# 7. More on uniform distribution

### §7.1 Generalisation to Higher Dimensions

We shall now look at the distribution of sequences in  $\mathbb{R}^k$ .

**Definition.** A sequence  $x_n = (x_n^1, \dots, x_n^k) \in \mathbb{R}^k$  is said to be uniformly distributed mod 1 if, for each choice of k intervals  $[a_1, b_1], \dots, [a_k, b_k] \subset [0, 1)$ , we have that

$$\frac{1}{n} \sum_{j=0}^{n-1} \prod_{i=1}^k \chi_{[a_i,b_i]}(\{x_j^i\}) \to \prod_{i=1}^k (b_i - a_i), \text{ as } n \to \infty.$$

We have the following criterion for uniform distribution.

## Theorem 7.1 (Multi-dimensional Weyl's Criterion)

The sequence  $x_n \in \mathbb{R}^k$  is uniformly distributed mod 1 if and only if

$$\frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i (\ell_1 x_j^1 + \dots + \ell_k x_j^k)} \to 0, \quad \text{as } n \to \infty,$$

for all  $\ell = (\ell_1, \dots, \ell_k) \in \mathbb{Z}^k \setminus \{0\}.$ 

**Remark.** Here and throughout  $0 \in \mathbb{Z}^k$  denotes the zero vector  $(0, \dots, 0)$ .

**Proof.** The proof is essentially the same as in the case k = 1.

We shall apply this result to the sequence  $x_n = (n\alpha_1, \dots, n\alpha_k)$ , for real numbers  $\alpha_1, \dots, \alpha_k$ .

Suppose first that the numbers  $\alpha_1, \ldots, \alpha_k, 1$  are rationally independent. This means that if  $r_1, \ldots, r_k, r$  are rational numbers such that

$$r_1\alpha_1 + \dots + r_k\alpha_k + r = 0,$$

then  $r_1 = \cdots = r_k = r = 0$ . In particular, for  $\ell = (\ell_1, \dots, \ell_k) \in \mathbb{Z}^k \setminus \{0\}$  and  $n \in \mathbb{N}$ ,

$$\ell_1 n \alpha_1 + \cdots + \ell_k n \alpha_k \notin \mathbb{Z},$$

so that

$$e^{2\pi i(\ell_1 n\alpha_1 + \dots + \ell_k n\alpha_k)} \neq 1.$$

We therefore have that

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i (\ell_1 j \alpha_1 + \dots + \ell_k j \alpha_k)} \right| = \left| \frac{1}{n} \frac{e^{2\pi i n (\ell_1 \alpha_1 + \dots + \ell_k \alpha_k)} - 1}{e^{2\pi i (\ell_1 \alpha_1 + \dots + \ell_k \alpha_k)} - 1} \right|$$

$$\leq \frac{1}{n} \frac{2}{|e^{2\pi i (\ell_1 \alpha_1 + \dots + \ell_k \alpha_k)} - 1|} \to 0, \quad \text{as } n \to \infty.$$

Therefore, by Weyl's Criterion,  $(n\alpha_1, \ldots, n\alpha_k)$  is uniformly distributed mod 1.

Now suppose that the numbers  $\alpha_1, \ldots, \alpha_k, 1$  are rationally dependent. Then there exists  $\ell = (\ell_1, \ldots, \ell_k) \in \mathbb{Z}^k \setminus \{0\}$  such that

$$\ell_1 \alpha_1 + \dots + \ell_k \alpha_k \in \mathbb{Z}.$$

Thus  $e^{2\pi i(\ell_1 n\alpha_1 + \dots + \ell_k n\alpha_k)} = 1$  for all  $n \in \mathbb{N}$  and so

$$\frac{1}{n} \sum_{i=0}^{n-1} e^{2\pi i (\ell_1 j \alpha_1 + \dots + \ell_k j \alpha_k)} = 1 \not\to 0, \quad \text{as } n \to \infty.$$

Therefore,  $(n\alpha_1, \ldots, n\alpha_k)$  is not uniformly distributed mod 1.

### §7.2 Generalisation to polynomials

We shall now consider another generalisation of the sequence  $n\alpha$ . Write

$$p(n) = \alpha_k n^k + \alpha_{k-1} n^{k-1} + \dots + \alpha_1 n + \alpha_0.$$

### Theorem 7.2 (Weyl)

If any one of  $\alpha_1, \ldots, \alpha_k$  is irrational then p(n) is uniformly distributed mod 1.

To prove this theorem we shall need the following technical result.

### Lemma 7.3 (van der Corput's Inequality)

Let  $z_0, \ldots, z_{n-1} \in \mathbb{C}$  and let  $1 \leq m \leq n-1$ . Then

$$m^{2} \left| \sum_{j=0}^{n-1} z_{j} \right|^{2} \leq m(n+m) \sum_{j=0}^{n-1} |z_{j}|^{2} + 2(n+m) \operatorname{Re} \sum_{j=1}^{m-1} (m-j) \sum_{i=0}^{n-1-j} z_{i+j} \bar{z}_{i}.$$

Let  $x_n \in \mathbb{R}$ . For each  $m \geq 1$  define the sequence  $x_n^{(m)} = x_{n+m} - x_n$  of  $m^{\text{th}}$  differences. The following lemma allows us to infer the uniform distribution of the sequence  $x_n$  if we know the uniform distribution of the each of the  $m^{\text{th}}$  differences of  $x_n$ .

