
Introduction to High Performance
Computing (HPC) – Session 2

using the "Computational Shared Facility" (CSF)

Research Platforms, Research IT, IT Services

Course materials / Slides available from:
https://ri.itservices.manchester.ac.uk/course/rcsf/

CSF online documentation
https://ri.itservices.manchester.ac.uk/csf3/

Contact Research Platforms via the Connect Portal
https://ri.itservices.manchester.ac.uk/csf3/help/

Housekeeping

• Please let me know if you’re leaving
– Morning: Session one: 10am – 12:30pm (practicals 1, 2, & 3)

– Afternoon: Session two: 1:30pm - 4pm (practicals 4 & 5)

• 1-to-1 help is available if needed during exercises.
We’ll describe how this works before the first one.

• Please give feedback on this course

– Quick form at
https://goo.gl/forms/zfZyTLw4DDaySnCF3

(choose "Introduction to HPC (Using CSF)")

– Feedback is important to help us improve our courses

– Records your attendance on the course
2

https://ri.itservices.manchester.ac.uk/course/rcsf/Recap slide skipped in training room

Jobs, Jobscripts and the Batch System
• We want to do computational work - “jobs”

• You decide:
– Which program(s) to run
– Which resources it needs (#cores, CPU type, memory, GPU?)
– How much time the job will need to complete its work
– Which of your folders ("directory") to run the job in

• You'll put these requirements into a jobscript file

• Then submit your jobscript to the batch system ("Slurm")
• Slurm decides when the job runs and on which compute

node(s). It ensures you get all of your requested resources.
3

Login

node

Job

queue

/scratch

home

Backend compute nodes

Recap slide skipped in training room

A simple Jobscript – Serial (1 core)

#!/bin/bash --login

#SBATCH –p serial

#SBATCH –n 1

#SBATCH –t 5

Let's do some work

date

hostname

sleep 120

date

#SBATCH indicates a
batch system
parameter to specify
our job requirements.
We’ll use various
combinations of these.

First line indicates we
use the bash scripting
language to write our
jobscript.

#! on first line only (a special line)

-p (--partition=)
think of this as the
queue, for serial (1-
core) jobs in this case.

Actual Linux commands we
run in our job. They will
execute on a compute node.

4

-n (--ntasks=) number of
cores, which is 1 by default
for serial jobs (optional).# lines are just

comments - anything
on the line after it
will be ignored.

-t (--time=) maximum
"wallclock" time the job is
allowed to run for. Various
formats. 5 is 5 minutes. 4-0
would be 4 days (0 hours).

myjob.txt

Recap slide skipped in training room

Connect to CSF from Windows

• Access the CSF from a PC / laptop using an SSH (Secure Shell) app

– Sometimes called a "terminal".

– There’s no web-site or other fancy GUI on the CSF – use the "command-line".

• Windows users need to install a free terminal app called MobaXterm

• https://mobaxterm.mobatek.net/download-home-edition.html
the Home edition (portable edition) does not require Administrator rights - just
extract the small .zip file in your P-Drive or USB stick for example.

5

1. Download using the

blue box.

2. Once downloaded,

right-click on the .zip file
and select:

"Extract all …"

This will unpack the .zip
file to a folder.

Recap slide skipped in training room

MobaXterm “Session”
(username saved in the session setup)

1. After extracting the .zip file, start MobaXterm_Personal_xy.z

(double-click on the icon)

2 (1-6). Create a "Session"

which saves the CSF's details
along with your username.

This is needed to make file
drag-n-drop work (see later.)

3. This will then start to

log you into the CSF – it
will ask for your
password. Type carefully!

4. See slide about 2FA – you may be asked for DUO after your password

Recap slide skipped in training room

We're on (one of) the CSF

login nodes. Any
commands you use will be
typed "at the prompt",

which shows your
username and current

directory (folder.)

Drag-n-drop file browser

for upload / download

(new users won't have as

many items in the list!)

If asked to save your

password, we recommend
you say "No", for security.

Recap slide skipped in training room

Connecting from Linux / Mac
• From MacOS using a Terminal window (after installing Xquartz)

• From Linux using a Terminal window

• Finished using CSF? Log out with: logout or exit

8

ssh -Y username@csf3.itservices.manchester.ac.uk

Central IT Services username.
Answer 'Yes' to continue if asked.
Enter central IT password when asked (same as for
email)

UPPERcase Y

ssh -X username@csf3.itservices.manchester.ac.uk

Central IT Services username.
Answer 'Yes' to continue if asked.
Enter central IT password when asked (same as for
email)

UPPERcase
X

Recap slide skipped in training room

ACCESSING APPLICATION S/W
Modules

9

https://ri.itservices.manchester.ac.uk/csf3

https://ri.itservices.manchester.ac.uk/course/rcsf/

Training room presentation begins here

Access to Application Software

• Lots of different pieces of software installed
– Many different applications

– Different versions of an application

– Need to ensure job knows where an app is installed
• Try echo $PATH to see all directories the CSF will look in

• Use "modules" to set up environment for software
– In your jobscript, add some module commands

– Sets up all necessary environment variables

– Apps use these env vars to get various settings

– Can also run module commands on the login node (e.g.,
to check what apps are available)

10

Module Commands

• module avail – lists all available modules
• module search keyword – lists all modules with keyword in their name
• module list – lists currently loaded modules
• module load modulename – loads module
• module unload modulename – unloads module
• module purge – unload all modules
• man module – man pages for the module command
• Examples:

module load apps/binapps/matlab/R2024b

module load apps/intel-19.1/amber/20-bf12-at21-bf12

module load apps/gcc/R/4.4.1

module unload apps/binapps/starccm/18.02-double

module help compilers/intel/19.1.2

module load tools/gcc/cmake/3.28.6

• See documentation for more info
https://ri.itservices.manchester.ac.uk/csf3/software/modules/

11

Modulefile settings
• What "settings" do modulefiles actually make?

– Depends on the application (eg the installation instructions)

• Try the following commands on the login node:

which matlab
/usr/bin/which: no matlab in(/opt/site/sge………

module load apps/binapps/matlab/R2024b

which matlab
/opt/apps/apps/binapps/matlab/R2024b/bin/matlab

• This shows that the modulefile made the matlab 2024b installation available.
• A job can do this to run that version of matlab.
• If interested, to see all of the settings that a modulefile will make:

module show apps/binapps/matlab/R2024b

But the idea is you don't need to know the settings - modulefiles take care of the details
so you can concentrate on what your jobs actually do with the application.

