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Stationary Processes

Let X = (Xt : t ∈ Z) be a linear process, that is

Xt =
∞∑

j=−∞
αjεt−j , t ∈ Z,

(εt) i.i.d. (0, σ2) , Eε4t <∞ and
∑

j |j |1/2|αj | <∞ .

Autocovariance γ(h) = Cov(Xt ,Xt+h) and spectral density

f (λ) = (2π)−1
∞∑

h=−∞
γ(h)e−iλh .
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Based on observations X1,X2, . . . ,Xn we have the periodogram

In(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

Xte−iλt

∣∣∣∣∣
2

, λ ∈ [−π, π] ,

and we intend to consider statistics of the form∫ π

−π
φ(λ) In(λ) dλ ,

for suitable functions φ auf [−π, π].
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Examples are:

γ̂(h) =
∫ π

−π
cos(λh)In(λ) dλ =

1
n

∑
t

XtXt+h ,

or, for φ(λ) = 1[0,x](λ), the integrated periodogram

Fn(x) =
∫ x

0
In(λ) dλ .
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Essential Properties of the Periodogram

E [In(λj)] = f (λj) +O(n−1) und

Cov[In(λj), In(λk)] =

{
f 2(λj) +O(n−1) 0 < λj = λk < π
η4f (λj )f (λk)

n + o(n−1) 0 < λj 6= λk < π

where η4 = κ4/σ
4 and κ4 = Eε4t − 3σ4 .

λj = 2πj/n , j ∈ {−[(n − 1)/2],−[(n − 1)/2] + 1, . . . , [n/2]}
denote the Fourier frequencies.

We have In(λj) ≈ f (λj) · Uj , Uj exponentially distributed and
independent.
But: Periodogram ordinates In(λj) are asymptotically independent,
only.
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Under suitable assumptions we have that

Mn :=
√
n
(∫ π

−π
φ(λ)In(λ) dλ−

∫ π

−π
φ(λ)f (λ) dλ

)
converges in distribution towards N (0, σ2

φ) with

σ2
φ = 2π

∫ π

−π
φ2(λ)f 2(λ) dλ+ η4

(∫ π

−π
φ(λ)f (λ) dλ

)2

.

Remark: Second summand is due to finite sample dependence of the
periodogram ordinates! If we want to mimic the distribution of
integrated periodograms asymptotically correct we have (to a sufficient
extend) to mimic the vanishing dependence between periodogram
ordinates.
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A simple frequency Bootstrap

Idea:
1: Generate exponentially distributed random variables U∗1 ,U

∗
2 , . . .

2: Replace unknown spectral density through f̂ (λj)

3: Generate pseudo integrated periodograms ordinates according to

I ∗n (λj) = f̂ (λj) · U∗j

Cf. Hurvich and Zeger (1987), Härdle and Franke (1992), Dahlhaus and
Janas (1996), ...
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A negative result!

The simple frequency Bootstrap leads for

M∗n =
√
n
(∫ π

−π
φ(λ)I ∗n (λ) dλ−

∫ π

−π
φ(λ)f̂ (λ) dλ

)
to

M∗n ⇒ N
(
0, 2π

∫ π

−π
φ2(λ)f 2(λ) dλ

)
,

i.e., the simple frequency based approach does not work in general!
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Notice, that the second term in the variance

σ2
φ = 2π

∫ π

−π
φ2(λ)f 2(λ) + η4

(∫ π

−π
φ(λ)f (λ)dλ

)2
.

of the limiting distribution of Mn disappears if:
1. η4 = 0, for instance if X is a Gaussian process,

and/or
2. the function φ is such that

∫ π
−π φ(λ)f (λ)dλ = 0.

Thus apart from these two cases and because the simple frequency
bootstrap procedure generates independent pseudo-periodogram
ordinates, it fails in general in approximating correctly the
asymptotic distribution of spectral means Mn(In, φ).
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However, there are important examples of statistics for which the
simple frequency bootstrap procedure works.
Such examples include the class of ratio-statistics and the class of
nonparametric spectral density estimators.
Ratio statistics are defined as

Rn(In, φ) =
∫ π

−π
φ(λ)In(λ)dλ

/∫ π

−π
In(λ)dλ.

