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Abstract

We give a classification, up to Morita equivalence, of 2-blocks of quasi-simple

groups with abelian defect groups. As a consequence, we show that Donovan’s

conjecture holds for elementary abelian 2-groups, and that the entries of the

Cartan matrices are bounded in terms of the defect for arbitrary abelian 2-

groups. We also show that a block with defect groups of the form C2m ×C2m for

m ≥ 2 has one of two Morita equivalence types and hence is Morita equivalent

to the Brauer correspondent block of the normaliser of a defect group. This

completes the analysis of the Morita equivalence types of 2-blocks with abelian

defect groups of rank 2, from which we conclude that Donovan’s conjecture holds

for such 2-groups. A further application is the completion of the determination

of the number of irreducible characters in a block with abelian defect groups of

order 16. The proof uses the classification of finite simple groups.

1 Introduction

Let k be an algebraically closed field of prime characteristic ℓ, and let O be a discrete
valuation ring with residue field k. Let G be a finite group, and let B be a block of the
group algebra OG with defect group D. Assume that O contains a primitive |D|-th
root of unity.

The motivation for this paper is Donovan’s conjecture, which states that for a fixed
ℓ-group D, there should only be a finite number of Morita equivalence classes of blocks
with defect groups isomorphic to D. This conjecture is stated for blocks with respect
to k, but it is also expected to hold for blocks with respect to O (however, there are key
results used in reduction arguments for the conjecture that at present are only known
for k).
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The main result is that every 2-block of a quasi-simple group with an abelian defect
group is either one of a short list of exceptional cases or is Morita equivalent over O to
either a block covered by a nilpotent block, or to a tensor product of a nilpotent block
with a block with Klein 4-defect groups (see Theorem 6.1). Blocks covered by nilpotent
blocks are treated in [34], where it is shown that they are Morita equivalent to their
Brauer correspondent in the normaliser of a defect group. The Morita equivalences are
achieved through the Bonnafé-Rouquier correspondence.

The above may be viewed as being in the spirit of Walter’s classification of simple
groups with abelian Sylow 2-subgroups, and it is hoped that it will eventually be used
to tackle Donovan’s conjecture for 2-blocks with arbitrary abelian defect groups. We
begin here with some cases which we may tackle with tools already at our disposal.

We prove that Donovan’s conjecture holds for 2-blocks with elementary abelian
defect groups (Theorem 8.3). In this case we are restricted to blocks defined over k
because we are reliant on the results of [24].

A conjecture of Brauer (from his Problem 22) represents a weak version of Donovan’s
conjecture. It states that for a given ℓ-group D, there is a bound on the entries of the
Cartan matrix of a block with defect groups isomorphic to D. This conjecture has
been reduced to quasi-simple groups by Düvel in [11]. We use our main result to show
that the conjecture holds for all abelian 2-groups (Theorem 9.2).

We also consider the case that D is abelian of rank 2, so that D is isomorphic to a
direct product C2m × C2n of two cyclic subgroups C2m and C2n . If m 6= n, then every
block with defect group D is necessarily nilpotent. The case m = n = 1 is the Klein
4-case, which is already well known by [14]. We show the following:

Theorem 1.1 Let G be a finite group and B a block of OG with defect group D.
Suppose that D ∼= C2m × C2m for some m ≥ 2. Then B is Morita equivalent to either
OD or O(D ⋊ C3).

By the remarks above, this completes the analysis of 2-blocks with abelian defect
groups of rank 2, including the verification of Donovan’s conjecture for these groups.

We are also able to show that Donovan’s conjecture holds for groups of the form
C2m × C2m × C2 for m ≥ 3 (Theorem 11.1).

Finally, we complete the determination of the number of irreducible characters
and irreducible Brauer characters in a block with abelian defect groups of order 16
(Theorem 10.4). This was completed modulo one case in [26].

The structure of the paper is as follows: In Section 2 we collect together some
results which we will use later. In Section 3 we give an analysis of finite groups of
quotients of Levi subgroups with abelian Sylow 2-subgroups which will be important
in later arguments.

As mentioned above, the main result uses the Bonnafé-Rouquier Morita equivalence.
However, this equivalence only applies to finite groups of Lie type in the strict sense.
In Section 4 we show that the Bonnafé-Rouquier Morita equivalence induces Morita
equivalences on certain quotient groups, so that it applies to the associated simple
group.

Section 5 contains the analysis of 2-blocks of finite groups of Lie type defined over
fields of odd characteristic. The structure is presented in more detail than in the
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statement of the main result. In Section 6 we prove the main theorem. In Section 7
we consider blocks with homocyclic defect groups and prove Theorem 1.1. We prove
Donovan’s conjecture for elementary abelian 2-groups in Section 8.

In Section 9 we prove that the weak version of Donovan’s conjecture holds for
abelian 2-groups. In Section 10 we treat blocks with elementary abelian defect groups
of order 16 and inertial index 15, so completing the work of [26]. Finally in Section 11
we prove that Donovan’s conjecture holds for groups C2m × C2m × C2 for m ≥ 3.

2 Background material

For G a finite group, we will use the term “ℓ-block of G” to denote either a block of
OG or kG; the base ring will be specified as needed.

We will make frequent use of the following, which apply for any prime ℓ:

Proposition 2.1 ([37]) Let B be an ℓ-block of a finite group G and let Z ≤ Z(G)
be an ℓ-subgroup. Let B̄ be the unique block of G/Z corresponding to B. Then B is
nilpotent if and only if B̄ is nilpotent.

Proposition 2.2 ([25]) Let G be a finite group and N ✁G. Let B be a block of OG
with defect group D covering a nilpotent block b of ON with defect group D ∩ N and
stabiliser H. Then there is a finite group L and M ✁ L such that (i) M ∼= D ∩ N ,
(ii) L/M ∼= H/N , (iii) there is a subgroup DL of L with DL

∼= D and M ≤ DL, and
(iv) there is a central extension L̃ of L by an ℓ′-group, and a block B̃ of OL̃ which is
Morita equivalent to B and has defect group D̃ ∼= D.

We will show that many blocks of finite groups of Lie type are covered by a nilpotent
block. These blocks have very nice properties, as shown by Puig.

Definition 2.3 We say that a block B of a finite group G is nilpotent-covered if there
exists a group G̃ containing G as a normal subgroup, and a nilpotent block B̃ of G̃
covering B.

Proposition 2.4 ([34]) Every nilpotent-covered block B of OG with defect group D
is Morita equivalent to its Brauer correspondent in ONG(D).

Proof. This is part of Corollary 4.3 of [34]. ✷

Lemma 2.5 Let G be a finite group and N ✁G with Z(N) ≤ Z(G). Let b̄ be a block
of N/Z(N), and let b be the unique block of N corresponding to b̄ with Oℓ′(Z(N)) in
its kernel. Then b is covered by a nilpotent block of G if and only if b̄ is covered by a
nilpotent block of G/Z(N).

Proof. This is an almost immediate corollary of Proposition 2.1. ✷

The main result of [23] applies particularly well to blocks with elementary abelian
defect groups:
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Proposition 2.6 Let G be a finite group and let B be a block of kG with elementary
abelian defect group D and suppose N ✂ G with G = ND. If B covers a G-stable
block b of kN , then there is an elementary abelian ℓ-group Q such that B is Morita
equivalent to a block C of k(N ×Q) with defect group (D ∩N)×Q ∼= D.

Proof. We may write D = (D ∩ N) × Q for some Q ≤ D. By the main result
of [23], B ∼= kQ ⊗k b as k-algebras. Observe that kQ ⊗k b is a block of N × Q with
defect group D = (D ∩N)×Q. ✷

For dealing with finite simple groups, a powerful reduction is provided by a theorem
of Bonnafé and Rouquier [4]. However, to effectively use the Bonnafé-Rouquier results,
we will need also to have a version for simple Chevalley groups which are not groups of
Lie type (the main cases in question are the simple groups of type E7, where the finite
group of Lie type has either a centre of order two or a normal subgroup of index two).
This will be done in Section 4 using the following well known result. A proof is given
for the convenience of the reader.

Lemma 2.7 Let G and H be finite groups, b and c be block idempotents of OG and
OH respectively. Let M be an (OGb,OHc)-bimodule, and let Z be an ℓ-group embedded
as a central subgroup of both G and H. Let Ḡ = G/Z, H̄ = H/Z, and let b̄ (respectively
c̄) be the image of b (respectively c) in OG/Z (respectively OH/Z) under the canonical
surjection OG → OG/Z (respectively OH → OH/Z).

Suppose that zm = mz for all z ∈ Z and all m ∈ M . Then O ⊗OZ M is an
(OḠb̄,OH̄c̄)-bimodule via ḡ(1⊗m)h̄ = 1⊗ gmh, g ∈ G, h ∈ H,m ∈ M . If M ⊗OHc −
induces a Morita equivalence between OHc and OGb, then (O⊗OZ M)⊗OH̄c̄− induces
a Morita equivalence between OH̄c̄ and OḠb̄.

Proof. The first assertion is straightforward. Since zm∗ = m∗z for all z ∈ Z, m∗ ∈
M∗ we have similarly that O ⊗OZ M∗ is an (OH̄c̄,OḠb̄)-bimodule via h̄(1 ⊗m∗)ḡ =
1 ⊗ hm∗g, g ∈ G, h ∈ H,m∗ ∈ M∗. We also have that in M ⊗OHc M

∗, z(m ⊗m∗) =
(m⊗m∗)z and in M∗⊗OGbM , z(m∗⊗m) = (m∗⊗m)z for all z ∈ Z, m ∈ M , m∗ ∈ M∗.
Further, (O ⊗OZ M) ⊗OH̄c̄ (O ⊗OZ M∗) ∼= O ⊗OZ (M ⊗OHc M

∗) as (OḠb̄,OH̄c̄)-
bimodule via 1 ⊗ m ⊗ 1 ⊗ m∗ → 1 ⊗ m ⊗ m∗, for m ∈ M , m∗ ∈ M∗ and similarly,
(O⊗OZM

∗)⊗OḠb̄(O⊗OZM) ∼= O⊗OZ (M
∗⊗OGbM) as an (OH̄c̄,OḠb̄)-bimodule. The

result follows since O⊗OZOGb ∼= OḠb̄ as an (OḠb̄,OḠb̄)-bimodule and O⊗OZOHc ∼=
OH̄c̄ as an (OH̄c̄,OH̄c̄)-bimodule. ✷

This is easily extended to the following:

Lemma 2.8 Let G1, . . . , Gt and H1, . . . , Ht be finite groups. Let bi be a block idempo-
tent of OGi and ci be a block idempotent of OHi for i = 1, . . . , t. Write G = G1×· · ·×Gt

and H = H1×· · ·×Ht. Write b = b1 · · · bt and c = c1 · · · ct, so that b is a block idempo-
tent of OG and c is a block idempotent of OH. Let Mi be an (OGbi,OHci)-bimodule
and let Zi be an ℓ-group embedded as a central subgroup of both Gi and Hi. Write
Ḡi = Gi/Zi and H̄i = Hi/Zi. Write M = M1⊗O · · · ⊗O Mt, an (OGb,OHc)-bimodule.