• See documentation for more info
https://ri.itservices.manchester.ac.uk/csf3/software/modules/

12

Loading modulefiles:
On login nodes OR in the jobscript

13

On the login node:

module load apps/R/4.4.1

sbatch myjob.txt

Jobs in Slurm will inherit any modulefile settings
(i.e. loaded modules) from the login node at the
point when you submit (sbatch) the job.

#!/bin/bash --login

#SBATCH -p serial

#SBATCH –t 2-0

Start with a clean env then

load module inside jobscript

module purge

module load apps/R/4.4.1

We know the version of R!

R CMD BATCH myscr.R

myjob.txt

Inherit from the login node (not recommended) Only in the jobscript (recommended!)

#!/bin/bash --login

#SBATCH -p serial

#SBATCH –t 2-0

We'll use whichever version

of R was loaded on the login

node. Which version of R did

I use 6 months ago???

R CMD BATCH myscr.R

myjob.txt

On the login node:

sbatch myjob.txt

Which Modulefiles to Load

• How do I know which modulefile to load for a particular
app?
– https://ri.itservices.manchester.ac.uk/csf3/software/

14

A note about our documentation

• Over the summer we change the batch system from
SGE to Slurm
– SGE uses #$ as the jobscript sentinel

– Slurm uses #SBATCH (as we've seen earlier)

– Our applications documentation is being updated to
convert example jobscripts from SGE to Slurm

– If you see #$ in our documentation, you'll need to write
the equivalent Slurm jobscript (using #SBATCH).

– See our SGE-to-Slurm guide, which shows how #$ flags
map to #SBATCH flags
https://ri.itservices.manchester.ac.uk/csf3/batch-
slurm/sge-to-slurm/

15

PARALLEL COMPUTING
Background

16

Motivations for Parallel Computing
• CSF compute nodes have multiple CPU cores (32, 168)
• Many apps can use multiple cores to speed up the

computation
– Split the "work" over multiple CPU cores

• Each core does a small(er) part of the computation, all in parallel
• "Data parallelism" (same instructions run on each portion of "data")

– May need to combine partial results together at end
– Should get the final result quicker

• Ideally N cores giving results N times quicker

• Also provides access to more memory
– Each core has access to 8GB RAM (AMD nodes)

• Ideally M cores for M times larger problem

• Both of the above!
• Another "parallel" method: High Throughput Computing

– Multiple instances of an app with different params or data
17

16GB
32GB

AMD 168-core node,
8GB/core (only 12 cores shown)

Simple example: sum a list of numbers
• Could do this example manually with 4 volunteers
• 1-core: sum = sum + numberi (for i = 1 to N)

– Let's say it takes T1 seconds to complete

• 4-cores: Each core sums a smaller list of numbers

– Takes T4 ≈ T1/4 + Tserial seconds to complete (< T1)
18

9 2 1 7 9 8 4 5 2 1 0 2 6 6 3 0 7 9 5 5 2 8 0 2 3 7 6 4 1 2 0 9

∑ = 135

Final serial step done by Core #1 to sum the partial sums.
Core #1 needs access to the partial sums from other cores

9 2 1 7 9 8 4 5 2 1 0 2 6 6 3 0 7 9 5 5 2 8 0 2 3 7 6 4 1 2 0 9

∑ ∑ ∑ ∑

45 20 38 32
partial

sums

∑ = 135

Core #1 Core #2 Core #3 Core #4

Parallel Job Type #1 - single node
• A program runs on multiple CPU cores of one compute node
• Two common techniques used by apps:

– Typically, one copy of the program runs
• "Shared memory" (all cores see same memory)
• Cores synchronize access to shared memory (data)
• Look for "OpenMP" / "multi-threaded" /

"Java threads" … in an application's docs

– Or coordinated copies of the program run,
each communicating with each other

• "Distributed memory" (each core has its own mem)
• They communicate to share data, results
• Look for "MPI" or "message passing"

in the application's docs

• Your app must have been written to use one
(or both) of the above parallel techniques!

• We'll run this "single compute-node" type of job today
19

32GB

8GB 8 88

Distributed Memory

Shared Memory

Parallel Job Type #2 - multi-node
• Running a program over several compute nodes (and the

many cores on those nodes)
– Must be the "MPI" / "message passing" style of app (see above)
– Uses more cores than available in a single compute node

• On CSF we require you to use all of the cores in each compute node!

– They communicate to share data, results etc (as before)
• Over the fast internal InfiniBand network
• Possibly via shared memory as before, if on same compute node

• Your app must have been written to support this!
• We will not run this type of job today (see the HPC Pool.)

20

CSF InfiniBand network CSF InfiniBand network

Distributed Memory Hybrid Memory (often MPI+OpenMP)

Note: the diagrams only show a few cores in use for simplicity. On the CSF you must use all cores in each node.

Parallel Job Type #3 - High Throughput
Computing (HTC)

• Lots of independent computations. EG:

– Processing lots of data files (e.g., image files)

– Running the same simulation many times over
with different parameters ("parameter sweeps")

• Run many copies of your program

– Programs may be serial (single core) but running
lots of them at once. They don't communicate.

• Easy to do on CSF. See also the UoM Condor
Service (formerly the EPS Condor Pool)

– Free resource, uses UoM idle desktops over night
21

Example: Image Analysis
• High Throughput Computing

– Not all s/w is "HPC" / parallel

– But you might have lots of data

– Each image takes 1hr to process
(and are independent - process

in any order)

22

8 GB

Desktop: 4 cores, 4 copies
of software running.
~100 days to complete!

128 GB

Single HPC compute
node: 16 copies of
software running.
~26 days to complete

Example: 10,000 image scans to be analysed by an image
processing application. Each image takes 1 hour to process.

4 GB

Laptop: 1 copy of software
running.
Over 1 year to complete!!

128 GB 128 GB 128 GB 128 GB

Multiple HPC compute nodes:
64 copies of software running.

~6 days to complete

Which style of parallel job to use
• Mostly determined by the capability of your app

– Is it serial (1-core) only? Is it multi-core (single-node) only? Is it
multi-node capable?