One important example in this class of statistics are sample
autocorrelations:

ρ̂(k) = γ̂(k)/γ̂(0) =
∫ π

π
cos(λk)In(λ)dλ

/∫ π

π
In(λ)dλ.
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A positive result!

Reason: For ratio statistics we have,
√
n(R(In, φ)− R(f , φ))⇒ N(0, σ2

R).

where

σ2
R =

(
2π
∫

w2(λ)f 2(λ)
)/(∫

f (λ)dλ
)4

.

The mentioned simple frequency based bootstrap approach works for
so-called ratio statistics.
Dahlhaus and Janas (1996).
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Nonparametric spectral density estimators can be obtained by
smoothing the periodogram, i.e.,

f̂ (λ) = n−1
∑

j

Kh(λ− λj)In(λj),

where Kh(·) = h−1K (·/h), K is a smoothing kernel and h a
bandwidth (h = h(n)→ 0, nh2 →∞ as n→∞).

For the nonparametric estimator f̂ we obtain

√
nh
(
f̂ (λ)− E f̂ (λ)

)
⇒ N

(
0, f 2(λ)(2π)−1

∫
K 2(u)du

)
.

Thus the weak and of order n−1 vanishing dependence of the
periodogram ordinates does not show-up in the asymptotic
distribution of nonparametric spectral density estimators.
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QUESTION: Can we develop a periodogram bootstrap procedure,
which is valid for a more general class of statistics, e.g. for general
spectral means?
Clearly, for this, the bootstrap procedure should mimic correctly the
weak dependence structure of the periodogram ordinates.
Janas and Dahlhaus (1994) considered a post resampling
modification of the standard frequency based bootstrap that works
for spectral means.
Another attempt in this direction is the Autoregressive Aided
Periodogram Bootstrap proposed by Kreiss and Paparoditis
(2003):
Idea: Use a hybrid bootstrap approach by combining a parametric
time domain with a nonparametric frequency domain procedure.
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Parametric Aided Periodogram Bootstrap

I. Fit an autoregression of order P to data
X1, ...,Xn  â1(P), ..., âP(P), σ̂(P).
Residuals: ε̂t = Xt −

∑P
ν=1 âν(P)Xt−ν , t = P + 1, ..., n

F̂ c
n : centred empirical distribution of standardized residuals

II. Simulate X+
1 , ...,X

+
n according to

X+
t =

P∑
ν=1

âν(P)X+
t−ν + σ̂(P) · ε+t ,

(ε+t ) i.i.d. according to F̂ c
n .

f̂AR spectral density estimator from AR-fit, i.e. the spectral density
of (X+

t ).
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Parametric Aided Periodogram Bootstrap

III. Compute from X+
1 , ...,X

+
n :

I+n (λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

X+
t e−iλt

∣∣∣∣∣
2

, 0 ≤ λ ≤ π ,

IV. and a nonparametric estimator of the correction term q = f /fAR

q̂(λ) =
1
n

+N∑
j=−N

Kh(λ− λj)
In(λj)

f̂AR(λj)
.

K : [−π, π]→ [0,∞) kernel, Kh(·) = 1/h K (·/h) and h > 0
bandwidth.

V. The Bootstrap Periodogram I ∗n is defined as follows

I ∗n (λ) = q̂(λ)I+n (λ) , 0 ≤ λ ≤ π.
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Parametric Aided Periodogram Bootstrap

We obtain for (cf. K. and Paparoditis (2003))
√
n
(∫ π

0
φ(λ)I ∗n (λ) dλ−

∫ π

0
φ(λ)f̃ (λ) dλ

)
, where f̃ = q̂ · f̂AR :

Theorem
For each fixed P (in probability)

L
(√

n
(∫ π

0
φ(λ)I ∗n (λ) dλ−

∫ π

0
φ(λ)f̃ (λ) dλ

))
⇒ N

(
0, 2π

∫ π

0
ϕ2f 2 dλ+ η4(p)

(∫ π

0
φf dλ

)2
)

where η4(p) =
E(Xt−

∑p
ν=1 aν(p)Xt−ν)4

σ(P)4
− 3 6= η4 (in general) !!!
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Parametric Aided Periodogram Bootstrap for Locally
Stationary Time Series

The same methodology works for locally stationary time series.
(cf. Paparoditis and Sergides (2008)).

