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Spatial Processes on a d-dimensional regular lattice

Assume that t, u, z and λ are d−dimensional vectors and that
{x(t), t ∈ Zd} is a Gaussian random field on the regular rectangular
lattice.

Assume also that the random field is and second-order stationary with
constant mean, µ, autocovariance function
Rx (u) = Cov {x(t), x(t + u)}, and autocorrelation function
rx (u) = Rx (u)/σ2

x , where σ2
x = Rx(0).

The autocovariance generating function - acgf - is

Γx(z) =

∞
∑

u=−∞

Rx (u)zu , z ∈ C
d

and, provided
∑

u∈Zd |Rx(u)| < ∞, the spectral density function -sdf- is

defined here as fx (λ) = Γx (e
iλ) where λ ∈ (−π, π]d . Note that we are

using a form of the sdf for which its integral is (2π)dσ2
x .
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Spatial Processes on a d-dimensional regular lattice

The inverse equation giving Rx(u) is

Rx (u) = (2π)−d

∫

exp(iu′λ)fx (λ)dλ.

Provided fx (λ) > 0 for all λ, the inverse covariance and correlation
functions of x are

R̃x(u) = (2π)−d

∫

exp(iu′λ) [fx (λ)]
−1

dλ and r̃x (u) = R̃x (u)/R̃x (0).

For convenience, we mainly refer here to Guyon (1995), Cressie (1993)
and Rue and Held (2005) for known results.
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Processes with Rational Spectra

Let

A(z) = 1 −
∑

j∈Sp

αjz
j and B(z) = 1 +

∑

j∈Sq

βjz
j

be finite symmetric Laurent series satisfying A(z) = A(z−1) and
B(z) = B(z−1), where z j = (z j1 . . . , z jd ), and Sm is a finite subset of Zd

containing neighbours of the origin. Thus αj = α−j and βj = β−j for all
j . Thus t + Sm is the set of neighbours of site t.

The order of the neighbourhood set is denoted by m, and is defined
sequentially by the maximum distance between the origin and a point in
Sm.

Thus, for d = 2, the first-order (m = 1) neighbours of a site are those 4
sites which are adjacent to it; and the second-order neighbours (m = 2)
are these plus the 4 diagonally adjacent sites.
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Modelling approaches for lattice data

Geostatistical models are defined for continuous space, and are widely
used for analyzing data defined on irregular regions - see, for example,
Cressie (1993, sec 2.3.1). On a regular lattice, they and other DC
models usually have the defect that R−1

x usually has no simple
form.

UARMA models can appear arbitrary, as they may depend on the choice
of site ordering, but can have some useful properties, especially if the
model is separable. SAR models have some severe logical difficulties
(e.g. the independent errors are correlated with all the observations).

Every UAR, and every SAR, is a special case of a CAR, also known as a
Gauss-Markov random field - GMRF. These models have nice
properties but also suffer from some disadvantages!
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Why Conditional ARMA processes

The correlation structure of a CAR model is usually hard to
determine (except numerically), though the inverse correlations are
directly specified and give the inverse dispersion matrix, required for
Gaussian ML estimation.

CAR does not apply in non-Markovian situations in which the
conditional dependence structure is not confined to a finite subset of the
lattice but decays exponentially over an infinite set.

No appreciable correlations are generated by the model unless the
parameters are very close to the stationary boundary and which can
render the parameter estimation difficult. The use of non-stationary
intrinsic CAR models has been suggested (Besag and Kooperberg, 1995)
for overcoming this problem. However, this proposal may seem contrived
and unsatisfactory, especially for data with modest low-lag correlations.
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CAR(p) Processes

A compact representation of a CAR(p) is:

A(T )x(t) = η(t), t ∈ Z
d

where A(z) = 1 −
∑

j∈Sp
αjz

j , satisfies A(z) = A(z−1) and A(e iλ) > 0
for all λ, and

η(t) = x(t) − E [x(t)|·]

denotes the interpolation error process with variance σ2
η = {R̃x(0)}−1

and sdf σ2
ηA(e iλ).

In two dimensions, the CS-CAR(1), for which |α10| < 1/4, requires α10

to be 0.24565 for rx (1, 0) = 0.50, and 0.249993 for rx (1, 0) = 0.75.
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Conditional ARMA processes

In this work, we consider the generalization of CARs and finite DCs to
processes with a rational spectral density function -RSDs.