Suppose that zimi = mizi for all zi ∈ Zi and all mi ∈ Mi. Let Z ≤ Z1×· · ·×Zt, and
write Ḡ = G/Z and H̄ = H/Z. Let b̄ (resp. c̄) be the block of Ḡ (resp. H̄) correspond-
ing to b (resp. c). Then O⊗OZM is an (OḠb̄,OH̄c̄)-bimodule via ḡ(1⊗m)h̄ = 1⊗gmh,
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g ∈ G, h ∈ H,m ∈ M . If Mi ⊗OHici − induces a Morita equivalence between OHici
and OGibi for each i, then (O ⊗OZ M) ⊗OH̄c̄ − induces a Morita equivalence between
OH̄c̄ and OḠb̄.

3 On Levi subgroups with abelian Sylow 2-subgroups

Let F be an algebraically closed field of characteristic p > 0 and let G be a connected
reductive group defined over F with a Steinberg endomorphism F : G → G, and
G = GF the finite group of fixed points. Define q so that Fq is the field of definition of
G.

Recall that G = Z◦(G)[G,G], where Z◦(G) is the connected centre of G, and that
the derived subgroup [G,G] of G is a semi-simple group, that is [G,G] is a commuting
product of simple groups, called the components of G. We assume throughout this
section that the fixed point subgroup of no F -orbit of components of G is isomorphic
to a Suzuki or Ree group.

Lemma 3.1 Suppose that p is odd and [G,G] is simply connected (that is [G,G] is a
direct product of its components, each of which is simply connected).

(i) If G has abelian Sylow 2-subgroups, then G is a torus.

(ii) Suppose that G has non-abelian Sylow 2-subgroups, but for some central
2-subgroup Z of G, G/Z has abelian Sylow 2-subgroups. Then all compo-
nents of G are of type A1. Further, if {X1,X2, . . . ,Xr} is an F -orbit of
components of [G,G], then qr ≡ ±3 (mod 8), Z ∩ (

∏
1≤i≤r Xi)

F 6= 1 and

Z◦(G)F ∩ (
∏

1≤i≤r Xi)
F = 1.

Proof. The first statement is well-known. We prove (ii). Let {X1, . . . ,Xs} be
the set of components of [G,G] and let {X1, . . . ,Xr}, 1 ≤ r ≤ s be an F -orbit
of components such that F (Xi) = Xi+1 for 1 ≤ i ≤ r − 1 and F (Xr) = X1. Then
(
∏

i Xi)
F ∼= XF r

1 , and denoting by Z ′ the image of Z∩(
∏

i Xi)
F under this isomorphism,

XF r

1 /Z ′ has abelian Sylow 2-subgroups. It follows thatX1 is of type A1, X
F r

1
∼= SL2(q

r)
with qr ≡ ±3 (mod 8) and that Z ′ is the unique central subgroup of order 2 of XF r

1 . In
other words, Z ∩ (

∏
1≤i≤r Xi)

F is generated by (z1, F (z1), . . . , F
r−1(z1)) =: ζ where z1

is the unique involution in the centre of X1. It remains only to show that ζ /∈ Z◦(G).
Suppose the contrary. The multiplication map µ : Z◦(G) × [G,G] → G is surjective
with kernel ∆(Z◦(G)∩ [G,G]), where ∆(Z◦(G)∩ [G,G]) is the diagonally embedded
copy of Z◦(G)∩ [G,G] in Z◦(G)× [G,G]. Let A denote the inverse image under µ of
G. So,

A = {(u, g) : u ∈ Z◦(G), g ∈ [G,G] such that u−1F (u) = gF (g−1)}.

Let τ1 : A → X1 be the (restriction to A of the) projection of Z◦(G) × [G,G] =
Z◦(G)×X1 × · · · ×Xs onto X1. Since A contains Z◦(G)F × [G,G]F , XF r

1 ≤ τ1(A).
By the Lang-Steinberg theorem, there exist 2-elements u ∈ Z◦(G) and g ∈ [G,G]

such that u−1F (u) = ζ = gF (g−1). In particular, (u, g) ∈ A. Write g = (x1, . . . , xs),
xi ∈ Xi. The equation ζ = gF (g−1) implies that x1 = (z1)

rF r(x1). Since qr ≡ ±3
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(mod 8), r is odd, hence τ1(u, g) = x1 /∈ XF r

1 . Consequently, a Sylow 2-subgroup
of τ1(A) properly contains a Sylow 2-subgroup of XF r

1 and it follows that the Sylow
2-subgroups of τ1(A) are non-abelian of order at least 16. Since X1 is of type A1, any
finite 2-subgroup of X1 is cyclic or quaternion. Hence the Sylow 2-subgroups of τ1(A)
are quaternion of order at least 16.

Let S be a Sylow 2-subgroup of A. By hypothesis, [µ(S), µ(S)] ≤ Z and the
inverse image under µ of Z is a central subgroup of Z◦(G) × [G,G] (note that
Z◦(G)× Z([G,G]) is the full inverse image under µ of Z(G) and Z ≤ Z(G)). Hence,
[S, S] ≤ Z(S) from which it follows that [τ1(S), τ1(S)] ≤ τ1(Z(S)) ≤ Z(τ1(S)), a
contradiction. ✷

We now fix a maximal torus T of G and assume that F has odd characteristic.
Let X(T) be the group of rational characters of T, Y (T) the group of one-parameter
subgroups of G, and <,>: X(T) × Y (T) → Z the canonical exact pairing. Let
Φ ⊂ X(T) be the set of roots of G with respect to T, Φ∨ the corresponding set of
coroots and I ⊂ Φ a set of fundamental roots corresponding to a Borel subgroup of
G containing T. For each α ∈ Φ, denote by Uα the corresponding root subgroup of
G and let φα : SL2(F) → 〈Uα,U−α〉 be a surjective homomorphism such that the
image of the group of upper triangular matrices is Uα and the image of the group of
lower triangular matrices is U−α (see [10, Prop. 0.44]). If β ∈ Φ and a ∈ F

×, then
β(φα(

a 0
0 a−1 )) = a<β,α∨>.

For J ⊆ I, let ΦJ be the set of roots which are in the subspace of R ⊗ X(T)
generated by J . The group MJ := 〈Uα,U−α : α ∈ ΦJ〉 is the derived subgroup of the
Levi subgroup LJ := 〈T,MJ〉 of G and any Levi subgroup of G is conjugate to LJ

for some J ⊆ I. All components of MJ are of type A1 if and only if for each α, β ∈ J
with α 6= β, < α, β∨ >= 0 and in this case, MJ =

∏
α∈J〈Uα,U−α〉. Further, if G

is simply connected, then the product
∏

α∈J〈Uα,U−α〉 is direct and for all α ∈ J , φα

is an isomorphism. In particular, if G is simply connected and char(F) is odd, then
zα := φα(

−1 0
0 −1 ) is the unique central element of order 2 in 〈Uα,U−α〉.

Lemma 3.2 Suppose that char(F) is odd and that G is simple and simply connected.
Let ∅ 6= J ⊆ I such that if α, β ∈ J with α 6= β, then < α, β∨ >= 0. Let z :=

∏
α∈J zα

and suppose that z ∈ Z(G).

(i) Suppose that G is of type An, n ≥ 1. Let I = {α1, . . . , αn}, where αi, αi+1,
1 ≤ i ≤ n− 1 are consecutive nodes in the corresponding Dynkin diagram. Then
n is odd and J = {α1, α3, α5, . . . , αn−2, αn}.

(ii) Suppose that G is of type Bn, n ≥ 2. Let I = {α1, . . . , αn}, where αi, αi+1,
1 ≤ i ≤ n − 1 are consecutive nodes in the corresponding Dynkin diagram and
there is a double arrow from αn−1 to αn. Then J = {αn}.

(iii) Suppose that G is of type Cn, n ≥ 3. Let I = {α1, . . . , αn}, where αi, αi+1,
1 ≤ i ≤ n−1 are consecutive nodes in the corresponding Dynkin diagram and there
is a double arrow from αn to αn−1. If n is even, then J = {α1, α3, . . . , αn−3, αn−1}.
If n is odd, then J = {α1, α3, . . . , αn−2, αn}.
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(iv) Suppose that G is of type Dn, n ≥ 4 . Let I = {α1, . . . , αn}, where αi, αi+1,
1 ≤ i ≤ n − 2 are consecutive nodes and αn and αn−2 are connected. Then
either J = {αn−1, αn} or n is even and J is one of {α1, α3, . . . , αn−3, αn−1} or
{α1, α3, . . . , αn−3, αn}.

(v) Suppose G is of type E7. Let I = {α1, . . . , α7}, such that I−{α2} corresponds to
the Dynkin diagram of type A6 and α2 is connected to α5. Then J = {α1, α2, α4}.

Proof. Let α, β ∈ I. Then as explained above, β(zα) = (−1)<β,α∨>. By hypoth-
esis, z ∈ Z(G) whence

∏
α∈J β(zα) = β(z) = 1 for all β ∈ Φ (see [10, Prop 0.35]).

So, if < β, α∨ > is odd (that is equals −1 or −3) and for all γ ∈ J different from α,
< β, γ∨ > is even (that is equals 0 or ±2) , then α /∈ J . We will systematically use this
observation. Also note that since the elements of J are pairwise orthogonal, J does
not contain any pair of consecutive nodes.

Suppose first that G is of type An, n ≥ 1. Then, < αi, α
∨
j > is odd if and only

if j = i ± 1. So, α2 is the unique element of I such that < α1, α
∨
2 > is odd. By the

observation above α2 /∈ J . We claim that α1 ∈ J . Indeed, suppose not and let i be
the least integer such that αi ∈ J . Then i ≥ 3 and < αi−1, α

∨
j > is odd if and only if

j = i− 2 or i. Since αi−2 /∈ J , it follows that i /∈ J , a contradiction. Thus, α1 ∈ J and
α2 /∈ J . The result follows by repeating the argument.

Suppose that G is of type Bn, n ≥ 2. Then, < αi, α
∨
j > is odd if and only if

1 ≤ i, j ≤ n − 1 and j = i ± 1 or i = n and j = n − 1. In particular, < αn, α
∨
j > is

odd if and only if j = n − 1, hence αn−1 /∈ J . If n = 2, the result is proved. Suppose
that n ≥ 3. Then < αn−1, α

∨
j > is odd if and only if j = n − 2, hence αn−2 /∈ J .

Suppose that n ≥ 4 and let i be the greatest integer such that i ≤ n − 3 and i ∈ J .
Then < αi+1, α

∨
j > is odd if and only if j = i or j = i + 2. By maximality of i,

n− 1 ≥ i+ 2 /∈ J , hence i /∈ J , a contradiction. Thus, J = {αn}.
Suppose that G is of type Cn, n ≥ 3. Then, < αi, α

∨
j > is odd if and only if

1 ≤ i, j ≤ n − 1 and j = i ± 1 or i = n − 1 and j = n. Suppose first that n − 1 ∈ J .
Then n−3 ∈ J as < αn−2, α

∨
j > is odd if and only if j = n−1 or n−3. Continuing like

this, we get that n is even and J = {α1, α3, . . . , αn−1}. Now suppose that αn−1 /∈ J .
We claim that αn ∈ J . Indeed, suppose not and let i be the greatest integer such
that αi ∈ J . Then i ≤ n − 2, and < αi+1, α

∨
j > is odd if and only if either j = i or

j = i+ 2. Since i+ 2 /∈ J , i /∈ J , a contradiction. Thus, αn ∈ J from which it follows
that n− 2 ∈ J . Continuing, one obtains that n is odd and J = {α1, α3, . . . , αn}.