• A serial app will only ever use 1 core
– But run as an HTC job, you can still process lots of data in parallel

• Use many cores, running multiple independent jobs (see later)

• Parallel app using only shared memory
– "OpenMP", "multithreaded", "Java threads", "shared memory"
– Can only use 1 compute node (2--32 Intel or 2--168 AMD cores)

• Parallel app using distributed memory
– "MPI" (message passing interface), "distributed memory"
– Can use many cores across multiple compute nodes
– But consider: the network

• Communication faster within same compute node
• Communication slower on network between nodes
• Apps may not speed up, the more cores (and nodes) you use (see later)23

Parallel Jobscript on CSF

• Use a jobscript to ask the batch system to find N
free cores
– While matching other requirements (memory,

architecture, fast networking, GPU etc).

1. Add extra lines in jobscript to request:
– a parallel partition (for multi-core or multi-node jobs)
– and number of cores to reserve

2. Inform your app how many cores to use
– Remember, the jobscript says how many cores your

job requires (the batch system will allocate those
cores to your job.)

– But you must still ensure your app uses no more!!
• This is not always automatic and how you do it varies from

app to app
24

Parallel Jobscript – Multi-core
(single compute-node)

#!/bin/bash --login

#SBATCH –p multicore

#SBATCH –n 4

#SBATCH –t 3-0

Set up to use a chemistry app

module purge

module load apps/gcc/gromacs/2023.3/double

Inform app how many cores to use

export OMP_NUM_THREADS=4

This job runs "gromacs"

mdrun_d

#! - see serial jobscript
earlier.

-t wallclock time
limit for the job.
This jobs is given 3

days (0 hours).

multicore is the partition name. This one
means: app will multiple cores on a single
compute node (2 to 168 AMD "Genoa" cores.)

The commands we
run in our job. They
execute on a
compute node that
has the required
number of cores
free. mdrun_d is
Gromacs.

-n (--ntasks=) 4 is the number
of cores we want to reserve in
the system. Each partition has
a maximum number.

25

Must somehow inform the app how many cores we reserved. Must use the
number (4) given on the -n line. Our app wants OMP_NUM_THREADS
environment variable setting. Your app may use a different method!

Key concept!

myparajob.txt

Avoid a common mistake

• Can use $SLURM_NTASKS to get the number of

cores reserved by the job

26

#!/bin/bash --login

#SBATCH –p multicore # Use the AMD "Genoa" nodes

#SBATCH –n 4 # Can be 2-168 in "multicore"

#SBATCH –t 3-0 # 3-day wallclock (max is 7-0)

Set up to use a chemistry app

module purge

module load apps/gcc/gromacs/2023.3/double

Inform app how many cores to use

export OMP_NUM_THREADS=$SLURM_NTASKS

This job runs "gromacs"

mdrun_d

$SLURM_NTASKS is automatically set to
the number, 4 in this case, given on -n
line. Will be 1 in "serial" partition.

Our app wants OMP_NUM_THREADS

environment variable to be set.
Your app might use a different method!

myparajob.txt

Parallel jobscript - Multi-core (cont…)

• That was a multicore (single compute node) example

• Using an app named Gromacs as an example
https://ri.itservices.manchester.ac.uk/csf3/software/applications/gromacs/

• Requested a partition (-p) and number of cores (-n)
• Job will run the app on a single AMD "Genoa" node,

allocating multiple cores on that node to the job.

• Then informed the app to use 4 cores via
OMP_NUM_THREADS environment variable (very
common).
• Special $SLURM_NTASKS variable is always set to the number of

cores requested on the -n (--ntasks=) line.

27

• As with the serial job, submit it to the system
with
sbatch jobscript

• Monitor with squeue

• It may take longer for more cores to become
free in the system)

• You'll get the usual output file
slurm-JOBID.out

28

Parallel jobscript - Multi-core
(cont…)

Intel nodes

• If you need Intel CPUs (Haswell or Skylake
architectures), use the "multcore_small" partition
o Slurm will choose the architecture
o Force it by adding "#SBATCH -C skylake", say.
o These are older, but possibly less busy, nodes.

29

#!/bin/bash --login

#SBATCH –p multicore_small # Use the Intel CPU nodes

#SBATCH –n 4 # Can be 2-32 in multicore_small

#SBATCH –t 3-0 # 3-day wallclock limit (max 7-0)

Set up to use "gromacs"

module purge

module load apps/gcc/gromacs/2023.3/double

Inform app how many cores to use

export OMP_NUM_THREADS=$SLURM_NTASKS

This job runs "gromacs"

mdrun_d 30

Parallel Jobscript – multi-node

#!/bin/bash --login

#SBATCH –p hpcpool

#SBATCH –N 4 # Nodes: 4-32

#SBATCH –n 128 # Cores: 128-1024

#SBATCH -A hpc-projectcode

#SBATCH –t 4-0 # Max is 4-0 here

Set up to use MrBayes

module purge

module load apps/gcc/mrbayes/3.2.6

App uses MPI to run across nodes

mpirun -n $SLURM_NTASKS pmb in.nex

#! line from serial
jobscript earlier.

hpcpool is the partition name. It means: app will use multiple
compute nodes (Intel 32-core nodes, all 32 cores must be used
on each) and has fast InfiniBand networking between the nodes.

The commands we run in our job.
They will execute on the compute
nodes assigned to the job. pmb is the
app name and is started via mpirun

(very common for multi-node apps).

-n (--ntasks=) 128 is the
total number of cores
for MPI processes we
want to reserve in the
system.

Must inform the app how many cores we reserved.
$SLURM_NTASKS is automatically set to number (128)
given on -n line. mpirun accepts a "-n
numcores" flag (which is optional – mpirun reads the

-n number from Slurm if you don't supply it!!)

-A gives an account
code, needed for this
restricted partition.

-N (--nodes=) 4 is the
total number of nodes
we want to reserve in
the system.

-t wallclock time
limit for the job.
Max in hpcpool is 4
days.