1 RSD models are a natural extension of CAR and FDC models, which
warrant consideration when fitting spatial models to data.

2 They have a wider range of correlation structures, and for moderate
to high correlations they do not need the parameters to be so close
to the boundary.

3 They can be useful as simpler fits to data, using fewer parameters,
and they can give more accurate predictions.
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RSD(p,q) - CARMA(p,q) - Processes

Assume that A(z) and B(z) have no common factors, and that A(z) 6= 0
and B(z) 6= 0 for |z | = 1.

Definition. A rational spectral density model - RSD(p, q) - for x

has an acgf which is proportional to a ratio of finite Laurent series,
B(z)/A(z).

The sdf fx (λ) can be regarded as the ratio of two CAR sdf’s, or two DC

sdf’s. RSD models are mentioned in Guyon (1995, sec 1.4) and little
appears to have been done on them.

Clearly CAR and DC are special cases.
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RSD(p,q) - CARMA(p,q) - Processes

We can then formally write

A(T )x(t) = c0B(T )η(t),

which expresses a finite combination of the x ’s in terms of a finite
combination of the η’s, and has some similarities to the one-dimensional
ARMA representations, but now the η’s are correlated.

We can then refer to this RSD(p, q) as a Conditional ARMA model -
CARMA(p, q).

Note that the correlations for the model with acgf proportional to
B(z)/A(z) are the inverse correlations of the model with acgf
proportional to A(z)/B(z).
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RSD(p,q) - CARMA(p,q) - Processes

As with a CAR, the sdf of a RSD is a real analytic function, and hence
its correlations and inverse correlations decay exponentially.
The covariances and the inverse covariances satisfy extended
Yule-Walker equations. Multiplying the RSD model equation by
x(t + u) or η(t + u), respectively, and taking expectations gives

A(T )Rx (u) = c0σ
2
ηβu ∀ u ∈ Z

d ;

σ2
ηαu = c0σ

2
ηB(T )r̃x (u) ∀ u ∈ Z

d .

Scaled interpolation variance, F , for a RSD model: if
C (z) = A(z)/B(z), then c0 = 1/

∑

βu r̃x (u), and

σ2
η/σ2

x = F =
{

1−
∑

u 6=0

αurx (u)
}

×
{

∑

u

βu r̃x (u)
}

.
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Operations on CAR processes: Addition of CARs

We note here that special cases of RSD processes arise from various
operations on CAR processes. It is also of course true that operations on
RSD processes result in RSD models. In the following we give some
examples. We assume in this section that y is a CAR(p) with acgf
σ2

η/A(z), and use x for the resulting model.

If two independent CARs of orders p1 and p2 are added, the result is in
general (if there are no common factors) a RSD(p, q), with
q = max(p1, p2) and p ≥ q.

A well-known example is if a White Noise process, ξ, is added to a CAR

y , which gives a special case of a RSD(p, p). Thus, if a CAR(p) has
conditional variance σ2

η , and setting ν = σ2
η/σ2

ξ , the sdf of the NCAR, is

fx (λ) = σ2
ξ(1 + ν)

B(z)

A(z)

where βj/αj = −1/(1 + ν). Since βj/αj is constant and |βj | < |αj |, the
Noisy CAR is only a specific case of the general CARMA(p, p).
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Operations on CAR processes: Smoothing a CAR

Suppose x(t) is formed by smoothing y(t), i.e. x(t) =
∑

j h(j)y(t − j),
for h a finite function of z .

Then fx (λ) = h(z)h(z−1)fy (λ) = σ2
ηB(z)/A(z), where

B(z) = h(z)h(z−1).

A special case in two dimensions (d = 2) is summing over adjacent sites
for (k1 × k2) blocks, which gives

fx (λ1, λ2) =
[1 − cos(λ1k1)] [1 − cos(λ2k2)]

[1 − cos(λ1)] [1 − cos(λ2)]
fy (λ1, λ2).
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Operations on CAR processes: Sampling a CAR

Suppose x is formed by sampling every kth site of a CAR, y , where
k = (k1, . . . , kd). Then the sdf of x is

fx (λ) =
1

|k |

k−1
∑

j=0

fy

(

λ + 2πj

k

)

where |k | =
∏d

i=1 ki , and u/v = (u1/v1, ...). Then x is a RSD.

