8 Vector Spaces

Definition and Examples

In the first part of the course we’ve looked at properties of the real n-space
R™. We also introduced the idea of a field K in Section 3.1 which is any set
with two binary operations 4+ and x satisfying the 9 field axioms. R is an
example of a field but there are many more, for example C, Q and Z, (p a
prime, with modulo p addition and multiplication).

In the second part of the course we will be looking at vector spaces.
These will be a generalisation of R” and we will see many other examples that
have the same properties. We will start with an abstract definition listing
the vector space axioms. All the properties we derive will then apply to
any example that satisfies this definition.

Definition 8.1. A vector space over a field K is a set V with addition
and scalar multiplication, ie. uw+ v € V is defined for all u,v € V and
au € V is defined for all a € K and uw € V', such that

1.(i)) u+v=v+4u for allu,v € V
(i) (u+v)+w=u+ (v+w) for allu,v,w €V
(iii) there exists an element 0 € V' such that uw+ 0 = u for allu € V

(iv) for each u € V, there exists a unique element —u € V' such that u +

(—u) =0
2.(1) a(u+v) =au+ av for all a € K, for all u,v € V
(11) (a+b)u = au+ bu for all a,b € K, for allu eV
(i) a(bu) = (ab)u for all a,b € K, for allu € V
(iv) lu=wu for allu e V.

The elements of V' are called vectors and the elements of K are called
scalars. We sometimes refer to V' as a K —space.

Examples 8.2. 1. For all n > 1, R™ with the usual addition and scalar
multiplication is a vector space over R. More generally, let

Ty
K" = e e K

Tn



and define
T (1 T1+ U Ty cTy
+ : = : ) c : =
T Yn Tn + Yn Tn CIn
where x;,y;,c € K. Then K" is a vector space over K.
. The set M, (R) of all m x n matrices with entries in R with addition

of matrices and scalar multiplication is a vector space over R. More
generally, let

aiy ... Qip
Mo (K) = : : la;; € K
Am1 - Amp

be the set of m x n matrices with entries in K and define

air ... Qipn b11 bln ap;p + b11 Ay + bln
+ = : :
Am1 - Qmp bml bmn A1 + bml vee Qmp + bmn
ay] ... Qip ca11 ... Cain
cC =
Am1 -+ Qmp CQm1 - CQmp

where (a;j, b;;,¢ € K). Then M,,,(K) is a vector space over K.
We write M,,(K) = M,,,(K).

. Let P,, denote the set of all polynomials of degree < n with real coef-
ficients:

P, = {ao + a1 + axx® + ... + a,2"|a; ER, Vi =0, ...,n}
and define

n

Z a;xt + i bt = i(ai + b;) !
i=0

=0 i=0
n n
C(Z a;x") = Z(cai)xi.
=0 i=0

Then P, is a vector space over R.
The zero vector is the zero polynomial with all coefficients equal to 0
and — (327 aa’) = 321 (—a;)a’.

The set P of all polynomials over R is also a vector space over R.



4. