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10. Probability measures on compact metric

spaces

§10.1 The space M(X)

In all of the examples that we shall consider, X will be a compact metric
space and B will be the Borel σ-algebra.

We will also be interested in the space of continuous R-valued functions

C(X, R) = {f : X → R | f is continuous}.

This space is also a metric space. We can define a metric on C(X, R) by
first defining

‖f‖∞ = sup
x∈X

|f(x)|

and then defining
ρ(f, g) = ‖f − g‖∞.

This metric turns C(X, R) into a complete1 metric spaces. Note also that
C(X, R) is a vector space.

An important property of C(X, R) that will prove to be useful later on
is that it is separable, that is, it contains countable dense subsets.

Rather than fixing one measure on (X,B), it is interesting to consider
the totality of possible (probability) measures. To formalise this, let M(X)
denote the set of all probability measures on (X,B). The following simple
fact will be useful later on.

Proposition 10.1

The space M(X) is convex: if µ1, µ2 ∈ M(X) and 0 ≤ α ≤ 1 then αµ1 +
(1 − α)µ2 ∈ M(X).

Exercise 10.1

Prove the above proposition.

§10.2 The weak∗ topology on M(X)

It will be very important to have a sensible notion of convergence in M(X);
this is called weak∗ convergence. We say that a sequence of probability
measures µn weak∗ converges to µ, as n → ∞ if, for every f ∈ C(X, R),

∫

f dµn →

∫

f dµ, as n → ∞.

1Recall that a metric space is said to be complete if every Cauchy sequence is conver-

gent.
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If µn weak∗ converges to µ then we write µn ⇀ µ. (Note that with this
definition it is not necessarily true that µn(B) → µ(B), as n → ∞, for B ∈
B.) We can make M(X) into a metric space compatible with this definition
of convergence by choosing a countable dense subset {fn}

∞
n=1 ⊂ C(X) and,

for µ,m ∈ M(X), and setting

d(µ,m) =

∞
∑

n=1

1

2n‖fn‖∞

∣

∣

∣

∣

∫

fn dµ −

∫

fn dm

∣

∣

∣

∣

.

However, we will not need to work with a particular metric: what is impor-
tant is the definition of convergence.

Notice that there is a continuous embedding of X in M(X) given by the
map X → M(X) : x 7→ δx, where δx is the Dirac measure at x:

δx(A) =

{

1 if x ∈ A,
0 if x /∈ A,

(so that
∫

f dδx = f(x)).

Exercise 10.2

Show that the map δ : X → M(X) is continuous. (Hint: This is really just
unravelling the underlying definitions.)

Exercise 10.3

Let X be a compact metric space. For µ ∈ M(X) define

‖µ‖ = sup
f∈C(X),‖f‖∞≤1

∣

∣

∣

∣

∫

f dµ

∣

∣

∣

∣

.

We say that µn converges strongly to µ if ‖µn − µ‖ → 0 as n → ∞. The
topology this determines is called the strong topology (or the operator topol-
ogy).

(i) Show that if µn → µ strongly then µn ⇀ µ in the weak∗ topology.

(ii) Show that X ↪→ M(X) : x 7→ δx is not continuous in the strong
topology.

(iii) Prove that ‖δx − δy‖ = 2 if x 6= y. (You may use Urysohn’s Lemma:
Let A and B be disjoint closed subsets of a metric space X. Then
there is a continuous function f ∈ C(X, R) such that 0 ≤ f ≤ 1 on X
while f ≡ 0 on A and f ≡ 1 on B.)

Hence prove that M(X) is not compact in the strong topology when
X is infinite.

Exercise 10.4

Give an example of a sequence of measures µn and a set B such that µn ⇀ µ
but µn(B) 6→ µ(B).
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§10.3 M(X) is weak∗ compact

We can use the Riesz Representation Theorem to establish another impor-
tant property of M(X): that it is compact.

Theorem 10.2

Let X be a compact metric space. Then M(X) is weak∗ compact.

Proof. In fact, we shall show that M(X) is sequentially compact, i.e., that
any sequence µn ∈ M(X) has a convergent subsequence. For convenience,
we shall write µ(f) =

∫

f dµ.
Since C(X, R) is separable, we can choose a countable dense subset of

functions {fi}
∞
i=1 ⊂ C(X). Given a sequence µn ∈ M(X), we shall first

consider the sequence of real numbers µn(f1) ∈ R. We have that |µn(f1)| ≤
‖f1‖∞ for all n, so µn(f1) is a bounded sequence of real numbers. As such,

it has a convergent subsequence, µ
(1)
n (f1) say.

Next we apply the sequence of measures µ
(1)
n to f2 and consider the

sequence µ
(1)
n (f2) ∈ R. Again, this is a bounded sequence of real numbers

and so it has a convergent subsequence µ
(2)
n (f2).

In this way we obtain, for each i ≥ 1, nested subsequences {µ
(i)
n } ⊂

{µ
(i−1)
n } such that µ

(i)
n (fj) converges for 1 ≤ j ≤ i. Now consider the

diagonal sequence µ
(n)
n . Since, for n ≥ i, µ

(n)
n is a subsequence of µ

(i)
n ,

µ
(n)
n (fi) converges for every i ≥ 1.

We can now use the fact that {fi} is dense to show that µ
(n)
n (f) converges

for all f ∈ C(X, R), as follows. For any ε > 0, we can choose fi such that

‖f−fi‖∞ ≤ ε. Since µ
(n)
n (fi) converges, there exists N such that if n,m ≥ N

then
|µ(n)

n (fi) − µ(m)
m (fi)| ≤ ε.

Thus if n,m ≥ N we have

|µ(n)
n (f) − µ(m)

m (f)| ≤ |µ(n)
n (f) − µ(n)

n (fi)| + |µ(n)
n (fi) − µ(m)

m (fi)|

+ |µ(m)
m (fi) − µ(m)

m (f)|

≤ 3ε,

so µ
(n)
n (f) converges, as required.

To complete the proof, write w(f) = limn→∞ µ
(n)
n (f). We claim that w

satisfies the hypotheses of the Riesz Representation Theorem and so corre-
sponds to integration with respect to a probability measure.

(i) By construction, w is a linear mapping: w(λf +µg) = λw(f)+µw(g).

(ii) As |w(f)| ≤ ‖f‖∞, we see that w is bounded.

(iii) If f ≥ 0 then it is easy to check that w(f) ≥ 0. Hence w is positive.
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(iv) It is easy to check that w is normalised: w(1) = 1.

Therefore, by the Riesz Representation Theorem, there exists µ ∈ M(X)

such that w(f) =
∫

fdµ. We then have that
∫

fdµ
(n)
n →

∫

fdµ, as n → ∞,

for all f ∈ C(X, R), i.e., that µ
(n)
n converges weak∗ to µ, as n → ∞. 2
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