Suppose d = 2, k1 = k2 = 1 and consider a CAR(1). Then, setting
a1 = 1 + cos(λ1), a2 = 1 + cos(λ2), a3 = 3 + 4 cos(λ2) + cos(2λ2) and
a4 = 3 + 4 cos(λ1) + cos(2λ1), the sdf for x is

fx (λ1, λ2) = σ2
η

[

1 − 2α2
10a1 − 2α2

01a2

1 − 4α2
10a1 − 4α2

01a2 − 8α2
10α

2
01a1a2 + 2α4

10a3 + 2α4
01a4

]

which is the spectral density function of a CARMA(1,3).
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Operations on CAR processes: Coarser resolution of a

CAR

If a CAR is summed within blocks, and the result for exhaustive disjoint
blocks is used, then the coarser process is a RSD. The result for fx
follows by firstly using the result from smoothing to get the summed
process on overlapping blocks, and then sampling this process using the
result above.

For example, if d = 2, and aggregating x over (2 × 2) blocks, setting
a5 = 1 − 2α10, a6 = 1 − 2α01 and a7 = 1 + α10 + α01, gives

fx (λ1, λ2) = 4σ2
η

[

1 + α10a5a1 + α01a6a2 + 2α10α01a7a1a2 − α3
10a3 − α3

01a4

1 − 4α2
10a1 − 4α2

01a2 − 8α2
10α

2
01a1a2 + 2α4

10a3 + 2α4
01a4

]

,

which is the sdf of a CARMA(3,3).
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Some Properties of a RSD Model: Relating RSD to

CAR correlations

Suppose y is a CAR defined by A(z). Then the acgf for x is

Γx (z) ∝ B(z)Γy (z)

∝ B(z)

[

u=∞
∑

u=−∞

Ry (u)zu

]

.

Thus the correlations of x can be expressed in terms of those of y .
Although CAR correlations are usually not readily available, this result
shows the effect of B(z) on these correlations. In particular, correlation
structures can be obtained which cannot arise from a CAR.

Suppose d = 2, and consider an RSD(p, 1). Then, for a constant K

Rx (u1, u2) = K
(

ry (u1, u2) + β10[ry (u1 − 1, u2) + ry (u1 + 1, u2)]

+β01[ry (u1, u2 + 1) + ry (u1, u2 − 1)]
)

.
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Comparison of RSD and CAR correlations

There are two ways to match CAR correlations with the RSD

correlations.

1 Firstly, we note that if Gaussian ML is used for a CAR, the
estimates are such that within Sp the estimated correlations from
the fitted CAR exactly match the sample correlations - see Cressie
(1993, section 7.2.2).

2 An alternative method (see Rue and Held, 2005, sec. 5.1.2), is to
match all the estimated and sample correlations as closely as
possible. Here, we minimize the sum of the weighted squared
differences between the correlations at each lag,

{rx (u) − ry (u)}2,

using inverse lag-distance weights 1/‖u‖.

However, these two methods focus solely on matching the correlations of
a CAR with those of an RSD, and do not necessarily ensure a good fit to
the inverse correlations. We therefore also compare how close the r̃y (u)
are to r̃x (u), and compare the scaled interpolation error variances F .

L. Ippolitia , R.J. Martina , R.J. Bhansalib Conditional Autoregressive Moving Average Models for Lattice Data



Comparison of CS-RSD and CS-CAR correlations

Example 1 : Consider the CS-RSD(1,1) with α10 = β10 = 0.248. The
inverse correlations of this RSD satisfy r̃x (u) = (−1)(u1+u2) × rx (u).