Parallel jobscript - Multi-node (cont…)

• A multi-node multi-core example
• Using an app named gulp as an example

https://ri.itservices.manchester.ac.uk/csf3/software/applications/mrbayes/

• Requested a parallel environment (pe) & 128 cores
#SBATCH -p hpcpool
#SBATCH –N 4
#SBATCH –n 128
#SBATCH –A hpc-projectcode

– Informed the app to use 4 nodes (32-core Intel Skylake nodes) with 128
cores used via "mpirun -n $SLURM_NTASKS appname"

(very common – lots of apps use this method.)
– mpirun starts multiple copies of an MPI app on allocated nodes
– Special $SLURM_NTASKS variable always set to number of cores on -n line
– Can actually just use "mpirun appname" and it will use the -n number.

• Access to the "HPC Pool" requires an application form,
completed by PI/Supervisors on a per-project basis
– https://ri.itservices.manchester.ac.uk/csf3/hpc-pool/application-questions/ 31

Parallel Partitions
https://ri.itservices.manchester.ac.uk/csf3/batch/parallel-jobs/

32

Partition Name Description

multicore_small 2-32 cores, single compute node. ~4-5GB per core. Jobs will be placed on
Intel "haswell" (max 24 cores/job) or Skylake (max 32 cores/job)

-C architecture Not recommended! (haswell or skylake)

Partition Name Description

multicore 2-168 cores, single compute node. 8GB per core. Jobs will be placed on
AMD EPYC "Genoa" (max 168 cores/job)

No optional flags

• 7-day runtime limit on jobs unless otherwise indicated in table.
• Our simple jobscript did not use any of the above extra flags. Not needed in most cases.
• If you limit a job by architecture it may wait longer in the queue.

Partition Name Description

hpcpool 32 cores, multiple compute nodes. 5GB per core. Jobs will be placed on
Intel Skylake (max 32 cores/job) CPUs. Jobs must use 4-32 compute nodes.
4-day runtime limit.

-A hpc-projectcode You must have an approved HPC Pool project code.

Choosing the partition

33

• Choosing the partition is fairly simple, but:
– Check the app's webpage for advice and examples

https://ri.itservices.manchester.ac.uk/csf3/software

– Check the partition page for limits on number of cores
https://ri.itservices.manchester.ac.uk/csf3/batch-slurm/partitions/

– Avoid using #SBATCH -C architecture

• Use Intel (multicore_small) or AMD (multicore) nodes?
– Most (all) apps will run on both, but AMD nodes are newer

– The high memory nodes are all Intel CPUs (e.g., -p himem)

– There are now a lot more AMD CPUs available than Intel CPUs
▪ Submitting to multicore may result in shorter wait times

▪ multicore nodes have 8GB/core (multicore_small nodes have ~5-
6GB/core)

Parallel Software Performance
• You'll probably be running an app many times

• Worth small investigation to find optimal
performance parameters (#cores & #nodes)

– How many cores should I use?

• Do a few runs, change the number of cores

– Plot time vs number of cores

– Easy to do on CSF: remove "-n numcores" from
jobscript, add it to sbatch command instead:

sbatch -n 2 myjobscript.txt

sbatch -n 4 myjobscript.txt

sbatch -n 8 myjobscript.txt

34

To Assess Parallelism

• Plot the following against "Number of Cores":
– "Speed-up" or "Parallel Efficiency"

– Total memory usage?

• Look for the sweet-spot

• Calculate: Speed-up = T1 / TN

– Compare results against "ideal" scaling (where
N-cores makes it go N-times faster)

• Calculate: Parallel Efficiency = T1/ (N x TN)
– N = number of cores, TN = time take on N cores

• Pick a typical problem size for your work
35

Examples of Speed-up
• Data for popular Finite Element app on CSF

– The 'Time' graphs shows it getting faster. But…

36

Examples of Speed-up & Efficiency
• Example showing Speed-up and Efficiency values

– App multiplies two square matrices
• Measured a single multiplication of two 2000x2000 matrices

• The speed-up is reasonably close to “perfect” &
efficiency is reasonably close to 100% but…
– How will this scale as we go multi-node?

– How will this scale as the problem size increases?

– How will this scale on other hardware?
37

No. cores Time (Seconds) Speed-up Efficiency

1 45.0 1x 1.00

2 22.8 1.97x 0.99

4 11.7 3.84x 0.96

8 7.1 6.33x 0.80

PRACTICAL SESSION 4
Parallel job and scaling

38

Practical Session 4 - Parallel jobs

• Follow the handout ‘Practical Session 4’

– Use sbatch to submit a simple parallel (2-core)
job on the CSF

– Modify the jobscript to use different numbers of
cores

– Determine whether the application "scales" with
the number of cores.

• Exercise sheet (pdf) available at:
https://ri.itservices.manchester.ac.uk/course/rcsf/

39

MULTIPLE SIMILAR JOBS
High Throughput Computing and "Job arrays"

40

Multiple Runs of an Application

• We want to run an application many times to
process many different input files

– For example, on a desktop PC you might run

– If it takes 5 minutes to process one file, it will take
1000 x 5 minutes to process them all (~3.5 days)

41

myapp.exe -in mydata.1.tif -out myresult.1.tif

(wait for it to finish)

myapp.exe -in mydata.2.tif -out myresult.2.tif

(wait for it to finish)

myapp.exe -in mydata.3.tif -out myresult.3.tif

…

myapp.exe -in mydata.1000.tif -out myresult.1000.tif

How Not To Do It on the CSF (1)

• Inefficient method 1: one after another in one
job? sbatch jobscript-all.txt

• This is no better than the desktop PC method
42

#!/bin/bash --login

#SBATCH –p serial

#SBATCH –t 4-0 # Wallclock is 4 days for all images

myapp.exe -in mydata.1.tif -out myresult.1.tif

(will wait for it to finish)

myapp.exe -in mydata.2.tif -out myresult.2.tif

(will wait for it to finish)

myapp.exe -in mydata.3.tif -out myresult.3.tif

…

myapp.exe -in mydata.1000.tif -out myresult.1000.tif

jobscript-all.txt

How Not To Do It on the CSF (2)
• Inefficient method 2: lots of individual

jobscripts?