Suppose that G is of type Dn. Then, αn−2 /∈ J since < αn, α
∨
j > is odd if and only

if j = n− 2. Suppose first that αn−3 /∈ J . Then it follows that αi /∈ J for any i ≤ n− 3
whence J ⊆ {αn−1, αn} and consequently J = {αn−1, αn}. The case that αn−3 ∈ J
leads to the conclusion that n is even and J is one of the two sets claimed.

Finally suppose that G is of type E7. Then, < α1, α
∨
j > is odd if and only if j = 3,

hence α3 /∈ J . Also, < α4, α
∨
j > is odd if and only if j = 3 or j = 5, hence α5 /∈ J .

Since < α6, α
∨
j > is odd if and only if j = 7 or j = 5, α7 /∈ J . Since < α7, α

∨
j > is odd

if and only if j = 6, α6 /∈ J . Similarly, it follows that α2 ∈ J if and only if α4 ∈ J if
and only if α1 ∈ J . Hence J = {α1, α2, α4} as claimed. ✷

Lemma 3.3 Keep the notation and hypothesis of Lemma 3.2. Let LJ = 〈T,Uα,U−α :
α ∈ J〉 be the Levi subgroup corresponding to J .
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(i) If G is of type Bn, n ≥ 2, or Cn, n ≥ 3 and n even, then Z(LJ) is connected.

(ii) If G is of type Cn, n odd, then the components of L are not transitively permuted
by NW (WJ).

Proof. (i) Let P be the subgroup of X(T) generated by the αi, i ∈ J . It suffices
to show that X(T)/P is torsion-free (see for instance [10, Lemma 13.14]). Keep the
labelling of the fundamental roots introduced in Lemma 3.2. Let qi, 1 ≤ i ≤ n be
the set of fundamental weights corresponding to Φ, Φ∨ and I. Thus qi are vectors in
R ⊗ X(T) defined by < qi, α

∨
j >= δi,j , 1 ≤ i, j ≤ n. Since G is simply connected,

X(T) equals the subgroup of R⊗X(T) generated by the fundamental weights.
Suppose that G is of type Bn, n ≥ 2. Then R ⊗X(T) may be identified with an

n-dimensional Euclidean space with an orthonormal basis e1, . . . , en such that under
this identification,

α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en

and

q1 = e1, q2 = e1 + e2, . . . , qn−1 = e1 + · · ·+ en−1, qn =
1

2
(e1 + e2 + · · ·+ en).

So, X(T) is generated by e1, e2, . . . en, qn and e1, e2, . . . , en−1, qn is a basis of X(T). By
Lemma 3.2, P = Zen. So, X(T)/P is free with basis e1, . . . , en−2, qn.

Suppose that G is of type Cn, n ≥ 3. Then R ⊗ X(T) may be identified with an
n-dimensional Euclidean space with an orthonormal basis e1, . . . , en such that under
this identification,

α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en

and

q1 = e1, q2 = e1 + e2, . . . , qn−1 = e1 + · · ·+ en−1, qn = e1 + e2 + · · ·+ en.

So, e1, e2, . . . , en−1, en is a basis of X(T).
If n is even, then by Lemma 3.2,

P = Z(e1 − e2)⊕ Z(e3 − e4)⊕ · · · ⊕ Z(en−1 − en)

and X(T)/P is free with generators e1 + P, e2 + P, . . . , en−2 + P .
(ii) Suppose thatG is of type Cn, n odd. By Lemma 3.2, J = {α1, α3, . . . , αn−2, αn}.

Now, αn = 2en, αi = ei − ei+1 for 1 ≤ i ≤ n − 1 and for any i, 1 ≤ i ≤ n and any
w ∈ W , w(ei) = ±ej, hence αn is not in the same W -orbit as αi for any i ≤ n− 1. ✷

We assume from now on that T is F -stable. Recall that to any F -stable Levi
subgroup L of G is associated a pair (J, w), where w ∈ W , J ⊂ I such that wFJ = J
and L = gLJ for some g ∈ G with g−1F (g) ∈ NG(T) whose image in W = NG(T)/T
is w. Moreover, LF ∼= LwF

J (see [10, Prop. 4.3]).
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Proposition 3.4 Suppose that F has odd characteristic, G is simple and simply con-
nected and that T is F -stable. Let L be an F -stable non-toral Levi subgroup of G, Z
a central 2-subgroup of G. Suppose that the Sylow 2-subgroups of LF/Z are abelian.
Then,

(i) F has only one orbit on the set of components of [L,L].

(ii) [L,L]F ∼= SL2(q
t), q ≡ ±3 (mod 8), where t is odd and equals the number of

components of [L,L]. Further, LF is a direct product of [L,L]F and Z◦(L)F .

Let P be a Sylow 2-subgroup of LF and write P = P0 × P1 where P0 ≤ Z◦(L)F and
P1 ≤ [L,L]F . Then P1 is quaternion of order 8, Z ∩ P1 is the central subgroup of
[L,L]F and P1/(Z ∩ P1) is a Klein 4-group. Moreover, one of the following holds

(a) G is of type An, n + 1 = 2t, P0 is trivial and Z has order 2. In particular,
P/Z ∼= C2 × C2.

(b) G is of type Dn, n = 2t, G is of untwisted type Dn(q) and either Z is of order 2
or a Klein 4-group. If q ≡ 3 (mod 4), then P0 has order 2 and P/Z is elementary
abelian of order 8 or a Klein 4-group, depending on whether Z has order 2 or 4. If
q ≡ 1 (mod 4), then P0 has order 4 and P/Z is isomorphic to C4 × C2 × C2 or is
elementary abelian of order 8, depending on whether Z has order 2 or 4.

(c) G is of type E7 and t = 3.

Proof. Note that |LF | = |Z◦(L)F ||[L,L]F | . So, if Z◦(L) ∩ [L,L]F = 1, then
LF is a direct product of Z◦(L)F and [L,L]F . Thus, (ii) is a consequence of (i) and
Lemma 3.1.

We prove (i). By Lemma 3.1 (applied to L), Z and hence O2(G) is non-trivial.
Hence, G is of type An, Bn, Cn, Dn or E7. Similarly we may also assume that G is
not of type 3D4(q). Let (J, w) be associated to L as explained above. The F -orbits
of L on the components of L correspond to wF -orbits of J . Hence it suffices to prove
that there is only one wF -orbit on J . Let J1 ⊂ J be a wF -orbit of J of size t. By
Lemma 3.1, [LJ1 ,LJ1 ]

wF ∼= [L,L]F ∼= SL2(q
t), where qt ≡ ±3 (mod 8). So, t is odd.

Also by Lemma 3.1 and transport of structure, we have [LJ1 ,LJ1 ]
wF ∩Z 6= 1 (here note

that any G-conjugate of Z equals Z). So, in particular [LJ1 ,LJ1 ]∩Z(G) 6= 1. We now
apply Lemma 3.2 and Lemma 3.3 to J1 (note that by Lemma 3.1, all components of
LJ have rank 1).

Suppose G is of type An. Then by Lemma 3.2, n is odd and J1 = {α1, α3, . . . , αn}.
So, n + 1 = 2t. It also follows that J = J1, since J1 is the only subset of J with the
required properties. Thus, all statements for type An are proved except the assertion
on P1 being trivial. For this, we use the order formulas for Z◦(L)wF given in [7].

By Proposition 7 and 8 of [7], we see that |Z◦(L)F | = qt−1
q−1

if G is untwisted and

|Z◦(L)F | = qt+1
q+1

if G is twisted. Since t is odd, in either case, we have that |Z◦(L)F | is
odd. This proves the proposition for groups of type An.

Suppose G is of type Bn. Then by Lemma 3.2, J = J1 = {αn}. By Lemma 3.3,
Z◦(LI) is connected, hence Z ≤ Z◦(LI). But by Lemma 3.1 Z ∩ [LJ ,LJ ]

wF 6= 1 and
Z◦(L) ∩ [LJ ,LJ ]

wF = 1, a contradiction.
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Suppose G is of type Cn. If n is even, then by Lemma 3.1 we are done by the same
argument as for type Bn. Suppose that n is odd. Since G is of type Cn, we may assume
that F acts trivially on I. Then, by Lemma 3.3 (ii), we get that there are at least two
wF -orbits on J . But Z ≤ Z(G) is cyclic, and by Lemma 3.1, for each wF -orbit J ′ of
J , [LJ ′ ,LJ ′ ]F intersects Z non-trivially, a contradiction.

Suppose G is of type Dn. Since |J1| = t is odd, J1 6= {αn−1, αn}. Hence, by
Lemma 3.2, n is even and J1 is one of {α1, α3, . . . , αn−3, αn−1} or {α1, α3, . . . , αn−3, αn}.
In any case J = J1 and n = 2t. If G is of type 2Dn, we may assume that F (αn−1) = αn

and F (αi) = αi for all i, 1 ≤ i ≤ n−2. But then wF (J) 6= J for any w ∈ W , hence there
is no F -stable Levi subgroup corresponding to J . By [7, Prop. 10], Z◦(L)F ∼= Z◦(LI)

wF

is cyclic of order (qt − 1) which proves all the assertions for the case G is of type Dn.
If G is of type E7, then by Lemma 3.2, J = J1 = {α1, α2, α4}. ✷

4 On Bonnafé-Rouquier equivalences and central

extensions

We keep the notation of Section 3. We assume throughout this section also that the
fixed point subgroup of no F -orbit of components of G is isomorphic to a Suzuki or
Ree group. We assume in this section that ℓ is a prime different from p. We briefly
recall the standard set-up for describing the representation theory of G.

Let T be an F -stable maximal torus of G, and G∗ be a group in duality with G
with respect to T and with corresponding Steinberg homomorphism again denoted by
F . Set G∗ = G∗F . By the fundamental results of Lusztig, the set of complex irreducible
characters of G is a disjoint union of rational Lusztig series E(G, s), where s runs over
semi-simple elements of G∗ up to conjugation. Further, by results of Broué-Michel and
Hiss, for any ℓ-block B of G, there is a unique G∗-conjugacy class of ℓ′-elements s such
that B contains a complex irreducible character in E(G, s). We will call such an s a
semi-simple label of B.

Let L be an F -stable Levi subgroup of G such that CG∗(s) ≤ L∗, where L∗ is a
Levi subgroup of G∗ in duality with L. Then Lusztig induction provides a one-one
correspondence between ℓ-blocks of LF with semi-simple label s and ℓ-blocks of G with
semi-simple label s. If a block B of G and a block C of LF are related in this way,
then B and C are said to be Bonnafé-Rouquier correspondents (see Definition 7.7 of
[22]). By [4, Theorem B’, §11], if B and C are Bonnafé-Rouquier correspondents, then
B and C are Morita equivalent. We show next that this equivalence is preserved on
passing to quotients by central ℓ-subgroups.