### Lemma 7.4

Let  $x_n \in \mathbb{R}$  be a sequence. Suppose that for each  $m \geq 1$  the sequence  $x_n^{(m)}$  of  $m^{\text{th}}$  differences is uniformly distributed mod 1. Then  $x_n$  is uniformly distributed mod 1.

**Proof.** We shall apply Weyl's Criterion. We need to show that if  $\ell \in \mathbb{Z} \setminus \{0\}$  then

$$\frac{1}{n}\sum_{i=0}^{n-1}e^{2\pi i\ell x_j}\to 0,\quad \text{as }n\to\infty.$$

Let  $z_j = e^{2\pi i \ell x_j}$  for  $j = 0, \dots, n-1$ . Note that  $|z_j| = 1$ . Let 1 < m < n. By van der Corput's inequality,

$$\frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \leq \frac{m}{n^2} (n+m) n + \frac{2(n+m)}{n} \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-1-j} e^{2\pi i \ell (x_{i+j}-x_i)}$$

$$= \frac{m}{n} (m+n) + \frac{2(n+m)}{n} \operatorname{Re} \sum_{j=1}^{m-1} (m-j) A_{n,j}$$

where

$$A_{n,j} = \frac{1}{n} \sum_{i=0}^{n-1-j} e^{2\pi i \ell(x_{i+j} - x_i)} = \frac{1}{n} \sum_{i=0}^{n-1-j} e^{2\pi i \ell x_i^{(j)}}.$$

As the sequence  $x_i^{(j)}$  of  $j^{\text{th}}$  differences is uniformly distributed mod 1, by Weyl's criterion we have that  $A_{n,j} \to 0$  for each  $j = 1, \ldots, m-1$ . Hence for each  $m \ge 1$ 

$$\limsup_{n \to \infty} \frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \limsup_{n \to \infty} m \frac{(n+m)}{n} = m.$$

Hence, for each m > 1 we have

$$\limsup_{n \to \infty} \frac{1}{n} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right| \le \frac{1}{\sqrt{m}}.$$

As m > 1 is arbitrary, the result follows.

**Proof of Weyl's Theorem.** We will only prove Weyl's theorem in the special case where the leading digit  $\alpha_k$  of

$$p(n) = \alpha_k n^k + \dots + \alpha_1 n + \alpha_0$$

is irrational. (The general case, where  $\alpha_i$  is irrational for some  $1 \leq i \leq k$  can be deduced very easily from this special case, but we will not go into this.)

We shall use induction on the degree of p. Let  $\Delta(k)$  denote the statement 'for every polynomial q of degree  $\leq k$ , with irrational leading coefficient, the sequence q(n) is uniformly distributed mod 1'. We know that  $\Delta(1)$  is true.

Suppose that  $\Delta(k-1)$  is true. Let  $p(n) = \alpha_k n^k + \cdots + \alpha_1 n + \alpha_0$  be an arbitrary polynomial of degree k with  $\alpha_k$  irrational. For each  $m \in \mathbb{N}$ , we have that

$$p(n+m) - p(n)$$

$$= \alpha_k (n+m)^k + \alpha_{k-1} (n+m)^{k-1} + \dots + \alpha_1 (n+m) + \alpha_0$$

$$- \alpha_k n^k - \alpha_{k-1} n^{k-1} - \dots - \alpha_1 n - \alpha_0$$

$$= \alpha_k n^k + \alpha_k k n^{k-1} m + \dots + \alpha_{k-1} n^{k-1} + \alpha_{k-1} (k-1) n^{k-2} h$$

$$+ \dots + \alpha_1 n + \alpha_1 m + \alpha_0 - \alpha_k n^k - \alpha_{k-1} n^{k-1} - \dots - \alpha_1 n - \alpha_0.$$

After cancellation, we can see that, for each m, p(n+m)-p(n) is a polynomial of degree k-1, with irrational leading coefficient  $\alpha_k km$ . Therefore, by the inductive hypothesis, p(n+m)-p(n) is uniformly distributed mod 1. We may now apply Lemma 7.4 to conclude that p(n) is uniformly distributed mod 1 and so  $\Delta(k)$  holds. This completes the induction.

### Exercise 7.1

Let  $p(n) = \alpha_k n^k + \alpha_{k-1} n^{k-1} + \cdots + \alpha_1 n + \alpha_0$ ,  $q(n) = \beta_k n^k + \beta_{k-1} n^{k-1} + \cdots + \beta_1 n + \beta_0$ . Show that (p(n), q(n)) is uniformly distributed mod 1 if at least one of  $(\alpha_k, \beta_k, 1), \ldots, (\alpha_1, \beta_1, 1)$  is rationally independent.