• Strains the batch system queue manager

• But, you will get many jobs running in parallel

– EG: approx 100-200 jobs running at same time 43

sbatch jobscript1.txt

sbatch jobscript2.txt

sbatch jobscript3.txt

…

sbatch jobscript1000.txt

#!/bin/bash --login

#SBATCH –p serial

#SBATCH –t 10 # Wallclock is 10 mins for one image

myapp.exe -in mydata.1.tif -out myresult.1.tif

jobscript1.txt

Make 1000 copies of this jobscript,
edit each one to process a different
file (mydata.2.tif, …)

Then submit each job

How To Do It - a "Job Array" Jobscript

44

#!/bin/bash --login

#SBATCH –p serial # Each task gets 1 core

#SBATCH –t 10 # 10 minutes per task

#SBATCH -a 1-1000 # 1000 tasks

echo "I am task ${SLURM_ARRAY_TASK_ID}"

myapp.exe \

-in mydata.${SLURM_ARRAY_TASK_ID}.tif \

-out myresult.${SLURM_ARRAY_TASK_ID}.tif

The commands we run in our job. They
will execute on backend nodes
(different cores and nodes for different
tasks).

-a an array job. Runs
multiple copied of the
job a specified number of
times. These are called
array tasks. Each is
numbered uniquely
1, 2, 3 …, 1000.

${SLURM_ARRAY_TASK_ID} is automatically set
by the batch system and tells us which array task
we are (1,2,…). We can use this to do something
different in array task.

1-1000 (start-end) says how many tasks to run
and how they should be numbered. Note: Can
start at 0. Can use start-end:increment to
increase the ID by more than 1.

arrayjob.txt

-t wallclock. Each individual array task
has a wallclock of 10 minutes. There is
no overall time limit for the job.

"Job Array" Jobscript

• Our app is a serial (1-core) app
– But you could use the mutlicore partition if your app is multi-core

capable.

• The total number of tasks can be 100s, 1000s, 10000s (max 25,000 on
CSF)

• The system will run many of the tasks concurrently
– Usually 100s - "High-throughput Computing"
– You get lots of work done sooner
– It will eventually churn through all of them
– They are started in numerical order but no guarantee they'll finish in that

order!

• The extra jobscript #SBATCH -a line is easy. Using the
$SLURM_ARRAY_TASK_ID number creatively is the key to job arrays.

• Note: Do not confuse Slurm's -n/--ntasks (number of cores) flag
with -a/--array (start-end for array tasks) flag. The names can be
confusing :-(

45

The $SLURM_ARRAY_TASK_ID
variable (1)

• Want to do something different in each task. EG:

– Read a different data file to process

– Pass a different parameter to an application

• You can get this different "thing" in many ways:

– EG: Use the $SLURM_ARRAY_TASK_ID in filenames:

46

image1

.dat

image99

.dat

Task 1 reads image_1.jpg writes image_1.png

Task 2 reads image_2.jpg writes image_2.png

…
Task 1000 reads image_1000.jpg writes image_1000.png

#SBATCH -a 1-1000

convert -i image_${SLURM_ARRAY_TASK_ID}.jpg \

-o image_${SLURM_ARRAY_TASK_ID}.png

The $SLURM_ARRAY_TASK_ID
variable (2)

• Or have a "master" list (a text file) of names etc

• The Nth task reads the Nth line from that text file:

https://ri.itservices.manchester.ac.uk/csf3/batch/job-arrays/ 47

• Number of lines in master file must match number of tasks
• To get number of lines in master file use:

wc -l filenamelist.txt

• bash: VAR=$(command arg1 arg2) captures output
from command and assigns to variable VAR for use later.

ptn1511.dat

ptn7235.dat

ptn7AFF.dat

ptn6E14.dat

ptn330D.dat

…

filenamelist.txt Task 1 reads ptn1511.datwrites ptn1511.dat.out

Task 2 reads ptn7235.datwrites ptn7235.dat.out

…

#SBATCH -a 1-4000

Read the Nth line of filenamelist.txt and save in variable MYFILENAME

MYFILENAME=$(awk "NR==${SLURM_ARRAY_TASK_ID}" filenamelist.txt)

Now use whatever the value of variable is in the next command

myapp.exe -input ${MYFILENAME} -output ${MYFILENAME}.out

The $SLURM_ARRAY_TASK_ID
variable (3)

• Another way to use the "master" list method

• The Nth task reads the Nth line from that text file:

https://ri.itservices.manchester.ac.uk/csf3/batch/job-arrays/ 48

znc24/100p/a1

znc24/200p/b2

ag80/100p/b1

ag81/100q/c1

ptn2/50a/a1

ptn3/50b/c1

…

foldernamelist.txt Task 1 reads znc24/100p/a1 as folder name
Task 2 reads znc24/200p/b2 as folder name
…

#SBATCH -a 1-50

Read the Nth line of foldernamelist.txt and save as $FOLDER

FOLDER=$(awk "NR==${SLURM_ARRAY_TASK_ID}" foldernamelist.txt)

Now use whatever the value of variable is in the next command

cd ~/scratch/experiments/${FOLDER}

mdrun_d

• Number of lines in master file must match number of tasks
• To get number of lines in master file use:

wc -l foldernamelist.txt

• bash: VAR=$(command arg1 arg2) captures output
from command and assigns to variable VAR for use later.

Jobarrays – squeue and scancel
• squeue shows pending and running tasks

o QOSMaxCpuPerUserLimit means the limit of number of CPUs in
use at any one time (for this user) has been reached.

o Hence some array tasks must wait until earlier ones have finished.

•

• scancel can remove all tasks or just some
scancel 1072252 Remove all running and waiting tasks
scancel 1072252_300 Remove task 300 (a bit strange)
scancel 1072252_[4000-5000] Remove last 1000 tasks

49

Jobarray Output Files

• You'll get the usual Slurm output file but
– One per task

– Potentially a lot of files!

• Look for
slurm-JOBID_TASKID.out

EG: slurm-1046732_1.out

slurm-1046732_2.out

...

slurm-1046732_1000.out

• You should delete empty / unwanted files
soon and often

50

PRACTICAL SESSION 5
Job array examples

51

Practical Session 5 – Job arrays

• Follow the handout ‘Practical Session 5’

– Modify, and run, a simple job-array jobscript to
run an app with different input values.

– Write a new job-array jobscript to do some
python image processing on a set of Hubble Ultra
Deep Field images.