Proposition 4.1 Let L be an F -stable Levi subgroup of G, L := LF , B a block of OG
and C a block of OL in Bonnafé-Rouquier correspondence with B. Let Z be a central
ℓ-subgroup of G contained in L, and let B̄ (respectively C̄) be the block of O(G/Z)
(respectively O(L/Z)) corresponding to B (respectively C). Then B̄ and C̄ are Morita
equivalent.

Proof. LetV be the unipotent radical of some parabolic subgroup ofG containing
L as Levi complement. By [4, Theorem B’, §11], C and B are isomorphic via a (B,C)-
bimodule M which is isomorphic to a direct summand of the ℓ-adic cohomology module
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Hr
c (X,Zℓ)⊗Zℓ

O, where X is the (G,L)-variety consisting of cosets gV in G such that
g−1F (g) ∈ V · FV and where the action of G is by left multiplication and that of L
is by right multiplication. By Lemma 2.7 and the functoriality of ℓ-adic cohomology
with respect to finite morphisms, it suffices to note that zgV = gVz for all g ∈ G and
all z ∈ Z (here we use the fact that Z(G) ≤ Z(G)). ✷

The next result gives a sufficient condition for an ℓ-block of G to be nilpotent-
covered.

Lemma 4.2 Let B be a block of OG and let s ∈ G∗ be a semi-simple label of B. If
C◦

G∗(s) is a torus, then there exists a finite group G̃ such that G ✂ G̃, Z(G) ≤ Z(G̃)
and a nilpotent block B̃ of OG̃ covering B. If CG∗(s) is a torus, then B is nilpotent.

Proof. Let ι : G → G̃, where G̃ is a connected reductive group with connected
centre such that [G̃, G̃] = [G,G], with corresponding Steinberg homomorphism again
denoted F and let ι∗ : G̃∗ → G∗ be the corresponding dual map (see Section 2, [3]).
Set G̃ = G̃F . Then Z(G) = Z(G)F ≤ Z(G̃)F . Let B̃ be a block of OG̃ covering B
and let s̃ ∈ G̃∗F be a semi-simple label of B̃. We may assume that s = ι∗(s̃) and hence
that C

G̃∗(s̃) = C◦

G̃∗(s̃) is the inverse image of C◦
G∗(s) in G̃∗(see [3, Prop. 11.7]). So,

C
G̃∗(s̃) is a maximal torus of G̃∗. By the Bonnafé-Rouquier theorem, it follows that

B̃ is Morita equivalent to a block of C
G̃∗(s̃)F . Since C

G̃∗(s̃)F is an abelian group and
Morita equivalence preserves nilpotency of blocks (see [32, 8.2]), B̃ is nilpotent. The
second assertion follows by the same argument replacing G̃ by G. ✷

5 On abelian 2-blocks of finite reductive groups in

odd characteristic

We keep the notation and assumptions of the previous section. Our aim in this section
is to determine the structure of all 2-blocks of G when p is odd and G is simply
connected whose defect groups become abelian on passing to the quotient by a central
2-subgroup of G. This will be done in Proposition 5.3.

We first consider quasi-isolated blocks. Recall that the block B is called quasi-
isolated if CG∗(s) is not contained in any proper Levi subgroup of G∗. In this case we
call s a quasi-isolated element.

Lemma 5.1 Suppose that G = PGLn+1(F) is the adjoint group of type An and let s
be a semi-simple quasi-isolated element of G. Then, o(s) is a divisor of n + 1, C◦

G
(s)

is a Levi subgroup of G and C◦
G
(s)/Z(C◦

G
(s)) is a direct product of o(s) adjoint groups

of type An+1
o(s)

−1, that is, a direct product of o(s) copies of PGLn+1
o(s)

(F).

Proof. See table 2 of [2]. ✷

Lemma 5.2 Assume that p is odd and that G is simple and simply-connected. Let B
be a quasi-isolated 2-block of G with semi-simple label s ∈ G∗F .
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(a) Suppose that B has abelian defect groups. Then one of the following holds.

(i) G is of type An, n is even, and C◦
G∗(s) is a torus.

(ii) G is of type G2, F4, E6 or E8, s = 1 and B is of defect 0.

(b) Suppose that B has non-abelian defect groups, but for some non-trivial central 2-
subgroup Z of GF , the image B̄ of B in G/Z has abelian defect groups. Then Z
is cyclic of order 2 and one of the following holds.

(i) G is of type An, n ≡ 1 (mod 4) and the defect groups of B̄ are C2 × C2.

(ii) G is of type E7, and the defect groups of B̄ are C2 × C2.

Proof. Suppose first that G is of type Bn, (n ≥ 2), Cn, (n ≥ 3) or Dn, (n ≥ 4).
The identity is the only quasi-isolated element of odd order in G∗, (see for example
table 2 of [2]), hence s = 1 and B is unipotent. Further, the only unipotent 2-block
in classical groups is the principal block [6] (for the case G = 3D4(q), see the relevant
section of [12]). In particular, the defect groups of B are the Sylow 2-subgroups of G.
Since the Sylow 2-subgroups of G/Z are not abelian for any central subgroup of G,
neither B nor B̄ has abelian defect groups.

Suppose that G is of type G2, F4, E6 or E8. Then G has either a trivial centre or a
centre of order 3, so the hypothesis of (b) does not hold. By the lists in [12] and [22],
one sees that the only possibility for (a) to hold is s = 1 and B of defect zero.

Suppose that G is of type E7 and s = 1. By [12], the defect groups of B are non-
abelian. If Z is cyclic of order 2, then B̄ has abelian defect groups only if B̄ corresponds
to lines 3 or 7 of the table on page 354 of [12] in which case the defect groups of B are
dihedral of order 8 and those of B̄ are isomorphic to C2 × C2. If G is of type E7 and
s 6= 1, then by [22], neither B nor B̄ has abelian defect groups.

It remains to consider the case that G is of type An. Then C◦
G∗(s) is a Levi

subgroup of G∗. Let H be an F -stable Levi subgroup of G in duality with C◦
G∗(s). By

[13, Proposition 1.5], the Sylow 2-subgroups of HF are defect groups of B. Suppose
first that the Sylow 2-subgroups of HF are abelian. Then by Lemma 3.1(i) applied
to H, H and hence C◦

G∗(s) are tori. Since s has odd order, Lemma 5.1 implies that
n = o(s)− 1 is even. Now suppose that the Sylow 2-subgroups of HF are non-abelian,
and let Z be a central 2-subgroup of G such that HF/Z has abelian Sylow 2-subgroups
(note that since H is a Levi subgroup of G, Z ≤ H). By Lemma 3.1(ii) all components
of H and hence of C◦

G∗(s) are of type A1. Thus, by Lemma 5.1, n ≡ 1 (mod 4). Since
B̄ has abelian defect groups and B has non-abelian defect groups, by Proposition 3.4
and its proof, the defect groups of B̄ have order 4. On the other hand, since HF/Z has
a subgroup isomorphic to C2 × C2, the defect groups of B̄ are isomorphic to C2 × C2

as required. ✷

The notation An(q), Dn(q) etc. in the following proposition stands for the simply
connected version of the groups in question.

Proposition 5.3 Suppose that F has odd characteristic, G is simple and simply con-
nected. Let B be a 2-block of G with semi-simple label s and defect group P . Suppose
that Z ≤ O2(Z(G)) is such that P/Z is abelian and that C◦

G∗(s) is not a torus. Then,
one of the following holds.
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(i) G is of type G2, F4, E6 or E8, B is unipotent and P = 1.

(ii) G is of type E7, B is quasi-isolated, Z 6= 1 and P/Z is a Klein 4-group.

(iii) G is of type An, G ∼= An(q) or
2An(q), n+ 1 = 2t, t odd, q ≡ ±3 (mod 8), P is

quaternion of order 8 and P/Z is a Klein 4-group.

(iv) G is of type E7 or E8 and there exists an F -stable Levi subgroup L of G, and
a 2-block C of LF such that B and C are Bonnafé-Rouquier correspondents,
[L,L]F ∼= E6(q) or

2E6(q) and Z◦(L)F contains a defect group of C.

(v) G is of type Dn, G ∼= Dn(q), n = 2t, t odd, and q ≡ ±3 (mod 8) or G is of type
E7. In these cases, there exists an F -stable Levi subgroup L of G, and a 2-block C
of LF such that B and C are Bonnafé-Rouquier correspondents and the following
holds: LF = Z◦(L)F × [L,L]F and [L,L]F ∼= SL2(q

t). Let C0 (respectively C1) be
the 2-block of Z◦(L)F (respectively [L,L]F ) covered by C and let Pi, i = 0, 1 be a
defect group of Ci. Then C1 is the principal block of [L,L]F , P1 is quaternion of
order 8, Z = (Z ∩ P0)× (Z ∩ P1) and Z ∩ P1 6= 1. In particular, P1/(Z ∩ P1) is
a Klein 4-group. Further, if G is of type Dn, then P0 is cyclic of order 2 or 4.

Proof. Suppose first that G is of classical type An, Bn, Cn, Dn. Since s has odd
order and 2 is the only bad prime for classical groups, C◦

G∗(s) is a Levi subgroup of G∗

which is also F -stable since s ∈ G∗F . Denote by L an F -stable Levi subgroup of G in
duality with C◦

G∗(s). By [12, Prop. 1.5] we may assume that P is a Sylow 2-subgroup
of L. So, by Proposition 3.4, G is not of type Bn or Cn. If G is of type An, then by
Proposition 3.4, case (iii) of the proposition holds.

Suppose that G is of type Dn. Then Z(G) is a 2-group, hence CG∗(s)/C◦
G∗(s) is

a 2-group. On the other hand, the exponent of CG∗(s)/C◦
G∗(s) divides the order of s

which is odd. Hence, CG∗(s) = C◦
G∗(s) = L∗ and there is a 2-block of LF , say C, which

is a Bonnafé-Rouquier correspondent of B. Moreover, since s is central in L∗, there
exists a linear representation ŝ of LF with the same order as s and a unipotent block
C ′ of LF such that the characters of C are of the form ŝ ⊗ χ, where χ is a character
of C ′. Since the principal block in a group of type An is the only unipotent block, it
follows from Proposition 3.4(b) that case (v) of the proposition holds.

Thus, G is of the exceptional type. Let L be an F -stable Levi subgroup of G and
L∗ a Levi subgroup of G∗ in duality with L such that s is a quasi-isolated element of L∗

and CG∗(s) = CL∗(s). Let C be a 2-block of LF in Bonnafé-Rouquier correspondence
with B.

Suppose that all components of L are of type A. Then, by the same argument as
in the beginning of the proof, C◦

G∗(s) = C◦
L∗(s) is a Levi subgroup of L∗, hence of G∗

which is also F -stable. Let H ≤ L ≤ G be an F -stable Levi subgroup in duality with
C◦

L∗(s). Again, by [12, Prop. 1.5], a Sylow 2-subgroup, say P ′ of HF is a defect group
of C. By [22, Theorem 1.3] P ′/Z ∼= P/Z is abelian. By Proposition 3.1, Z 6= 1, hence
G is of type E7. In this case, Z(G) is of order 2. So, by the same argument as for
the case Dn above, CG∗(s) = C◦

L∗(s) = L∗. Now again by the same argument as given
above for type Dn and using Proposition 3.4(c), we get that case (v) of the proposition
holds.

