
8 Vector Spaces

Definition and Examples

In the first part of the course we’ve looked at properties of the real n-space
Rn. We also introduced the idea of a field K in Section 3.1 which is any set
with two binary operations + and × satisfying the 9 field axioms. R is an
example of a field but there are many more, for example C, Q and Zp (p a
prime, with modulo p addition and multiplication).

In the second part of the course we will be looking at vector spaces.
These will be a generalisation of Rn and we will see many other examples that
have the same properties. We will start with an abstract definition listing
the vector space axioms. All the properties we derive will then apply to
any example that satisfies this definition.

Definition 8.1. A vector space over a field K is a set V with addition
and scalar multiplication, ie. u + v ∈ V is defined for all u, v ∈ V and
au ∈ V is defined for all a ∈ K and u ∈ V , such that

1.(i) u + v = v + u for all u, v ∈ V

(ii) (u + v) + w = u + (v + w) for all u, v, w ∈ V

(iii) there exists an element 0 ∈ V such that u + 0 = u for all u ∈ V

(iv) for each u ∈ V , there exists a unique element −u ∈ V such that u +
(−u) = 0

2.(i) a(u + v) = au + av for all a ∈ K, for all u, v ∈ V

(ii) (a + b)u = au + bu for all a, b ∈ K, for all u ∈ V

(iii) a(bu) = (ab)u for all a, b ∈ K, for all u ∈ V

(iv) 1u = u for all u ∈ V .

The elements of V are called vectors and the elements of K are called
scalars. We sometimes refer to V as a K−space.

Examples 8.2. 1. For all n ≥ 1, Rn with the usual addition and scalar
multiplication is a vector space over R. More generally, let

Kn =


 x1

...
xn

 |xi ∈ K


1



and define x1
...
xn

 +

 y1
...
yn

 =

 x1 + y1
...

xn + yn

 , c

 x1
...
xn

 =

 cx1
...

cxn


where xi, yi, c ∈ K. Then Kn is a vector space over K.

2. The set Mmn(R) of all m× n matrices with entries in R with addition
of matrices and scalar multiplication is a vector space over R. More
generally, let

Mmn(K) =


 a11 ... a1n

...
...

am1 ... amn

 | aij ∈ K


be the set of m× n matrices with entries in K and define a11 ... a1n

...
...

am1 ... amn

+

 b11 ... b1n
...

...
bm1 ... bmn

 =

 a11 + b11 ... a1n + b1n
...

...
am1 + bm1 ... amn + bmn

 ,

c

 a11 ... a1n
...

...
am1 ... amn

 =

 ca11 ... ca1n
...

...
cam1 ... camn


where (aij, bij, c ∈ K). Then Mmn(K) is a vector space over K.

We write Mn(K) = Mnn(K).

3. Let Pn denote the set of all polynomials of degree ≤ n with real coef-
ficients:

Pn = {a0 + a1x + a2x
2 + ... + anx

n| ai ∈ R,∀i = 0, ..., n}

and define
n∑

i=0

aix
i +

n∑
i=0

bix
i =

n∑
i=0

(ai + bi)x
i

c(
n∑

i=0

aix
i) =

n∑
i=0

(cai)x
i.

Then Pn is a vector space over R.

The zero vector is the zero polynomial with all coefficients equal to 0
and −(

∑n
i=0 aix

i) =
∑n

i=0(−ai)xi.

The set P of all polynomials over R is also a vector space over R.
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4. Let F denote the set of all functions from R→ R and for

f : R→ R, g : R→ R and c ∈ R define

(f + g)(x) = f(x) + g(x), (cf)(x) = c.f(x), ∀x ∈ R.

Then F is a vector space over R.

The zero is the constant function f0 such that f0(x) = 0,∀x ∈ R and
for any f ∈ F , −f is the function defined by

(−f)(x) = −f(x), ∀x ∈ R.

5. The set C of complex numbers is a vector space over R with the usual
addition of complex numbers and multiplication by real numbers.

6. An unusual example: Let U be a set. Consider the power set

P(U) = {A|A ⊆ U}. For A,B ⊆ U define

A + B = (A ∪B)\(A ∩B).

This definition satisfies conditions 1(i)-(iv) of Definition 8.1.

The zero in P(U) is ∅ and −A = A.

Consider the field Z2 = {0, 1} and define

1.A = A, 0.A = ∅, ∀A ⊆ U.

We can show that 2(i)-(iv) of Definition 8.1 are satisfied.

Hence P(U) is a vector space over Z2.

Theorem 8.3. Let V be a vector space over K. Then, for all u ∈ V and all
a ∈ K we have:

(i) 0u = 0;

(ii) a0 = 0;

(iii) (−1)u = −u; and

(iv) if au = 0, then a = 0 or u = 0.