• Exercise sheet (pdf) available at:
https://ri.itservices.manchester.ac.uk/course/rcsf/

52

JOB PIPELINES
Ordering jobs

53

A Job Pipeline (aka workflow)

• Suppose you have several apps that:

– Need to run in a specific order - a "pipeline"

• There is a dependency between apps

– Each might have different CPU-core and memory
requirements

– Each might take different amounts of time to run

54

1. Pre-processing job:
raw.dat to clean.dat
- Serial (1-core)
- Low memory
- Runs for several hours

2. Main processing job:
Analyse clean.dat to
result.dat

- Parallel (multi-core)
- High memory
- Runs for many days

3. Post-processing job:
Graphs from result.dat
to graphs.png
- Serial (1-core)
- Low memory
- Runs for under one hour

How not to do it on the CSF (1)

55

#!/bin/bash --login

#SBATCH –p himem # Uses a high-memory node

#SBATCH –-mem 2000G # … with 2TB of RAM

#SBATCH -n 16 # … and 16 cores

#SBATCH –t 7-0 # … for 7 days

module purge

module load apps/………

First app (1-core, low memory usage)

preproc -in raw.dat -out clean.dat

Second app (multiple cores, high memory usage)

mapper -p $SLURM_NTASKS -in clean.dat -out result.dat

Third app (1-core, low memory usage)

drawGraphs -in result.dat -out graphs.png

mypipeline_bad.txt

• Put all steps in one job?

– Wastes resources (some cores and memory)

– May go over 7-day runtime limit

Only one
command uses
all of the cores

Better but still not perfect

56

#!/bin/bash --login

#SBATCH –p serial # 1-core job

#SBATCH –t 0-2 # 2 hour wallclock

module load apps/………

First 'job' (1-core, low memory usage)

preproc -i raw.dat -o clean.dat

firstjob.txt

• Split into multiple jobs, notice when jobs finish, submit next…?
– Log in to CSF, check if previous job has finished…. wastes time!

#!/bin/bash --login

#SBATCH –p himem # Uses a high-memory node

#SBATCH –-mem 2000G # … with 2TB RAM

#SBATCH -n 16 # … and 16 cores

#SBATCH –t 7-0 # … 7 day wallclock

module load apps/………

Second 'job' (multiple cores, high memory usage)

mapper -p $SLURM_NTASKS -i clean.dat -o result.dat

secondjob.txt

#!/bin/bash --login

#SBATCH –p serial # 1-core job

#SBATCH –t 30 # 30 minute wallclock

module load apps/………

Third 'job' (1-core, low memory usage)

drawGraphs -i result.dat -o graphs.png

thirdjob.txt

sbatch firstjob.txt

(now you need to wait until this job has finished before submitting the next one!)
sbatch secondjob.txt

(now you need to wait until this job has finished before submitting the next one!)
sbatch thirdjob.txt

A serial job
(no wasted
cores)

A parallel,
high-mem
job

A serial job
(no wasted
cores)

How to do it - Job Dependencies

• Using the previous individual jobscripts
– Add a –d / --dependency= flag when submitting them
– Use the JOBID of the previous job to make the current job wait for it

– The afterok flag means do not run this job until the earlier dependency job
has finished successfully.

– Note, you cannot you use jobscript names. You must use the JOBID of an
earlier job.

– There are lots of dependency parameters (e.g, afterany, afternotok, and
multiple dependencies can be setup.)

57

sbatch firstjob.txt

Submitted batch job 1074214

sbatch -d afterok:1074214 secondjob.txt

Submitted batch job 1074217

sbatch –d afterok:1074217 thirdjob.txt

Submitted batch job 1074232

Job Dependencies

58

• You must submit the jobs in the correct order

– EG: If secondjob.txt is submitted first, it runs
immediately (no dependency job exists to wait for)

• squeue shows(Dependency) for jobs on hold

• Later jobs may still wait to be scheduled

– They don't always run immediately after earlier jobs
finish

Job Dependencies

59

• Can submit the jobs in a more programmatic
manner:

– Use --parsable flag to get just the JOBID of the
submitted job (instead of 'long' message):

• sbatch myjobscript

Subimtted batch job 1074233

• sbatch --parsable myjobscript

1074233

– Capture output of command into shell variable

JOBID=$(sbatch --parsable firstjob.txt)

JOBID=$(sbatch --parsable -d afterok:$JOBID secondjob.txt)

JOBID=$(sbatch --parsable -d afterok:$JOBID thirdjob.txt)

Job-Array Dependencies (1)

60

• An ordinary job can wait for a job array to finish

– All tasks in the job array must have finished
#!/bin/bash --login

#SBATCH –p serial # 1-core job

#SBATCH –t 30 # 30 minute wallclock

#SBATCH -a 1-1000 # Job array with 1000 tasks

convert img.${SLURM_ARRAY_TASK_ID}.tif img.${SLURM_ARRAY_TASK_ID}.pdf

arrayjob.txt

#!/bin/bash --login

#SBATCH –p serial # 1-core job

#SBATCH –t 5 # 5 minute wallclock

zip conference.zip img.*.pdf

zipjob.txt

JID=$(sbatch --parsable arrayjob.txt)

sbatch –d afterok:$JID zipjob.txt

arrayjob.txt running zipjob.txt running
1

1000

2
Add a job dependency so that second job
waits until entire job-array has finished.

Job-Array Dependencies (2)

61

• A job array can wait for a job array to finish

– All tasks in the first job array must have finished
#!/bin/bash --login

#SBATCH -p serial # 1-core job

#SBATCH –t 30 # 30 minute wallclock for each task

#SBATCH -a 1-1000 # Job array with 1000 tasks

someapp data.${SLURM_ARRAY_TASK_ID}.xyz data.${SLURM_ARRAY_TASK_ID}.dat

arrayjob1.txt

#!/bin/bash --login

#SBATCH -p multicore # Multicore job

#SBATCH –n 4 # Each task can use 4 cores.

#SBATCH –t 60 # 60 minute wallclock for each task

#SBATCH -a 1-1000 # Job array with 1000 tasks

otherapp data.${SLURM_ARRAY_TASK_ID}.dat result.${SLURM_ARRAY_TASK_ID}.dat

arrayjob2.txt

arrayjob1.txt running arrayjob2.txt running
1

1000

2

1
2

1000

JID=$(sbatch --parsable arrayjob1.txt)

sbatch –d afterok:$JID arrayjob2.txt

Add a job dependency so that second
job array waits until entire first job-array has
finished.