13



We assume from now on that G is of exceptional type and L has a component
which is not of type A. Let ∆ be the set of components of [L,L] and let OrbF (∆) be
the set of F -orbits of ∆. Then,

[L,L] =
∏

δ∈OrbF (∆)

∏

X∈δ

X

so that
[L,L]F =

∏

δ∈OrbF (∆)

(
∏

X∈δ

X)F .

Let E be a block of [L,L]F covered by C and for each δ ∈ OrbF (∆), let Eδ be the
corresponding component block of (

∏
X∈δ X)F and Dδ a defect group of Eδ.

Let ι∗ : L∗ → [L,L]∗ be a map dual to the inclusion [L,L] → L chosen to be
compatible with F . Then

[L,L]∗ =
∏

δ∈OrbF (∆)

∏

X∈δ

X∗

where for each δ ∈ OrbF (∆), and X ∈ δ, X∗ is dual to X. Let s ∈ L∗F be a semi-simple
label of C and let s̄ =

∏
δ∈OrbF (∆)

∏
X∈δ s̄X be the image of s under ι∗. Then for each

δ ∈ OrbF (∆),
∏

X∈δ sX is a semi-simple label of Eδ. Since s is quasi-isolated in G∗,
s̄ is quasi-isolated in [L,L]F (see [2, Prop. 2.3]), and consequently,

∏
X∈∆ sX is quasi-

isolated in
∏

X∈δ X
∗. Further, if X ∈ δ, then through the isomorphism of (

∏
Y∈δ Y)F

with XF |δ|
induced by projection onto X, Eδ is identified with a block of XF |δ|

with
quasi-isolated semi-simple label sX.

Let δ ∈ OrbF (∆) and X ∈ δ be such that X is not of type An. By Lemma 5.2, X
is not of type Bn, Cn or Dn. If X is of type G2 or F4, then L = G, Z = 1 and by
Lemma 5.2, B is unipotent, and P = 1, so (i) of the proposition holds.

SupposeX is of type E6. ThenG is of type E6, E7 or E8 and by rank considerations,
δ = {X}. Further, Z ∩X = 1. So Dδ is abelian and by Lemma 5.2 , Eδ is a unipotent
block of defect 0. If G is of type E6, then G = L = X, whence B is a unipotent
block with trivial defect groups, that is (i) holds. Suppose G is of type E7. By rank
considerations, L = Z◦(L)X. Let M = Z◦(L)FXF . Then M is a normal subgroup of
LF and LF/M is abelian of order |Z◦(L)F ∩ XF |. In particular [LF : M ] is 1 or 3,
which means that D ≤ M . Since Dδ = 1, and since D is a defect group of a block of
M covered by C and Z◦(L)F and XF commute with each other, we may assume that
D ≤ Z◦(L)F . So (iv) of the proposition holds.

Now suppose that G is of type E8. Either L = Z◦(L)X or [L,L] = Y ×X, where
Y is of type A1. In the former case, we argue as above to conclude that case (iv) holds.
Since Z = 1, by Lemma 5.2, L has no component of type A1. This rules out the latter
case.

Suppose that X is of type E7. Then G is of type E7 or of type E8 and δ consists of
a single component. Suppose G is of type E7. Then L = G and hence by Lemma 5.2,
B is quasi-isolated and P/Z ∼= C2 × C2, that is case (ii) holds. The case that G = E8

is ruled out by Lemma 5.2 since if G is of type E8, then Z = 1.
Finally, suppose thatX is of type E8. Then, G = L is of type E8 and by Lemma 5.2,

B is unipotent and P is trivial, so case (i) holds. ✷
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Remark. Some special cases of the above theorem are given in [20, Theorem 1.3].
We point out that (iii) of [20, Theorem 1.3] is not correct for the classical groups of
type Dn(q) and r = 3: the above analysis shows that if n = 2t, q ≡ −3 (mod 8), then
there do exist non-nilpotent 2-blocks with elementary abelian defect groups of order 8
in the simple group of type Dn(q). This does not pose a problem for the conclusion of
Theorem 1.1 of [20] as by part (ii) of the above proposition such a block has 3 simple
modules, and the conclusion of Theorem 1.1 of [20] for groups of type Dn(q) follows by
Theorem 5.1 and Proposition 3.2 of [20].

We record the following for later use.

Proposition 5.4 Suppose that F has odd characteristic, G is simple and simply con-
nected. Let B be a 2-block of G with semi-simple label s and defect group P . Suppose
that Z ≤ O2(Z(G)) is such that P/Z is abelian and that C◦

G∗(s) is a torus, but CG∗(s)
is not connected. Then, G is of type An or E6. Further, if G is of type E6, then there
exists an F -stable Levi subgroup L of G and a 2-block C of LF in Bonnafé-Rouquier
correspondence with B such that [L,L]F is a direct product of at most two groups of
type A2. In particular, if G is of type E6 (so that Z = 1) and P is elementary abelian
of order 16 then a defect group P ′ of C has the form P ′ = P1 ×P2, P1

∼= P2
∼= C2 ×C2

and both P1 and P2 are invariant under NLF (P ′).

Proof. We freely use the notation of the proof of Proposition 5.3. Let L be a Levi
subgroup of G in duality with an F -stable Levi subgroup of G∗ containing C∗

G
(s) and

such that s is quasi-isolated in L. The exponent of CG∗(s)/C◦
G∗(s) = CL∗(s)/C◦

L∗(s) is
a divisor of the order of s (see [10, 13.15]) and also CL∗(s)/C◦

L∗(s) is isomorphic to a
subgroup of Z(L)/Z◦(L) ≤ Z(G)/Z◦(G). Since s has odd order and Z(G) is a 2-group
unless G is of type An or E6, the first assertion follows.

Now, suppose that G is of type E6, so CL∗(s)/C◦
L∗(s) = Z(L)/Z◦(L) has order 3

and 3 divides the order of s. By [2, Table 3], G∗ 6= L∗. So, L is a proper Levi subgroup
of G and in particular has semi-simple rank at most 5. Let X be a component of [L,L].
Then, sX is a quasi-isolated element of X∗, so as explained in the proof of Proposition
5.3, X is not of classical type Dn. Thus, X is of type An. By Lemma 5.1, n+1 = o(sX).
Since 1 ≤ n ≤ 5 and o(sX) is odd and a multiple of 3, it follows that n = 2.

Hence all components of [L,L] are of type A2 and there are at most two components.
Since the 2-rank of special linear or unitary groups in odd dimension is 2, the final
assertion is immediate from the structure of LF . ✷

6 Structure Theorem

Our aim in this section is to prove the following.

Theorem 6.1 Let ℓ = 2 and let G be a quasi-simple group. If B is a block of OG with
abelian defect group P , then one (or more) of the following holds:

(i) G/Z(G) is one of A1(2
a), 2G2(q) (where q ≥ 27 is a power of 3 with odd expo-

nent), or J1, B is the principal block and P is elementary abelian.
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(ii) G is Co3, B is a non-principal block, P ∼= C2×C2×C2 (there is one such block).

(iii) There exists a finite group G̃ such that G✂ G̃, Z(G) ≤ Z(G̃) and such that B is
covered by a nilpotent block of G̃.

(iv) B is Morita equivalent to a block C of OL where L = L0 × L1 is a subgroup of
G such that the following holds: The defect groups of C are isomorphic to P ,
L0 is abelian and the block of OL1 covered by C has Klein 4-defect groups. In
particular, B is Morita equivalent to a tensor product of a nilpotent block and a
block with Klein 4-defect groups.

Proof. If P is central in G, then B is nilpotent and we are in case (iii). Hence we
may assume that P is non-central. We consider first the case |P | ≤ 8 or P is cyclic. If
P is cyclic or if P ∼= C4 × C2, then B is again nilpotent, hence we are in the situation
of (iii). If P is a Klein 4-group, then we are in case (iv) (with L1 = L = G). Thus, we
may assume that P is a non-cyclic group of order at least 8 and that if |P | = 8, then
P is elementary abelian.

Write Ḡ := G/Z(G). Suppose Ḡ is a sporadic group. If B is the principal block,
then Ḡ = G = J1 and P is elementary abelian of order 8, hence we are in case (i). The
non-principal 2-blocks of quasi-simple groups with sporadic quotient are listed in [29],
and the only possibility with |P | ≥ 8 is Ḡ = G = Co3 and P elementary abelian of
order 8. Thus, B is as in (ii).

Suppose Ḡ := G/Z(G) is an alternating group An, n ≥ 5. The trivial group and
C2×C2 are the only abelian 2-groups occurring as defect groups of 2-blocks of Ḡ, hence
G 6= Ḡ. If G is a double cover of Ḡ, then the lift of a Klein 4-block of Ḡ has non-abelian
defect groups of order 8 and the lift of a defect zero block has central defect groups.
Suppose that G is an exceptional cover of An. If Ḡ = A6, A7 and G is a 3- or 6-fold
covering of Ḡ, then the Sylow 2-subgroups of G/Z(G) are non-abelian of order 8 and
consequently G has no blocks with P as defect group for which we have not accounted.

Suppose Ḡ is a finite group of Lie type in characteristic 2 not isomorphic to any
of 2F4(2)

′, B2(2)
′ or G2(2)

′ or PSp4(2)
′. Then by [9, Proposition 8.7], the non-trivial

defect groups of 2-blocks are Sylow 2-subgroups of G. The only possibility is Ḡ = G =
SL2(2

a) and B the principal block and we are in case (i).
If Ḡ is the Tits group 2F4(2)

′, then Ḡ = G and by [15], G has precisely three
blocks, two of defect 0 and the principal block. If Ḡ is isomorphic to PSp4(2)

′, then
Ḡ ∼= A6, a case we have already considered. If Ḡ ∼= G2(2)

′, then Ḡ ∼= 2A2(3), hence
Ḡ = G ∼= 2A2(3), a case which will be handled below. If Ḡ is isomorphic to PSL2(4),
then Ḡ ∼= A5 a case that has been handled above.

Suppose that Ḡ is a finite group of Lie type in odd characteristic. By [15] no
faithful 2-block of an exceptional covering of Ḡ has non-central defect groups which
are abelian. Hence we may assume that G is a non-exceptional covering of Ḡ. So
we have G = GF/Z, where G is a simple and simply-connected group defined over an
algebraic closure of the field of p elements for p an odd prime, F : G → G is a Steinberg
endomorphism, and Z ≤ Z(GF ). By replacing G by a suitable central extension and
B by a suitable (and Morita equivalent) lift with isomorphic defect groups if necessary,
we may assume that Z is a 2-group. Let B̂ be a 2-block of GF lifting B. Then B̂ has
a defect group P̂ such that Z ≤ P̂ and P̂ /Z = P .
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If Ḡ = 2G2(q), q a power of 3, then, Ḡ = G and the Sylow 2-subgroups of G are
elementary abelian of order 8. Further, the principal block is the unique 2-block of G
with maximal defect groups (see for instance [20, Proposition 15.2]), and so we are in
case (i).