Lag
Models (1, 0) (2, 0) (3, 0) (1,1) (2, 1) (3,1) (2,2) (3,2) F

CAR(1) 0.551 0.358 0.254 0.432 0.320 0.238 0.261 0.207 -
RSD(1,1) 0.713 0.463 0.328 0.559 0.414 0.308 0.338 0.268 0.086
CAR(1)1 0.713 0.583 0.507 0.634 0.557 0.496 0.514 0.471 0.287
CAR(2)1 0.713 0.525 0.398 0.559 0.441 0.352 0.368 0.305 0.190
CAR(3)1 0.713 0.463 0.295 0.559 0.386 0.255 0.281 0.194 0.184
CAR(4)1 0.713 0.463 0.322 0.559 0.414 0.314 0.359 0.300 0.151
CAR(5)1 0.713 0.463 0.311 0.559 0.414 0.304 0.338 0.263 0.139
CAR(1)2 0.584 0.402 0.300 0.473 0.365 0.285 0.308 0.254 0.290
CAR(2)2 0.694 0.495 0.362 0.528 0.404 0.311 0.326 0.262 0.187
CAR(3)2 0.704 0.501 0.365 0.542 0.413 0.316 0.331 0.264 0.185
CAR(4)2 0.708 0.474 0.331 0.560 0.415 0.309 0.341 0.271 0.177
CAR(5)2 0.709 0.471 0.327 0.556 0.413 0.308 0.340 0.270 0.160

Table: CAR(p)1: ML FIT; CAR(p)2: LS FIT, p = 1, . . . , 5

The inverse correlations, r̃y (u), of these CARs can differ substantially
from r̃x (u). For example, the CARs all have r̃y (1, 0) > −0.55, but
r̃x (1, 0) = −0.713.
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Comparison of CS-RSD and CS-CAR correlations

Example 2 : In this example correlations and inverse correlations are
generated by a 3-parameter CS-RSD(1,3) with α10 = 0.248,
β10 = −0.248, β11 = 0 and β20 = 0.200, and those for the fitted
CS-CARs.

Some aspects of the CAR fits are similar to those in Example 1. The
least square fits (shown below) are less good - only the one for p = 5
has ry (1, 0) < ry (2, 0). These fits with p = 5 have reasonable values of F

(but have 2 more parameters than the CS-RSD).

Lag
Models (1, 0) (2, 0) (3, 0) (1,1) (2, 1) (3,1) (2,2) (3,2) F

RSD(1,3) 0.391 0.462 0.300 0.363 0.340 0.265 0.282 0.228 0.407
CAR(1) 0.558 0.367 0.263 0.441 0.329 0.248 0.271 0.217 0.612
CAR(2) 0.446 0.328 0.244 0.432 0.305 0.236 0.264 0.212 0.628
CAR(3) 0.470 0.342 0.249 0.371 0.295 0.232 0.250 0.206 0.600
CAR(4) 0.462 0.417 0.268 0.393 0.274 0.246 0.267 0.197 0.545
CAR(5) 0.414 0.447 0.276 0.379 0.316 0.256 0.232 0.214 0.482
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Comparison of CS-RSD and CS-CAR correlations

Example 2 : the inverse correlations r̃y (u) are moderately different from
r̃x (u) for both (ML/LS) fits with p < 5, but are relatively close for both
fits with p = 5 (see Table below). Note that the CS-RSD has
r̃x (1, 0) > 0, but the two CAR(5) fits have r̃y (1, 0) < 0.

Lag
Models (1, 0) (1,1) (2, 0) (2, 1) (2, 2)

CS-RSD(1,3) 0.049 0.002 -0.359 -0.076 0.184
CS-CAR(5) ML -0.037 -0.021 -0.264 -0.017 0.108
CS-CAR(5) LS -0.053 -0.033 -0.277 -0.009 0.132

Table: First row: inverse correlations of a CS-RSD(1,3) with α10 = 0.248,
β10 = −0.248, β11 = 0 and β20 = 0.200. Rows 2 to 3: inverse correlations of
the CS-CAR(5) fitted by the ML and LS methods.
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Model Fitting

Suppose the data are observed on an (n1 × n2) lattice L with n = n1 n2

sites. Assume x is the n-vector of observations in, say, lexicographic
order, and that θ = (α′ β′)′, with x ∼ N(µ1n, Rxσ

2), where 1n is an
n−vector of ones. Then the deviance, minus twice the log-likelihood is

D(θ, σ2) = n log(2πσ2) + log |Rx | + (x − µ1n)
T R−1

x (x − µ1n)/σ2

Then in theory models can be fitted by minimising the deviance over the
valid parameter space. (In practice, optimization can be over Rx positive
definite.)
A method frequently used is (essentially) to map the finite planar lattice
L on to a torus (joining row and column ends), sometimes called periodic
boundary conditions.
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Model Identification and simulation

Model identification: Assuming model checks are satisfactory, fitted
models can then be compared by their deviance values, by the generalized
likelihood ratio test GLRT for nested models (using the difference in the
deviances as having an asymptotic χ2-distribution), and by using standard
model-selection criteria such as AIC = D + 2 N and BIC = D + N log(n),
for a model with N parameters (including the variance).