Job-Array Dependencies (3)

62

• A job array can wait for a job array to finish

– Each task in second job array waits for
corresponding task in first job array to finish

#!/bin/bash --login

#SBATCH -p serial # 1-core job

#SBATCH –t 30 # 30 minute wallclock for each task

#SBATCH -a 1-1000 # Job array with 1000 tasks

someapp data.${SLURM_ARRAY_TASK_ID}.xyz data.${SLURM_ARRAY_TASK_ID}.dat

arrayjob1.txt

#!/bin/bash --login

#SBATCH -p multicore # Multicore job

#SBATCH –n 4 # Each task can use 4 cores.

#SBATCH –t 60 # 60 minute wallclock for each task

#SBATCH -a 1-1000 # Job array with 1000 tasks

otherapp data.${SLURM_ARRAY_TASK_ID}.dat result.${SLURM_ARRAY_TASK_ID}.dat

arrayjob2.txt

JID=$(sbatch --parsable arrayjob1.txt)

sbatch –d aftercorr:$JID arrayjob2.txt

Add a job dependency so that second
job array tasks wait for corresponding tasks in
first job-array to finish.

arrayjob1.txt tasks running then arrayjob2.txt tasks
1

1000

2
1

2

1000

INTERACTIVE JOBS
Compute apps with GUIs

63

Interactive work

• Some apps (eg Rstudio, VMD, molden, paraview) may have a GUI but
should not be run on the login node.
o The GUI itself might be quite a light-weight program, but if you then load a

huge dataset in, or set off some long-running multi-process computation, via
the GUI, you'll "hammer" the login node.

• Use the srun command to get an interactive session on a compute node

We are on the login node here
module purge
module load apps/gcc/R/4.5.0
module load apps/binapps/rstudio/2025.05.0-any-r
srun -p interactive -t 60 -n 1 rstudio vehicles.R

• No dedicated resource, priority to batch jobs.
• Runs on an AMD 168-core node, hence 8GB per core.
• Max 60 minutes wallclock limit.
• Remember - a GUI app, as with gedit, needs an X-server running on

your PC (as provided by MobaXTerm, or X-Quartz, or a Linux desktop)
• Remember to exit your GUI app when you have finished so the resource is

made available for others. 64

65

Interactive work (2)

66

GPU Jobs
Accessing the GPUs

67

Nvidia GPUs
• CSF3 has 168 x Nvidia GPUs

o A100(80GB), L40S are available to all users. The A100(40GB) GPUs are for a
specific research group.

68

84 x Ampere A100 GPUs in total – 4 GPUs/node
80GB(76x) or 40GB(8x) GPU mem, Mem b/w 2TB/s
6912 CUDA cores (108 Multiprocessors, 64 cores/MP)
432 Tensor cores
Peak FP64 9.7 TFLOPS
48-core AMD Epyc "Milan"
512GB RAM host node
40GB A100 nodes restricted to one research group

84 x Ada Lovelace L40S GPUs in total – 4 GPUs/node
48GB GPU memory, Mem bandwidth 864GB/s
18176 CUDA cores (142 Multiprocessors, 128 cores/MP)
142 RT cores
568 Tensor cores
Peak SP 91.6 TFLOPS
48-core Intel Xeon Gold "Sapphire Rapids"
512GB RAM host node

69

GPU Jobscript

#!/bin/bash --login

#SBATCH –p gpuX # Partition (A,L)

#SBATCH –G 2 # GPUs: 1-4

#SBATCH –n 8 # Cores: 1-8,12

#SBATCH –t 4-0 # Max is 4-0 here

Set up to use the CUDA toolkit

module purge

module load libs/cuda/12.4.1

Run a GPU app. Slurm will ensure no

other jobs can use your GPUs.

deviceQuery

gpuA, gpuL, or gpuA40GB is the partition name. It means: app will use a
GPU compute node containing the indicated type of GPU - A100, L40S or
gpuA40GB (this one has restricted access.)

-n (--ntasks=) 8 is the
total number of host
CPU cores we want to
reserve in the system.

-G (--gpus=) 2 is the
total number of
GPUs we want to
reserve in the system.

-t wallclock time
limit for the job.
Max in gpuX is 4

days.

Slurm will set some environment variables for use in your jobscript:
$CUDA_VISIBLE_DEVICES gives the device IDs (0 or 0,1 or 0,1,2 or 0,1,2,3)
depending number of GPUs.
$SLURM_GPUS gives the number of GPUs you request on the -G line.
$SLURM_NTASKS as previous jobs, the number on the –n (host CPU cores).

GPU Limits
• Most users get access to up to two GPUs from the gpuA or gpuL partitions, in use at any

one time with a max of 4 overall (e.g., 2xA100 and 2xL40S.)
– This is "free at point of use access", funded by the Research Lifecycle Programme, managed

by Research IT.
– Users from some contributing groups who have funded GPUs may get access to more GPUs.
– All GPU nodes contain 4 GPUs. Multi-node (>4 GPU jobs) are NOT possible.

• CPU host cores are limited by number of GPUs in job and by node-type

– Note that unless the jobscript contains the -n flag, jobs will only have one host CPU core.

– Many GPU apps can still make use of multiple host CPU cores for some of their processing.

70

GPU Partition (GPU
type)

Host CPU type Max host CPU
cores per GPU

Host RAM per
CPU core (GB)

Max host RAM
per GPU (GB)

gpuA (A100 80GB) 48-core AMD EPYC
"Milan"

12 10.4 125

gpuL (L40s) 48-core Intel Xeon
"Sapphire Rapids"

12 10.4 125

gpuA40GB (A100 40GB) 48-core AMD EPYC
"Milan"

12 10.4 125

Other GPU Notes
• GPUs are run in DEFAULT compute mode (not
EXCLUSIVE_PROCESS.)
– You can run multiple processes / apps on the same GPU – e.g.,

several small chemistry simulations.
• You can monitor your GPU jobs by accessing the compute node

and GPU once your job as started.
– Use the srun command on the login node to "login" to the compute

node and resource container where your job is running:
srun --jobid=JOBID --pty bash
(wait until you are logged into the compute node where you job is
running. You'll see the same GPUs.)
nvidia-smi
or, for example:
module load libs/cuda/12.4.1
ncu-ui or nvvp (or other Nvidia tool)

• A quick exercise 6:
– If you are logged-in to the CSF, try editing

the ~/training/RCSF/examples/dq_gpu.sbatch jobscript
(change the -p line to request one of the gpuV, gpuA or
gpuL partitions.) Then submit the job.