Hence we may assume that GF is not 2G2(q). Suppose first that a semi-simple label
of B̂ has a connected centraliser which is a torus. Then by Lemma 4.2, there exists a
finite group H and a nilpotent block Ê of H covering B̂ such that Z ≤ Z(GF ) ≤ Z(H).
Let B̃ be the block of G̃ := H/Z corresponding to Ê. Then B̃ covers B and B̃ is
nilpotent. Since GF is quasi-simple, Z(G) = Z(GF )/Z ≤ Z(H)/Z ≤ Z(G̃). Hence we
are in case (iii).

So, we may assume that the connected centraliser of a semi-simple label of B̂ is not
a torus. We apply Lemma 5.3 to B̂. If B̂ is as in case (ii) or (iii) of Lemma 5.3, then
case (iv) of the theorem holds. If B̂ is as in case (i) or (iv) of Lemma 5.3, then B̂ is
nilpotent, hence so is B by [32, 8.2] and we are in case (iii) of the theorem. Suppose
B̂ is as in case (v) of Lemma 5.3. Let L and Ĉ be as in Lemma 5.3 (replacing C by
Ĉ) and let C be the block of L := LF/Z corresponding to Ĉ. By Lemma 5.3, L is a
direct product of L0 := Z◦(L)/(Z ∩ P0) and L1 := [L,L]F/(Z ∩ P1) and the 2-block
of L1 covered by C has Klein 4-defect groups. By Lemma 2.7, B and C are Morita
equivalent. The defect groups of B and C are isomorphic by [22, Theorem 1.3]. So,
we are in case (iv) of the theorem. ✷

Remark. Whenever case (iv) of the above theorem holds, then setting W =
O2(Z(G)), we have W ≤ LF/Z and by the proof of Lemma 2.7, the Morita equivalence
between B and C may be realised by a bimodule on which ∆(W ) acts trivially.

The principal 2-blocks of the 2G2(q) all have elementary abelian defect groups of
order 8 and by [27] they all have the same decomposition matrices. It seems to be
folklore that they are all Morita equivalent, but we are unable to find a reference for
this. We can however easily show that there are only finitely many Morita equivalence
classes amongst them:

Lemma 6.2 Consider the groups 2G2(3
2m+1) for m ≥ 1. There are only finitely many

Morita equivalence classes of blocks amongst the principal 2-blocks of these groups.

Proof. By [27] the principal 2-blocks all have the same decomposition matrices.
Write Bm for the principal 2-block of 2G2(3

2m+1) and let fBmf be an associated basic
algebra. By the proof of [19, 1.4], there is an F2-algebra Am such that fBmf ∼= k⊗F2Am.
Now Am has dimension equal to the sum of the entries of the Cartan matrix, i.e., 76.
Hence |Am| = 276, and so there are only finitely many possibilities for Am, and hence
for the Morita equivalence class of Bm. ✷

7 Proof of Theorem 1.1

Let us keep the notation of Theorem 1.1. In particular, we suppose that D is an
abelian 2-group of rank 2, so that D is isomorphic to a direct product C2m ×C2n of two
cyclic subgroups C2m and C2n . Write b for the unique block of ONG(D) with Brauer
correspondent B. The following facts are known:
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• If m 6= n, then Aut(D) is a 2-group. Thus B is a nilpotent block. By the main
result of [30], B is then Morita equivalent to the group algebra OD.

• If m = n = 1, then D is a Klein 4-group. This case was completed by Erd-
mann in [14] for blocks defined over k, and extended to blocks defined over O by
Linckelmann in [28], where it is proved that B is Morita equivalent to the group
algebra OD, to the group algebra OA4 or to the principal block of the group
algebra OA5. (Here, An denotes the alternating group of degree n.) Therefore,
in the following we will assume that m = n > 1.

• If D ∈ Syl2(G) (and m = n > 1), then G is solvable by a theorem of Brauer
(Theorem 1 of [5]).

• In general, B is perfectly isometric to b. This is stated without explicit proof
in Remark 1.6 of [35], and a proof is given in Satz 3.3 of [36]. We note that
this result does not use the classification of finite simple groups. Consequently, if
m = n > 1, then B is either nilpotent (in which case l(B) = 1 and k(B) = |D|)
or l(B) = 3 and k(B) = (|D|+ 8)/3.

The following are well-known, but we state them here for convenience:

Lemma 7.1 Let D = C2m ×C2m. Then Aut(D) is a {2, 3}-group, where |Aut(D)|3 =
3. If θ ∈ Aut(D) has order three, then θ transitively permutes the three involutions in
D.

Let G be a finite group such that D✁G. Let B be a block of OG with defect group D
and let bD be a block of OCG(D) with (bD)

G = B. Write NG(D, bD) for the stabiliser of
bD in NG(D) and EB = NG(D, bD)/CG(D). Then B is Morita equivalent to the group
algebra O(D ⋊ EB).

If O2(Z(G)) 6= 1, then B is nilpotent.

We now give the proof of Theorem 1.1.
Proof. Let B be a counterexample with (|G : Z(G)|, |G|) minimised in the lexi-

cographic ordering. By the first Fong reduction and minimality, B is quasi-primitive,
that is, for any normal subgroup N of G, there is a unique block of N covered by B.
By the second Fong reduction and minimality, O2′(G) is cyclic and central in G.

Now suppose that N := O2(G) 6= 1, so that N ⊆ D. Then B covers a unique block
BC of C := CG(N), and BC has defect group D. Since 1 6= N ≤ D ∩ Z(C), the block
BC is nilpotent. Thus by Proposition 2.2 and minimality, C is nilpotent. Since G/C
is isomorphic to a subgroup of Aut(N), which is a {2, 3}-group, G is solvable. But we
have O2′(G) ≤ Z(G), so CG(N) ≤ NZ(G), and D = N since D is abelian. Hence by
Lemma 7.1 we have a contradiction to minimality.

Hence O2(G) = 1, so that F (G) = O2′(G) = Z(G) =: Z. Let N ✁G such that N/Z
is a minimal normal subgroup of G/Z, and let BN be the unique block of N covered by
B. If BN is nilpotent, then we can use Proposition 2.2 again to obtain a contradiction
to minimality. Thus we may assume that BN is not nilpotent, and in particular the
defect group D ∩ N of BN is nontrivial. Moreover, we have D ∩ N ∼= C2t × C2t for
some t ≤ m. This implies that N/Z is the only minimal normal subgroup of G/Z, and
so N = F ∗(G) (the generalised Fitting subgroup).
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Assume next that G has a normal subgroup K of index 2. Let BK be the unique
block of K covered by B. Then BK is G-stable, and B is the only block of G covering
BK . Moreover, D ∩K is a defect group of BK and DK/K ∈ Syl2(G/K), so G = DK.
Hence 2 = |G/K| = |DK/K| = |D/D∩K|. This implies that D∩K is a direct product
of two non-isomorphic cyclic groups. Hence Aut(D ∩ K) is a 2-group, and so BK is
nilpotent. By Proposition 2.2 and minimality, K is nilpotent. Then G is solvable, a
contradiction since O2(G) = 1 and O2′(G) ≤ Z(G).

Hence G = O2(G). Let L1, . . . , Lt denote the components of G. We have seen
that these are permuted transitively by G, and L := L1 ∗ · · · ∗ Lt ✁ G. Let BL be
the unique block of L covered by B, and let Bi be the unique block of Li covered by
BL (i = 1, . . . , t). Then BL has defect group D ∩ L, and Bi has defect group D ∩ Li

(i = 1, . . . , t). Thus D ∩ L = (D ∩ L1) × · · · × (D ∩ Lt), where D ∩ L1, . . . , D ∩ Lt

are conjugate in G (since B1, . . . , Bt are). This implies that t ≤ 2. Since G = O2(G),
we must have t = 1 (by consideration of the kernel of the permutation action). This
shows that G has a unique component L, so that the layer E(G) = L is quasi-simple
and F ∗(G) = L ∗ Z.

Suppose thatG 6= L. By the Schreier ConjectureG/L is solvable. SinceG = O2(G),
it follows that there is a normal subgroup N of G such that |G : N | = w for some odd
prime w. Let BN be the unique block of N covered by B. Now BN is G-stable and has
defect group D. Suppose that B is the unique block of G covering BN . Now BN has
either 1 or 3 irreducible Brauer characters, according to whether BN has inertial index
1 or 3 respectively. If the inertial index is 1, then BN is nilpotent, and Proposition 2.2
and minimality may be applied to obtain a contradiction. Hence l(BN) = 3. Similarly
l(B) = 3, since if l(B) = 1, then B is nilpotent. If w > 3, then each irreducible
Brauer character in BN must be G-stable, and applying Clifford theory (noting that
each simple module extends to G since G/N is cyclic and of odd order) we obtain
l(B) = 3w > 3, a contradiction. If w = 3, then the irreducible Brauer characters
in BN are either all G-stable or are permuted transitively. If they are all G-stable,
then as above we have l(B) = 3w = 9, a contradiction. Hence the three irreducible
Brauer characters in BN are permuted transitively and by Clifford theory induce to an
irreducible Brauer character, which must lie in B, and further we must have l(B) = 1,
a contradiction. Hence B is not the unique block of G covering BN . In this case,
since w is an odd prime, every irreducible Brauer character in BN is G-stable, and it
follows by Clifford theory (again using the fact that G/N is a cyclic 2′-group) that BN

is covered by w blocks of G and that each of the three irreducible Brauer characters
in B is an extension of a distinct irreducible Brauer character in BN . Hence we have a
bijection given by restriction between the irreducible Brauer characters of B and those
of BN , and by [18, 4.1] B and BN are Morita equivalent. This gives a contradiction to
minimality.

A final application of the second Fong correspondence and minimality show that
Z(G) ≤ [G,G]. Hence we have shown that G = L, i.e., G is quasi-simple, and that
Z(G) is cyclic of odd order. Proposition 6.1 and Proposition 2.4 give an immediate
contradiction. ✷

Corollary 7.2 Let ℓ = 2, G a finite group and let B be a block of OG with abelian
defect group D of rank 2. If D is homocyclic of order at least 16, then there are precisely
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two Morita equivalence classes of blocks with defect group D. If D is a Klein 4-group,
then there are precisely three Morita equivalence classes, and if D is not homocyclic,
then B must be nilpotent.

Corollary 7.3 Let D be an abelian 2-group of rank 2. Then Donovan’s conjecture
holds for D.

8 Donovan’s conjecture for 2-blocks with elemen-

tary abelian defect groups

In this section, by an ℓ-block of a finite group G, we will mean a block of kG. The
following is immediate from [11, 1.11] and Proposition 2.2:

Proposition 8.1 Let P be an abelian ℓ-group for a prime ℓ. In order to verify Dono-
van’s conjecture for P , it suffices to verify that there are only a finite number of Morita
equivalence classes of quasi-primitive blocks B with defect group D ∼= P of finite groups
G satisfying the following conditions:

(i) F (G) = Z(G),

(ii) Oℓ′(G) ≤ [G,G],

(iii) G = 〈Dg : g ∈ G〉,

(iv) every component of G is normal in G,

(v) if N ≤ G is a component, then N ∩D 6= Z(N) ∩D,

(vi) if N ✁G and B covers a nilpotent block of N , then N ≤ Z(G).