Proof. (i) 0u = (0 + 0)u = 0u + 0u

⇒ 0 = 0u− 0u = (0u + 0u)− 0u = 0u + (0u− 0u) = 0u.
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(ii) a0 = a(0 + 0) = a0 + a0

⇒ 0 = a0− a0 = (a0 + a0)− a0 = a0 + (a0− a0) = a0.

(iii) We need to show that u + (−1)u = 0. We have

u + (−1)u = 1u + (−1)u = (1− 1)u = 0u = 0.

(iv) If au = 0 and a 6= 0, then there exists a−1 ∈ K. We have

a−1(au) = a−10 = 0

but also a−1(au) = (a−1a)u = 1u = u and therefore u = 0.

Subspaces

Definition 8.4. A non-empty subset W of a K−space V is a subspace if

(i) u + v ∈ W, ∀u, v ∈ W ; and

(ii) au ∈ W, ∀u ∈ W,∀a ∈ K.

Theorem 8.5. A subspace W of a K−space V is itself a vector space over
K with the same addition and scalar multiplication as in V .

Proof. Since W 6= ∅, there exists u ∈ W and then 0 = 0.u ∈ W by (ii) of
Definition 8.4. For each v ∈ W we have −v = (−1)v ∈ W . The remaining
properties of a vector space hold in W because they hold in V and W ⊆
V .

Examples 8.6. (i) In Rn, let W =


 x1

...
xn

 |xi ∈ R, x1 = 0

. Then W

satisfies the two conditions of Definition 8.4 and is a subspace of Rn.

(ii) In Mn(K) let
W = {A ∈Mn(K)|A = AT}

be the subset of all symmetric matrices. Then W is a subspace because
the sum of two symmetric matrices is symmetric and any scalar multiple
of a symmetric matrix is also symmetric.
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(iii) For all n, Pn is a subspace of P because the sum of two polynomials
with degree ≤ n is a polynomial of degree ≤ n and any scalar multiple
of a polynomial of degree ≤ n has degree ≤ n.

Also Pn is a subspace of Pm for all n ≤ m.

(iv) In the space of real-valued functions F let

W = {f ∈ F| f(1) = 0}.

Then W is a subspace of F because if f, g ∈ W then

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0

and for all a ∈ R,

(af)(1) = af(1) = a0 = 0.

(v) In any vector space V , the subset {0} is a subspace, called the zero
subspace.

Theorem 8.7. Let W1 and W2 be subspaces of the vector space V . Then
W1 ∩W2 is also a subspace of V .

Proof. First note that 0 ∈ W1∩W2 and so W1∩W2 6= ∅. Let u, v ∈ W1∩W2.
Then u + v ∈ W1 and u + v ∈ W2 because W1,W2 are subspaces. Hence
u + v ∈ W1 ∩W2.

Similarly if a ∈ K and u ∈ W1 ∩W2, then au ∈ W1 and au ∈ W2 and so
au ∈ W1 ∩W2. Therefore W1 ∩W2 satisfies the two conditions of Definition
8.4 and is a subspace of V .

Definition 8.8. Let W1 and W2 be subspaces of a vector space V . Then the
set

W1 + W2 = {u + v|u ∈ W1, v ∈ W2}
is called the sum of W1 and W2 in V .

Theorem 8.9. The sum of two subspaces of a vector space V is a subspace
of V .

Proof. We have 0 = 0 + 0 ∈ W1 + W2.
Let u + v, u′ + v′ ∈ W1 + W2, where u, u′ ∈ W1 and v, v′ ∈ W2. Then

(u + v) + (u′ + v′) = (u + u′) + (v + v′) ∈ W1 + W2

and for any c ∈ K,

c(u + v) = cu + cv ∈ W1 + W2

because W1 and W2 are subspaces of V .
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Example 8.10. In Mn(R) consider the subsets

W1 = {A ∈Mn(R)|A = AT}, W2 = {B ∈Mn(R)|B = −BT}.

We have already seen that W1 is a subspace and it’s not hard to show that
W2 is a subspace. We have

W1 ∩W2 = {A ∈Mn(R)|A = AT and A = −AT}.

So if A ∈ W1∩W2, then AT = −AT and we get AT = 0 and A = 0. Therefore
W1 ∩W2 = {0}.

Let A ∈Mn(R). Then we can write

A =
1

2
(A + AT ) +

1

2
(A− AT )

and by properties of the transpose we have
1

2
(A+AT ) ∈ W1 and

1

2
(A−AT ) ∈

W2. Therefore A ∈ W1 + W2 and W1 + W2 = Mn(R).

We can extend Definition 8.8 to the sum of more than two subspaces:

Definition 8.11. Let W1,W2, ...,Wt be subspaces of the vector space V . Then

W1 + W2 + ... + Wt = {w1 + w2 + ... + wt|wi ∈ Wi, i = 1, ..., t}

is the sum of the subspaces W1, ...,Wt.

An easy induction on t and Theorem 8.9 show that this sum is a subspace
of V .
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