– It runs the Nvidia deviceQuery utility to return some stats
about the GPU assigned to your job.

71

High Memory Jobs
Accessing the high memory nodes

72

High Memory Jobs

• So far, our serial and parallel jobs have access to
a fixed amount of memory
– The partitions provide a specific amount of memory

per core.
▪ e.g. the multicore partition provides 8GB/core

– If you want more memory, you need to request
more cores.

– Max in multicore is ~ 1.5 TB if all 168 cores used.
– Can be very wasteful of CPU resources

• The himem and vhimem partitions provide
access to more memory (up to 2TB and 4TB.)
– Memory is a "consumable" - the amount of memory

can be requested independently of the number of
cores.

73

Do you need more memory?

• If a job fails and reports an "OOM" error in
the slurm-JOBID.out file, you should
request more memory.

• You can also check a previous job to see how
much memory it used with "seff"

74

[mabcxyz1@login1[csf3] ~]$ seff 12345

Job ID: 12345
Cluster: csf3.man.alces.network
User/Group: username/xy01

State: COMPLETED (exit code 0)
Nodes: 1

Cores per node: 2
CPU Utilized: 00:04:13
CPU Efficiency: 49.41% of 00:08:32 core-walltime

Job Wall-clock time: 00:04:16
Memory Utilized: 21.45 GB # Peak memory usage

Memory Efficiency:33.5% of 64.00 GB # A low memory efficiency means this job did NOT need
to use the himem partition. You should check this.

High-memory Compute Nodes
• The 2TB (himem) partition contains various Intel

compute nodes.
– Slurm will place your job on any of the node-types that

have enough resources (memory, cores) as requested by
your job.

• The 4TB (vhimem) partition is restricted
– Please request access via the Connect Portal
– We will need evidence from previous jobs that you need

>2TB of RAM.

75

Partition
(required)

Default job
mem-per-core
if memory not
requested (GB)

Max job
size
(cores)

Max job
memory
(GB)

Arch Flag (optional, but
will activate specific
limits shown in the next
columns)

Max job size
(cores)

Max job
memory
(GB)

Has SSD
storage

Old SGE flag
(DO NOT
USE)

himem 31 32 2000 -C haswell 16 496 No mem512

-C cascadelake 32 1472 No mem1500

-C icelake

(also ssd)
32 2000 Yes mem2000

vhimem 125 32 4000 -C icelake

(also ssd)
32 4000 Yes mem4000

High Memory Jobscripts

76

#!/bin/bash --login

#SBATCH –p himem # Partition

#SBATCH –n 2 # Cores: Can be 1-32

#SBATCH --mem=1200G # Total memory for the job

#SBATCH –t 4-0 # Wallclock (max is 7-0 here)

Set up to use your app

module purge

module load apps/gcc/something/1.2.3

Run a GPU app. Slurm will ensure no

someApp -in hugh_dataset.dat -out results.dat

#!/bin/bash --login

#SBATCH –p himem # Partition

#SBATCH –n 2 # Cores: Can be 1-32

#SBATCH --mem-per-cpu=600G # OR specify the Memory per Core

(note: name of flag uses 'cpu')

#SBATCH –t 4-0 # Wallclock (max is 7-0 here)

OTHER PARALLEL HARDWARE
What else is available?

77

HPC Pool

• Dedicated pool for HPC jobs
– 4096 cores of Infiniband connected Skylake

– Minimum 128-core job size, maximum 1024

– Frontend shared with CSF3
• You just submit HPC jobs like any other CSF job (with a

different "partition" name and an account code.)

– Lightweight application process – must be made by PI

– Currently free

https://ri.itservices.manchester.ac.uk/csf3/hpc-pool

78

N8 Bede (NICE)

• 32 IBM Power 9 dual-CPU nodes
o Each node comprises 4 NVIDIA V100 GPUs and high

performance interconnect.
• 5 Nvidia GH200 Grace Hopper nodes
o Each node comprises 1x NVIDIA H100 96GB with 900

GB/s NVLink-C2C and 1x NVIDIA Grace aarch64 CPU @
3.483 GHz (72 Arm Neoverse V2 cores)

• Same architecture as the US government’s SUMMIT
and SIERRA supercomputers which occupied the
top two places in a recently published list of the
world’s fastest supercomputers.

• Contact Research IT for advice
• https://n8cir.org.uk/supporting-research/facilities/bede/docs/

79

ARCHER2

• National supercomputer funded by UK Research
Councils
– Archer2 has replaced Archer which was 118,080 cores

– Now 5,848 compute nodes, each with dual AMD EPYC
Zen2 (Rome) 64 core CPUs at 2.2GHz, giving 748,544
cores in total.

– Estimated peak performance of 28 PFLOP/s

• Mostly open source / free HPC software

• See https://www.archer2.ac.uk/
– Info for how to apply for access

• Applications assessed for suitability

• IT Services can help you apply for access 80

FINAL POINTS
Further info

81

News

• MOTD when you log into the CSF - please read it

• Problems e.g. system down, can’t log in, minor
changes to the service (and other services - e.g
storage):

https://ri.itservices.manchester.ac.uk/services-news/

• Prolonged problems or major changes emailed to
all users

82

https://ri.itservices.manchester.ac.uk/csf3/help/

• CSF Slurm documentation
https://ri.itservices.manchester.ac.uk/csf3/batch-slurm/

• Job Arrays - multiple similar jobs from a single submission script
https://ri.itservices.manchester.ac.uk/csf3/batch-slurm/job-arrays-slurm/

• SSHFS - another means of file transfer
https://ri.itservices.manchester.ac.uk/userdocs/file-transfer/

Virtual Desktop Service – another means of connecting and running
GUIs and logging in from off campus
https://ri.itservices.manchester.ac.uk/virtual-desktop-service/

• Please give feedback: Quick form at
https://goo.gl/forms/zfZyTLw4DDaySnCF3
(choose "Introduction to HPC (Using CSF)")

83Thank you!