Applying Proposition 2.6 we can reduce further to:

Corollary 8.2 Let P be an elementary abelian ℓ-group for a prime ℓ. In order to verify
Donovan’s conjecture for P , it suffices to verify that there are only a finite number of
Morita equivalence classes of blocks B with defect group D ∼= P of finite groups G
satisfying the following conditions:

(i) G is a central product G1 ∗ · · · ∗Gt of quasi-simple groups;

(ii) the block bi of Gi covered by B is not nilpotent.

Proof. It suffices to consider groups G of the form given in Proposition 8.1. If G
has this form, then by the Schreier conjecture there is N ✁G with N a central product
of quasi-simple groups and G/N solvable. By condition (iii) in Proposition 8.1 we have
Oℓ′(G) = G. By Proposition 2.6 we may assume that Oℓ(G) = G. Hence, since G/N is
solvable, we may assume that G = N and the result follows from the conditions listed
in Proposition 8.1. ✷
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Theorem 8.3 Donovan’s conjecture holds for elementary abelian 2-groups.

Proof. Let P be an elementary abelian 2-group.
We may assume initially that we have a block B of a group G as in Corollary

8.2, so that G is a central product G1 ∗ · · · ∗ Gt of quasi-simple groups. By taking
an appropriate central extension of G by a group of odd order, we may assume that
G = E/Z, where E ∼= G1×· · ·×Gt and Z ≤ Z(G) is a 2-group. Write Zi = O2(Z(Gi)).

Let Bi be the (unique) block of Gi covered by B. Note that Bi has elementary
abelian defect groups, and no Bi is nilpotent. Let D be a defect group for B (with
D ∼= P ). Then Di := D ∩ Gi is a defect group for Bi. Since Bi is not nilpotent,
|Di/Zi| > 2,

Let BE be the unique block of E corresponding to B. Then BE
∼= B1 ⊗ · · · ⊗ Bt

and BE has defect group DE
∼= D1×· · ·×Dt (in particular DE is elementary abelian),

with DE/Z ∼= D.
Then, Bi and Gi belong to one (or more) of the classes (i)–(iv) in Theorem 6.1. We

will define a new group H containing a copy of Z and a block C of H such that C is
Morita equivalent to BE via a bimodule satisfying the conditions in Lemma 2.7.

Suppose first that Gi satisfies (i), (ii) or (iii) of Theorem 6.1. Then write Hi = Gi

and Ci = Bi.
Suppose Bi and Gi are as in (iv) of Theorem 6.1. Then there is a Morita equivalence

with a block Ci of a finite group Hi containing Zi, such that Hi
∼= Ai × Li where Ai

is abelian and Ci covers a block of Li with Klein 4-defect groups. Further this Morita
equivalence is realised by a bimodule Mi such that zimi = mizi for all zi ∈ Zi and all
mi ∈ Mi.

in case (iv) of Theorem 6.1.
We now have a Morita equivalence satisfying the conditions of Lemma 2.7 from BE

to a block C of the direct product H = H1 × · · · ×Ht, where C covers the block Ci of
Hi, Z ≤ Z(H), and Ci is as in (i)–(iv). By Lemma 2.7 this gives a Morita equivalence
between B and the unique block CH/Z of H/Z corresponding to C. Thus it suffices to
assume that H = E and BE = C.

Relabelling as necessary to account for the direct product in case (iv), and noting
that blocks of abelian groups are necessarily nilpotent, we may write H as a direct
product of groups Hi, with block Ci of Hi covered by C satisfying one or more of the
following:

(a) Ci is a nilpotent-covered block;

(b) Ci has defect groups C2 × C2 and O2(Z(Hi)) = 1;

(c) Hi and Ci are as in (i) or (ii) of Theorem 6.1.

Note that we may assume O2(Z(Hi)) = 1 in case (b), since otherwise Ci is nilpotent
and so belongs to case (a). By checking in [8] we see that in case (c) Z(Hi) has odd
order.

It follows that Z is contained in the direct product of factors of type (a), i.e., we
may express G as a direct product (U/Z) × V × W , where U is a direct product of
groups satisfying (a), V is a direct product of groups satisfying (b), and W is a direct
product of groups satisfying (c). Further B ∼= CU/Z ⊗ CV ⊗ CW , where CU , CV , CW
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are the blocks of U , V , W resp. covered by C, and CU/Z is the unique block of U/Z
corresponding to CU .

Now a tensor product of nilpotent-covered blocks is nilpotent-covered, and by
Lemma 2.5 a quotient of such a block by a central 2-subgroup is also nilpotent-covered.
Hence CU/Z is nilpotent-covered. So by Proposition 2.4, CU/Z is Morita equivalent to
a block with normal elementary abelian defect group, of which there are only finitely
many possibilities for Morita equivalence classes.

CV is a tensor product of a bounded number of blocks with Klein 4-defect groups,
and so there are only a finite number of possibilities for the Morita equivalence class
of CV .

By Lemma 6.2 there are only a finite number of Morita equivalence classes of blocks
of groups satisfying (i) and (ii) of Theorem 6.1 with elementary abelian defect groups
of order at most |P |, and of course the number of factors in W is bounded in terms of
|P |, hence there are only finitely many possibilities for the Morita equivalence class of
CW .

Since B ∼= CU/Z ⊗ CV ⊗ CW , the result follows. ✷

9 On the weak Donovan conjecture for abelian 2-

blocks

A weak version of Donovan’s conjecture is the following.

Conjecture 9.1 Let D be a finite ℓ-group. There is a bound on the Cartan invariants
of blocks of finite groups with defect group D which depends only on D.

Theorem 9.2 The weak Donovan conjecture holds for 2-blocks with abelian defect
groups.

Proof. By [11, Theorem 3.2], it suffices to prove that the weak Donovan conjecture
holds for all abelian defect 2-blocks of quasi-simple groups (note that the reductions
employed in [11] all work in the realm of abelian defect groups). By [27, Theorem 3.9]
the Cartan invariants of the principal 2-blocks of the Ree groups are at most 8. The
proof follows by Theorem 6.1. ✷

10 On numerical invariants for 2-blocks with ele-

mentary abelian defect groups of order 16

It is shown in [26] that if a block B has elementary abelian defect groups of order
16, then k(B) is either 8 or 16, and that in all but one case, k(B), k0(B) and l(B)
are determined given the action of the inertial quotient on D and certain cocycles.
It remains to show that if the inertial quotient has order 15, then k(B) = 16 (and
consequently l(B) = 15, k0(B) = 16).
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Lemma 10.1 Let B be a block of a finite group G with elementary abelian defect group
D of order 16 and inertial index 15. Let N ✁ G have odd prime index, and let b be a
G-stable block of N covered by B. Let BD be a block of CG(D) with (BD)

G = B and
bD be a block of CN(D) with (bD)

G = B.

(i) If CG(D) ≤ N , then NN(D, bD)/CN(D) ≤ NG(D,BD)/CG(D) and |NG(D,BD) :
NN(D, bD)| divides |G : N |.

(ii) If CG(D) 6≤ N , then NN(D, bD)/CN(D) ∼= NG(D,BD)/CG(D).

Either B is the unique block of G covering b, or there are |G : N | blocks covering b.

Proof. Part (i) is immediate.
(ii) Recall that the blocks of CN(D) with defect group D correspond to inflations of

irreducible characters in blocks of defect zero of CN(D)/D (and similarly for CG(D)).
Let θ be the canonical character of bD. Suppose that CG(D) 6≤ N . So |CG(D) :
CN(D)| 6= 1.

Consider first the case CG(D) ≤ NG(D, bD). Then θ extends to |G : N | irreducible
characters of CG(D), each inflated from a block of defect zero of CG(D)/D. Hence bD is
covered by |G : N | blocks of CG(D). Let θ1 be the irreducible character of BD extending
θ. We haveNG(D,BD) ≤ NG(D, bD), so |NN(D, bD) : CN(D)| ≥ |NG(D,BD) : CG(D)|.
Since C15 is a maximal subgroup of odd order of GL4(2), it follows that |NN(D, bD) :
CN(D)| = |NG(D,BD) : CG(D)|. The same is true for each block of CG(D) covering
bD. It follows that NG(D) possesses |G : N | blocks covering (bD)

NN (D), and so G
possesses |G : N | blocks covering b by [17].

Now consider the case CG(D) is not in NG(D, bD). Then BD covers |G : N | many
CG(D)-conjugates of bD. We have |NG(D,BD) : NG(D, bD)| = |G : N |, so |NN(D, bD) :
CN(D)| = |NG(D,BD) : CG(D)|. The same is true for each block of CN(D) covered
by BD. It follows that NN(D) possesses |G : N | blocks covered by (BD)

NG(D), and so
N possesses |G : N | blocks covered by b by [17], contradicting the G-stability of b. ✷

When it comes to reducing the desired result to the consideration of quasi-simple
groups, we will be unable to rule out the case that we have a quasi-simple normal
subgroup of index 3. We must consider this situation in more detail. This is the object
of the next results.

For a group G and a subgroup X of G, denote by Aut(G)X the subgroup of Aut(G)
which leaves X invariant. Denote by Aut(G)X the image of Aut(G)X in Aut(X)
through the restriction map. Denote by AutG(X) the subgroup of Aut(X) of automor-
phisms induced by conjugation by elements of G. So AutG(X) is naturally isomorphic
to NG(X)/CG(X).

Proposition 10.2 Let q be an odd prime power and n a natural number. Let G =
SLn(q)/Z0 (respectively SUn(q)/Z0), where Z0 is a central subgroup of SLn(q) (respec-
tively SUn(q)) and suppose that Z(G) = O2′(G). Let P ≤ G be a defect group of a
2-block of G and suppose that P is elementary abelian of order 2t ≥ 8. Set u = t + 2
if n is even and u = t + 1 if n is odd. Then Aut(G)P = AutG(P ) and AutG(P ) is a
subquotient of Su, where Su denotes the symmetric group on u letters.
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Proof. Let us first consider the case that G = SLn(q)/Z0. By the statements and
proofs of [20, Lemmas 12.4, 13.4], t is even, q ≡ −3 (mod 8). Moreover, replacing P
by a G-conjugate if necessary, P has the following structure: Consider GLn(q) in its
natural matrix representation. There is a decomposition

n = n1 + · · ·+ nu,

into odd natural numbers ni such that denoting by ai the diagonal element of GLn(q)
with entry −1 in positions n1 + · · ·+ ni−1 + 1, . . . , n1 + · · ·+ ni and entry 1 elsewhere,
and by T0 the subgroup of GLn(q) generated by the elements aiaj, 1 ≤ i, j ≤ u,
P = (T0Z0)/Z0 (here n0 is to be taken to be 0).

Let σ ∈ Aut(G)P . Since PSLn(q) is simple (as n ≥ 3), σ lifts to an automorphism
of SLn(q). We denote the lift of σ also by σ. Since T0 is the unique Sylow 2-subgroup
of the inverse image of P in SLn(q), σ ∈ Aut(SLn(q))T0 . Thus, in order to prove the
first assertion, it suffices to prove that Aut(SLn(q))T0 = AutSLn(q)(T0).