Simulation: If x is Gaussian and Rx or R−1
x can be specified, it is simple

to simulate a representation using any square root of Rx by
x = E [x ] + R1/2

x ε for ε a simulation from a N(0, σ2I). In particular, a
torus simulation is easy using the known eigenvalues and eigenvectors of
Rx .
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Real Data Example: texture analysis

The data set is a (128× 128) portion of a texture image, grass (1.1.01),
available from http://sipi.usc.edu/database/.

Before modelling the spatial dependence, the planar lattice was mapped
on to a (128× 128) torus lattice. A constant mean looks reasonable.
The histograms suggested Normality is a plausible working assumption,
and the fitting used maximum likelihood.

The inverse correlations and the scaled interpolation variance F of the
data were estimated with the sdf fx (λ) estimated by smoothing the
periodogram. Using the two-dimensional form of the Daniell window with
length (a, a) where a is between 17 and 21, gives an adequate amount of
smoothing.

The standard errors for the estimated inverse correlations are obtained by
Bootstrap. Simulations suggest that the estimated inverse correlations
are approximately Normally distributed, with standard error around 0.007,
so the upper 2.5% point is around 0.014.
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Real Data Example: texture analysis

The low-lag sample correlations (using a divisor of n) are shown below.
These are high for neighbouring sites, but they then drop away quite
quickly. They are slightly larger between rows than between columns.
The sample correlations do not suggest any symmetries.

u2

4 0.091 0.098 0.107 0.132 0.169 0.175 0.146 0.112 0.083
3 0.100 0.114 0.146 0.209 0.278 0.278 0.211 0.139 0.090
2 0.108 0.138 0.212 0.347 0.482 0.448 0.300 0.177 0.104
1 0.114 0.175 0.312 0.573 0.801 0.663 0.386 0.211 0.119
0 1.000 0.747 0.399 0.210 0.119

-4 -3 -2 -1 0 1 2 3 4
u1
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Real Data Example: texture analysis

The low-lag estimated inverse correlations, using a = 19, are given
below. Taking some account of multiple testing, they suggest that most
are significantly different from 0.

u2

4 -0.013 0.011 -0.003 -0.015 0.019 0.010 -0.007 -0.003 0.007
3 0.016 -0.014 0.002 0.028 -0.034 -0.034 0.043 -0.023 0.007
2 -0.003 -0.011 0.048 -0.119 0.152 -0.009 -0.049 0.044 -0.026
1 -0.040 0.092 -0.202 0.395 -0.531 0.274 -0.087 0.016 0.004
0 1.000 -0.696 0.356 -0.166 0.075

-4 -3 -2 -1 0 1 2 3 4
u1
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Real Data Example: summary of the results

Amongst the fitted CAR’s, both AIC = 623.74 and BIC = 731.60
criteria choose the general CAR(5) with N = 12 + 2 parameters
(including the mean and the variance).

However, the RSD(1,2) model with N = 2 + 4 + 2 has AIC = 580.10 and
BIC = 641.73, and the best values are for the RSD(2, 2) with
N = 4 + 4 + 2 which has AIC = 161.74 and BIC = 238.78.

Although the correlations of the CAR(5) match those of the data within
S5, outside S5 ∪ {0} they do not match the sample correlations well as
they drop off rapidly. For example, the lag (0, 4) value of 0.035 is well
below 0.169. On the other hand, the fitted RSD(2, 2) correlations are
reasonably close over −4 ≤ u1 ≤ 4 and 0 ≤ u2 ≤ 4.

The values of the low-lag inverse correlations for the RSD(2, 2) are
mainly much closer to those of the data than those of the CAR(5). The
estimated value of F is 0.0329 for the RSD(2, 2), and 0.0464 for the
CAR(5) - reference values for F are 0.0360 (a = 17), 0.0374 (a = 19),
0.0389 (a = 21).
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