationary Time Series. (©U. Bristol



Local Cosine Basis

“Let {ax} be a sequence of real numbers and {ey} of
positive numbers such that ai, — oo and

Ak + €k < Akt1 — €41,

let bk (x) be the (ex,exs1) bell over [ak, ax+1]; then
{ukj} where

ukj(x) = {2/(aks1 — ak) 12 by(x) cos { (2 + Drlx = ak) } ,

2(ak+1 — ak)
k € Z, j € N is an orthonormal basis of L2(R)."”

Walter and Shen (2001) Theorem 7.3
(Originally Coifman and Meyer (1991)).
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Local Cosine Basis

“Let {ay} be a sequence of real numbers and {€; } of positive numbers such that a1 — oo
and

A €k < Akt1 — €ktls

/et bk(X) be the (Ek7 €k+1) be// over [ay, ag41]; then {uy ;}

where

i 1) = {2/(aks1 — 2 }72 by(x) cos { m}

2(ag+1 — ak)

k € Z, j € N is an orthonormal basis of LQ(R).”

Walter and Shen (2001) Theorem 7.3
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Local Cosine Basis

“Let {ay} be a sequence of real numbers and {€; } of positive numbers such that ai ), — oo
and
A+ e < Ayl — €kl

let by (x) be the (ey, exy1) bell over [ay, aj 1] then {uy ;} where

(2j + 1)m(x — ax)

2(ak+1 - 3k)

i j(x) = {2/ (aks1 — a) }'? bi(x) cos

k € Z, j € N is an orthonormal basis of Lz(R).”

Walter and Shen (2001) Theorem 7.3
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Different Families . ..

Back to Priestley:

“there is a multitude of different representations of the
process, each representation based on a different family
of functions.”
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Different Families . ..

Back to Priestley:

“there is a multitude of different representations of the
process, each representation based on a different family
of functions.”

So, there are many things we might try.
Not all of them are oscillatory functions, or we don’t know

E.g. wavelets, Locally Stationary Wavelet Processes:

Xe = wikthjk—i&jk,

j=1 keZ

w; = amplitude, ) = oscillation, £ = randomness.
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A Wavelet Based Test for Stationarity (Nason 2013)

. 2
Use raw wavelet periodogram, /; x = dj7k
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A Wavelet Based Test for Stationarity (Nason 2013)

. 2
Use raw wavelet periodogram, /; x = dj7k

where dj o = >, Xethj k—t
Time-scale analogue of regular periodogram.

Define §j(z) = El; x, where z = k/T
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A Wavelet Based Test for Stationarity (Nason 2013)

Use raw wavelet periodogram, /; x = dfk
where dj = >, Xe¥j k—¢

Time-scale analogue of regular periodogram.
Define §j(z) = El; x, where z = k/T

Under stationarity Hp function j3;(z) is constant.
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A Wavelet Based Test for Stationarity (Nason 2013)

Use raw wavelet periodogram, /; x = dfk

where dj = >, Xe¥j k—¢

Time-scale analogue of regular periodogram.
Define §j(z) = El; x, where z = k/T

Under stationarity Hp function j3;(z) is constant.

In mind locally stationary wavelet process alternative, but not
necessary
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A Wavelet Based Test for Stationarity, 2

Use Neumann and von Sachs (2000) to test constancy of §;(z)
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Test Ho : vp m = 0 for all £, m, asymptotic Gaussian theory
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A Wavelet Based Test for Stationarity, 2

Use Neumann and von Sachs (2000) to test constancy of §;(z)
Uses Haar wavelet coefficients of /; , as fn. of k, which are ¥ ,
Test Ho : vp m = 0 for all £, m, asymptotic Gaussian theory

Use multiple test control, Bonferroni, FDR
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A Wavelet Based Test for Stationarity, 2

Use Neumann and von Sachs (2000) to test constancy of §;(z)
Uses Haar wavelet coefficients of /; , as fn. of k, which are ¥ ,
Test Ho : vp m = 0 for all £, m, asymptotic Gaussian theory

Use multiple test control, Bonferroni, FDR

R package locits contains the software
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Wavelet Test of Stationarity on Cardinham 1st Diffs
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Cardinham Localized Autocovariance

10
|

Localized Autocovariance of Cardinham Wind First Differences
4
!

-2

Hour (Days since 1st January 2009)
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Localized Autocovariance for Cardinham: 4 days 0400

o
=

Local Autocovariance of Cardinham Wind First Differences

-2
1

Lag
c('4 days 04:00', lag)
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Localized Autocovariance for Cardinham: 16 days 1600

o
=

Local Autocovariance of Cardinham Wind First Differences
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o Nonstationary time series models
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Nonstationary time series models

Oscillatory & Semi-Stationary processes

°
°

@ Multitude of representations, which one?

@ Wavelets, Computational Harmonic Analysis
°

Essential for picking up alternatives.

Nonstationary Time Series. (©U. Bristol 32/32



Nonstationary time series models
Oscillatory & Semi-Stationary processes
Multitude of representations, which one?
Wavelets, Computational Harmonic Analysis

Essential for picking up alternatives.

Priestley: major contributions to statistics and time series.
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