Let H be the subgroup of diagonal matrices of GLn(q). Let q = pr, p a prime and
let ϕ : SLn(q) → SLn(q) be the automorphism which raises every matrix entry to the
p-th power. Let τ : SLn(q) → SLn(q) be the transpose inverse map. By the structure
of the automorphism groups of SLn(q) (see for instance [16, Theorems 2.5.12, 2.5.14]),
Out(SLn(q)) is generated by the images of τ , ϕ and AutH(SLn(q)) in Out(SLn(q)) On
the other hand, τ , ϕ and all elements of AutH(SLn(q)) act as the identity on T0. Thus,
Aut(SLn(q))T0 = AutSLn(q)(T0) and the first assertion is proved.

It has been shown above that there is a surjective homomorphism from
Aut(SLn(q))T0 to Aut(G)P and that Aut(SLn(q))T0 = AutSLn(q)(T0). Thus, in
order to prove the second assertion, it suffices to prove that Aut(SLn(q))T0 is
isomorphic to a subgroup of Su.

Let V be an Fq-vector space underlying the natural matrix representation of GLn(q)
and for each i, 1 ≤ i ≤ u, let Vi be the −1 eigenspace of ai. So V = ⊕1≤i≤uVi and
dim(Vi) = ni, 1 ≤ i ≤ u. Since T0 is generated by pairs of involutions aiaj, the −1
eigenspaces of elements of T0 are precisely of the form ⊕i∈IVi, where I ranges over
subsets of even cardinality of {1, . . . , u}.

Let g ∈ NSLn(q)(T0), and let i, j, k ∈ {1, . . . , u} be pairwise distinct (this is possible
since |P | ≥ 8 implies that u ≥ 4). Since Vi⊕Vj is the −1-eigenspace of aiaj,

g(Vi⊕Vj) is
the−1 eigenspace of g(aiaj) ∈ T0. Hence,

g(Vi⊕Vj) (and similarly g(Vj⊕Vk)) is a direct
sum of an even number of the Vi’s. Since

gVi =
g(Vi⊕Vj)∩

g(Vi⊕Vk), and since for any
two subsets J,K of {1, . . . , u}, (⊕t∈JVt)∩(⊕t∈KVt) = ⊕t∈J∩KVt we have that

gVi is also
a direct sum of some of the Vi’s, say

gVi = ⊕t∈I′Vt. So, Vi = ⊕t∈I′
g−1

Vt. But by the
same argument as before, applied to g−1, it follows that I ′ consists of a single element.
Hence, for any g ∈ NSLn(q)(T0) and any i, 1 ≤ i ≤ u, gVi = Vj for some j, 1 ≤ j ≤ u.
Further, again by considering triples of three indices i, j, k one sees that g ∈ CSLn(q)(T0)
if and only if gVi = Vi for all i ∈ I. Thus, AutSLn(q)(T0) ∼= NSLn(q)(T0)/CSLn(q)(T0) is
isomorphic to a subgroup of Su as required.

This proves the proposition in case G is a quotient of SLn(q). The case of SUn(q)
is similar and we omit the details. ✷
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Proposition 10.3 Let H be a finite group with Z := Z(H) = O2′(H) cyclic of odd
order and G a quasi-simple group such that Z ≤ G ✂ H and H/Z ≤ Aut(G/Z),
[H : G] = 3. Let A be a 2-block of H and B an H-stable 2-block of G covered by A.
Suppose that the defect groups of A and B are elementary abelian of order 16. Then
the inertial index of A is not 15.

Proof. Note that sinceH/Z ≤ Aut(G/Z), Z = Z(G). LetD ∼= C2×C2×C2×C2 ≤
G be a defect group of A and of B. Note that by Lemma 10.1, the inertial quotient of
B contains a subgroup isomorphic to C5 and hence AutG(D) contains a subgroup of
order 5.

Again, we go through the various possibilities for G and Ḡ = G/Z. If Ḡ is an
alternating or sporadic group, then G does not have a block with defect group D. If
Ḡ is a finite group of Lie type in characteristic 2, not isomorphic to any of 2F4(2)

′,
B2(2)

′ or PSp4(2) then D̄ := DZ(G)/Z(G) ∼= D is a Sylow 2-subgroup of Ḡ, hence
Ḡ = PSL2(2

4). But Ḡ 6= SL2(2
4) as Out(SL2(2

4)) is a 2-group. The cases that Ḡ
is isomorphic to one of 2F4(2)

′, B2(2)
′ or PSp4(2) can be handled as in the proof of

Theorem 6.1, as can the case that G is an exceptional extension of Ḡ.
Suppose that Ḡ is a finite group of Lie type in odd characteristic and that G is a

non-exceptional extension of Ḡ. By Proposition 3.4, if Ḡ is a symplectic or orthogonal
group, then B is nilpotent, a contradiction. If Ḡ is a projective special linear or unitary
group, then since neither S5 nor S6 contain an element whose order is divisible by 15,
we get a contradiction by Lemma 10.2.

Thus Ḡ is of exceptional type. Since B is not nilpotent and Ḡ is not of type An,
by Proposition 5.4, B is Morita equivalent to a block C of a finite group L with defect
group D′ ∼= D such that D′ is a product of two factors of rank 2 each of which is
invariant in NL(D

′). It has been shown above that AutG(D) contains a subgroup of
order 5. In particular, AutG(D) does not leave invariant any proper non-trivial direct
factor of D and by [26], B is not Morita equivalent to a block whose inertial quotient
does leave a non-trivial factor of D invariant. ✷

Theorem 10.4 Let B be a block of a finite group G with elementary abelian defect
group D of order 16 and inertial quotient C15. Then k(B) = k0(B) = 16 and l(B) = 15.

Proof. It is clear from Brauer’s second main theorem that k(B)− l(B) = 1.
Let B be a counterexample to k(B) = 16 with (|G : Z(G)|, |G|) minimised in the

lexicographic ordering. Hence by [26] k(B) = 8.
By the first Fong reduction and minimality, B is quasi-primitive. By the second

Fong reduction and minimality, O2′(G) is cyclic and central in G.
Suppose that N ✁ G with N ∩D 6= 1. Since NG(D) acts transitively on the non-

trivial elements of D, it follows that D ≤ N . In particular, if N = O2(G), then
D = O2(G). But then k(B) = 16, contradicting our choice of B. Hence O2(G) = 1.

By Proposition 2.2, if N ✁G with N ∩D = 1, then by minimality N ≤ Z(G).
If N = O2(G) 6= G, then since B is quasi-primitive there is a unique block b of N

covered by B (and B is the unique block of G covering b). But then D ∩N is a defect
group of b and DN/N ∈ Syl2(G/N), so by the above D∩N = 1. But then N ≤ Z(G),
a contradiction. Hence O2(G) = G.
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Let N be a normal subgroup of G minimal subject to strictly containing Z(G).
Then D ≤ N , and N = F ∗(G). Let L1, . . . , Lt denote the components of G. We have
seen that these are permuted transitively by G, and L := L1∗· · ·∗Lt✁G. Then D ≤ L.
Let BL be the unique block of L covered by B, and let Bi be the unique block of Li

covered by BL (i = 1, . . . , t). Then BL has defect group D∩L, and Bi has defect group
D∩Li (i = 1, . . . , t). Thus D∩L = (D∩L1)×· · ·× (D∩Lt), where D∩L1, . . . , D∩Lt

are conjugate in G (since B1, . . . , Bt are). This implies that t ∈ {1, 2, 4}. However the
existence of an element of order 15 transitively permuting the non-trivial elements of
D then forces t = 1. Hence L is quasi-simple and F ∗(G) = Z(G)L.

By the Schreier conjecture, G/F ∗(G) is solvable. Suppose N ≤ G with |G : N | = w,
where w is prime. Then w is odd. Let b be the unique block of N covered by B. Note
that since C15 is a maximal odd order subgroup of GL4(2), the inertial quotient of b
must be a subgroup of C15, and further if w > 5, then it must be C15, in which case
k(b) = 16 by minimality. By [26], in any case k(b) = 8 or 16.

Suppose first that B is the unique block of G covering b. Consider the action of G
on the irreducible characters of b. If w ≥ 11, there is a fixed θ ∈ Irr(b), and by Clifford
theory k(B) ≥ w, a contradiction. Suppose w = 7. Since k(b) = 16, there are at least
two fixed θ ∈ Irr(b), and so k(B) > 14, a contradiction.

Suppose w = 5 and that k(b) = 16. We must turn to Brauer characters to obtain
a contradiction. We have l(b) = 15. Then either l(B) > 25 or l(B) = 3, according to
whether there are fixed points or not. In either case we have a contradiction.

Suppose that w = 5 and that k(b) = 8. Then l(b) = 3, from which it follows that
l(B) = 15, a contradiction.

The case w = 3 is ruled out by Proposition 10.3.
Suppose that B is not the unique block of G covering b. Then by Lemma 10.1, B is

one of w blocks covering b, and b has inertial index 15. Hence k(b) = 16 by minimality.
Write t for the number of G-orbits of Irr(b). Then by Clifford theory the number of
irreducible characters in blocks of G covering b is (16− tw)w + t. On the other hand,
there are w blocks covering b, each with 8 irreducible characters. Hence t = 8w

w2−1
. But

8w
w2−1

is only an integer when w = 3. Again, the case w = 3 is ruled out by Proposition
10.3.

We have shown that G is quasi-simple with centre of odd order. Then we are in
one of the cases (i), (iii) or (iv) of Theorem 6.1. In case (i), G ∼= PSL2(16), where it is
indeed the case that the principal block has inertial index 15. Checking using [15], we
see that k(B) = 16 in this case. In case (iii), by Proposition 2.4, B is Morita equivalent
to a block of NG(D), and we see that k(B) = 16. In case (iv) we again have k(B) = 16,
since Morita equivalence preserves the defect of a block and a block with Klein 4-defect
group has four irreducible characters, and we are done. ✷

11 Donovan’s conjecture for groups of the form

C2m × C2m × C2 for m ≥ 3

In this section, by an ℓ-block of a finite group G, we will mean a block of kG.
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Theorem 11.1 Let D = C2m × C2m × C2, where m ≥ 3. Then Donovan’s conjecture
holds for D.

Proof. It suffices to consider blocks B of groups G satisfying the conditions
in Proposition 8.1. Let D be a defect group for B, and write D = P × Q, where
P ∼= C2m × C2m and Q ∼= C2.

We show that we may further assume that O2(G) = G. Suppose that N ✁G with
|G : N | = 2. Since B is quasi-primitive it follows that G = ND. If N ∩ D ∼= P ,
then G = N ⋊Q and by [23], B is Morita equivalent to a block of N ×Q with defect
group D. It then follows by Theorem 1.1 that there are only two Morita equivalence
classes of such blocks. Hence N ∩ D ∼= C2m × C2m−1 × C2. Since m ≥ 3, it follows
that Aut(N ∩ D) is a 2-group, so that B covers a nilpotent block of N , and we are
done in this case by Proposition 2.2. Hence we may suppose that O2(G) = G. It
follows by Schreier’s conjecture that we may assume that G/Z(G) is a direct product
of simple groups. Further, we may take O2(Z(G)) = 1 or D = P × O2(Z(G)), as
otherwise B would correspond to a nilpotent block of G/O2(Z(G)), and would itself
be nilpotent by Proposition 2.1. Further, it is clear that we may also take G to have a
single component, i.e., that G is quasi-simple. The result follows by Theorem 6.1. ✷
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