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First, A Little History from 1970…
My first seminar invitation came via Maurice Priestly and was at UMIST on the 25th

February 1970

The topic was

‘Selective interaction of point processes”

This was based on a Chapter of my PhD thesis about stochastic point processes on the
line

The selective interaction model was introduced by the neurophysiologists Ten Hoopen
and Reuver (1965, 1967) to explain multi-modal inter-spike distributions for dark firing
of lateral geniculate neurons observed by Bishop et al (1964)

I explored it as an applied probability model, but I should also have followed up on the
statistical aspects, contacting the experimenters, analysing their data and doing
simulations

The thesis was concerned with the general theory and results for particular point
processes on the line – spatial point processes hardly touched on at the time

I focussed on superposition, interactions and branching behaviour, all effects which
gave dependent ‘arbitrary’ intervals between events, and where stationary initial
conditions were problematical 2



The Selective Interaction Neuron Firing Model
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The model was motivated by a multi-modal distribution of times between the
responses’, in the ‘spike trains’ of observed neuron firings – convolutions of
excitatory intervals

Poisson excitatory results by calculation – in my thesis

General results by appealing to the compound distribution structure of the
observed response count, resulting in
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Continued, (more detailed Poisson excitatory results in 1970…)

Excitatory

Inhibitory

Response

It follows

and approximately (?) via compound distribution results

rates

Compounding the exciting process intervals using the inhibitory process to get the
inter-response distribution is more difficult…

For more detailed results when the excitatory process is Poisson, see my 4 JAP
papers in the 70’s. No model fitting, no simulations – what a pity ! Last cited in 1996
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and now for something different…

ARMA and GARCH Connections
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Introductory Discussion

The connection between squared GARCH variables and ARMA variables
has been noted in various places, starting with Bollerslev (1986) who
reports the observation by Pantula and an anonymous referee that…

‘the model structure of the squared-variable generated by a GARCH
model is of ARMA form with uncorrelated innovations’

‘model structure’ is an important qualification here…

Other mentions include Tsay (2002), Fan & Yao (2003) and Lai & Xing (2008)
who note that the innovations of the ARMA process is a martingale difference
sequence – but not too useful to me…

A few other references seem (incorrectly) to imply that the equivalence is
exact

Emphasis here is on:

Volatility structure of ARMA innovations
Use of ARMA structure in GARCH prediction
Extending ARMA models to be volatile
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The ARCH(1) Model and its Equivalent
AR(1) Model – so easy…
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Combining above two results in gives the autoregressive AR(1) structure
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Note the volatile dependent innovations – but uncorrelated as with linear AR(1)
model

Very easy but
the main idea !*
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and extensions…
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The ‘popular’ GARCH(1,1) model…
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the ARCH(q) process

has the ARMA(1,1) structure

‘conditions apply’
or the AR( ) structure
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and the final generality…
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The GARCH (q,r) Model

The ARMA structure of this model is
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which is ARMA(max(q,r), r)), and there is also an AR( ) form

‘conditions apply’

The I-GARCH(q,r) structure requires
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Remarks on Prediction for
Cannot predict for GARCH models – they have no linear
component

Can predict and

Autoregressive structure (not with MA component) provides a route to results for
predictive mean and predictive variance in squared prediction
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For ARCH(1) case, using AR(1) for squares, and not surprisingly, the k-step predictor is
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and for predictive variances, k=1, k=2 steps ahead, AR results lead to

Note how prediction origin value affects the width of predictive intervals2
tX



prediction, continued, GARCH(1,1)
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From ARMA(1,1), AR( ) structures
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The predictor is noted as an exponential smooth of all past values with non-constant
width prediction interval which is also depends on the exponential smooth

k-step predictor results similarly, prediction interval results more complicated

From the AR( ) form there are the one-step prediction results
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Suggestions for volatile ARMA families…
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Generalization of Ling(2004)

ARMA’s with GARCH-like error structures – two possibilities

Not investigated ?

An enquiry – are there any explicit results for the full stationarity of GARCH
processes, apart from the GARCH(1,1) which include ARCH(1)

There is a numerical implementation of the general results of Bougerol & Picard
(1992) in the book of Francq & Zakoian for ARCH(2), but little else

Thanks for sitting there
References…
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