J.-P. Kreiß and E. Paparoditis | Bootstrapping Time Series | 21/ 48



Introduction

A Simple Frequency Bootstrap

Parametric Aided Periodogram Bootstrap

Locally Stationary Processes

Bootstrapping Locally Stationary Processes

J.-P. Kreiß and E. Paparoditis | Bootstrapping Time Series | 22/ 48



Introduction Frequency Bootstrap AR Aided Bootstrap Local Stationarity Bootstrapping Locally Stationary Proc.

Locally Stationary Processes

Consider triangular array {X1,n, . . . ,Xn,n}

Xt,n =
∞∑

j=−∞
αt,n(j)εt−j ,

for (εt) i.i.d. (0,1) with Eε4t <∞, continuously differentiable functions
α(·, j) : [0, 1]→ R as well as a sequence (`(j) : j ∈ Z) such that

sup
u
|α(u, j)| ≤ K

`(j)

∑
j∈Z
|j ||`(j)|−1 <∞ ,

and
sup

1≤t≤n

∣∣∣αt,n(j)− α(
t
n
, j)
∣∣∣ ≤ K

n`(j)
.

The generated process is denoted locally stationary (cf. Priestley (1965,
1981, 1988), Dahlhaus (1996), ...).
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Locally Stationary Processes

We have a family of stochastic processes

Xt(u) =
∞∑

j=−∞
αj(u)εt−j , u ∈ [0, 1] ,

for (εj) i.i.d. (0,1) with Eε4t <∞ and continuously differentiable
functions αj(·) : [0, 1]→ R.

In a sense Xt(u) describes the behavior of the underlying observations
Xt,n as long as t/n ∼ u.
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Locally Stationary Processes

Local spectral density

f (u, λ) =
1
2π
|A(u, e−iλ)|2 , u ∈ [0, 1], λ ∈ (−π, π] ,

where A(u, z) =
∑

j∈Z α(u, j)z
j .

Local periodogram

IN(u, λ) =
1

2πN

∣∣∣∣∣
N∑

t=1

Xt+[un]−N/2−1,ne
−iλt

∣∣∣∣∣
2

,

λ ∈ [0, π] and time window 0 < N � n.
One may consider statistics similar as above, namely

Ln(u, φ) =
∫ π

−π
φ(λ)IN(u, λ) dλ .
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Simulation

Simulated time series (sample size n = 512) of first order moving
average type: Xt,n = 1.1 cos(1.5− cos(4πt/n))εt−1 + εt
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Simulation

Moving average parameter α(u, 1) = 1.1 cos(1.5− cos(4πu))
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Simulation

Autocorrelation function %(u, 1) (lag 1) as function of u
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Simulation

Simulated time series (sample size n = 512) of first order moving
average type: Xt,n = 1.1 cos(1.5− cos(4πt/n))εt−1 + εt
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The Preperiodogram

The Bootstrap proposals considered so far only work in the frequency
domain.
But there are relevant statistics in the field of time series analysis which
cannot be represented in the frequency domain but essentially need
observations in the time domain.

One important tool in the analysis of locally stationary processes is the
so-called Preperiodogramm

Jn(
t
n
, λ) =

1
2π

∑
k:1≤[t+1/2±k/2]≤n

X[t+1/2+k/2],nX[t+1/2−k/2],ne
−iλk ,

cf. Neumann and von Sachs (1997), Nason, Kroisandt and von Sachs
(2000), . . .
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Motivation

To motivate the bootstrap procedure consider once again the stationary
case.

Recall that we can recover X1,n, . . . ,Xn,n from the finite Fourier
transform, i.e.,

Xt,n =

√
2π
n

∑
j

JX ,n(λj)e itλj , t = 1, 2, . . . , n,

where JX ,n(λj) = (2πn)−1/2∑n
t=1 Xte itλj

is the discrete Fourier transform of X1,n, . . . ,Xn,n.

|JX ,n(λj)|2 coincides with the periodogram.
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Motivation

Using the approximate identity |JX ,n(λj)|2 ≈ f (λj) · |Jε,n(λj)|2, which is
true for linear processes, cf. Brockwell and Davis (1991), we obtain

Xt,n ≈
√

2π
n

∑
j

f 1/2(λj)Jε,n(λj)e itλj ,

where f denotes the spectral density of the underlying stationary linear
process and Jε,n(λj) = (2πn)−1/2∑n

t=1 εte
itλj is the finite Fourier

transform of innovations ε1, ε2, . . . , εn.
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Motivation

In analogy we suggest for the locally stationary case to consider the
following approximation to Xt,n,

X̃t,n =

√
2π
n

∑
j

f 1/2
( t
n
, λ
)
Jε,n(λj)e itλj .

In this expression we take care of the locally stationary situation in
which the spectral density additionally to frequency, also depends on t.
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Assumption

For the bootstrap procedure we assume that we have an estimator f̂ of
the time varying spectral density satisfying

sup
u,λ

∣∣∣f̂ (r)(u, λ)− f (r)(u, λ)
∣∣∣→ 0 in probability, for r = 0, 1.

and that we have some bootstrap replicates ε∗1, . . . , ε
∗
n of the innovations

εt .

Even if the innovations εt are not observable, we can imitate their
essentials by means of pseudo-innovations, that are generated such that
the first, second and fourth order moment structure of the true
innovations εt ’s are correctly mimicked.
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Estimation fourth order cumulant of innovations

We suggest a nonparametric estimator of the unknown rescaled fourth
order cumulant η4 = E ε4t /σ

4 − 3, borrowing ideas from the stationary
set-up discussed in Grenander and Rosenblatt (1957).

For Xt(u) =
∑∞

j=−∞ αj(u)εt−j , u ∈ [0, 1], we can verify

Cov(X 2
t (u),X

2
t+k(u)) = κ4

∞∑
j=−∞

α2
j (u)α

2
j+k(u)+2Cov2(Xt(u),Xt+k(u))

or with obvious notation:

c2(u, k) = κ4 ·
∞∑

j=−∞
α2

j (u)α
2
j+k(u) + 2 · c2(u, k) .
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c2(u, k) = κ4 ·
∞∑

j=−∞
α2

j (u)α
2
j+k(u) + 2 · c2(u, k)

Taking the sum over all k ∈ Z, using the fact that
∞∑

k=−∞

∞∑
j=−∞

α2
j (u)α

2
j+k(u) = c2(u, 0)/σ4 ,

recall that Var(εt) = σ2 , and integrating over time, we obtain

η4 =
(∫ 1

0
c2(u, 0)du

)−1 ∞∑
k=−∞

(∫ 1

0
c2(u, k)du − 2

∫ 1

0
c2(u, k)du

)

=
2π
∫ 1
0 fX 2(u, 0) du − 4π

∫ π
−π
∫ 1
0 f 2

X (u, λ) du dλ∫ 1
0

( ∫ π
−π fX (u, λ)dλ

)2
du

,

fX 2 denotes the spectral density of the squared process {X 2
t (u)}.
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Estimation of fourth order cumulant

The representation

η4 =
2π
∫ 1
0 fX 2(u, 0) du − 4π

∫ π
−π
∫ 1
0 f 2

X (u, λ)du dλ∫ 1
0

( ∫ π
−π fX (u, λ) dλ

)2
du

,

now allows for construction of a consistent estimator η̂4 of η4.
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Bootstrap Algorithm

Bootstrap algorithm to generate time domain pseudo-observations
X ∗1,n,X

∗
2,n, . . . ,X

∗
n,n of the locally stationary process Xn.

I: Let η̃4 = η̂4 + 3 > 0, where η̂4 is a consistent estimator of η4.
II: Generate i.i.d. pseudo innovations ε∗1, . . . , ε

∗
n according to

P(ε∗t =
√
η̃4 ) = P(ε∗t = −

√
η̃4 ) =

1
2η̃4

, P(ε∗t = 0) = 1− 1
η̃4
.

III: Calculate the finite Fourier transform of ε∗1, . . . , ε
∗
n:

J∗n,ε(λ) = (2πn)−1/2∑n
t=1 ε

∗
t e
−iλt

IV: Generate pseudo-observations X ∗1,n,X
∗
2,n, . . . ,X

∗
n,n by

X ∗t,n =

√
2π
n

∑
λj

f̂ 1/2
( t
n
, λj

)
J∗n,ε(λj)e itλj ,

where f̂ (u, λ) is an estimator of f (u, λ).
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Bootstrap Algorithm

The bootstrap pseudo series {X ∗t,n, t = 1, 2, . . . , n} generated by means
of the above algorithm (asymptotically) correctly mimics the first and
second order local moment structure of the underlying stochastic
process.

First: Conditionally on X1,n,X2,n, . . . ,Xn,n, we have

E ∗(X ∗t,n) = 0 for all t .
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Bootstrap Algorithm

Next: For any given k ∈ Z and n large,

Cov(X ∗t,n,X
∗
t+k,n)

=
1
n2

∑
λj ,λs

f̂ 1/2
( t
n
, λj

)
f̂ 1/2

(
t + k
n

, λs

)
e itλj−i(t+k)λs

n∑
r=1

e ir(λj−λs)

=
1
n

∑
λj

f̂ 1/2
( t
n
, λj

)
f̂ 1/2

(
t + k
n

, λj

)
e ikλj

=
1
2π

∫ π

−π
f̂
( t
n
, λ
)
e−ikλdλ+ OP(kn−1 + n−1)

= c
( t
n
, k
)
+ oP(1).
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Integrated Preperiodogram

Moreover, the pseudo time series {X ∗t,n, t = 1, 2, . . . , n} correctly mimics
the weak and asymptotically vanishing covariance of periodogram
ordinates at different frequencies including the correct constant of the
leading term, if η̂4 is consistent for η4.
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Integrated Preperiodogram

Several statistics of interest in inferring properties of the locally
stationary processes can be written as functionals of the
preperiodogram.

In their general form such statistics are given by

1
n

n∑
t=1

∫ π

−π
φ
( t
n
, λ
)
In
( t
n
, λ
)
dλ ,

where φ is some appropriately chosen function.
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Integrated Preperiodogram

In the following we are interested in estimating the distribution of

En(φ) =
√
n

(
1
n

n∑
t=1

∫ π

−π
φ(t/n, λ)In(t/n, λ) dλ−∫ 1

0

∫ π

−π
φ(u, λ)f (u, λ) dλ du

)
.
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Dahlhaus and Polonik (2009) have shown under regularity conditions,
that, as n→∞, E (En(φ))→ 0 and Var(En(φ))→ τ2, where

τ2 = 4π
∫ 1

0

∫ π

−π
φ(u, λ)φ(u,−λ)f 2(u, λ) dλ du

+η4

∫ 1

0

(∫ π

−π
φ(u, λ)f (u, λ) dλ

)2
du .

Furthermore, they established that

L(En(φ)) ⇒ N(0, τ2) as n→∞ ,
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Now, to approximate the distribution of the random sequence
(En(φ), n ∈ N) we propose to use the bootstrap analogue

E ∗n (φ) =
√
n

(
1
n

n∑
t=1

∫ π

−π
φ(t/n, λ)I ∗n (t/n, λ) dλ−∫ 1

0

∫ π

−π
φ(u, λ)f̂ (u, λ) dλ du

)
,

where

I ∗n
( t
n
, λ
)
=

1
2π

∑
k:1≤[t+1/2±k/2]≤n

X ∗[t+1/2+k/2],nX
∗
[t+1/2−k/2],ne

−ikλ ,

denotes the preperiodogram based on the bootstrap pseudo series
X ∗1,n,X

∗
2,n, . . . ,X

∗
n,n.
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We can prove the following result (K. and Paparoditis (2012))

Theorem
Suppose that suitable regularity conditions are fulfilled. Then, in
probability, and as n→∞, we have that
(i) E ∗(E ∗n (φ)) = oP(1).
(ii) Var∗(E ∗n (φ)) = τ2 + oP(1), where τ2 is as above and,
(iii) L(E ∗n (φ)|X1,n,X2,n, . . . ,Xn,n) ⇒ N(0, τ2).

Related work: Kirch and Politis (2011).
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Thank you very much for listening!
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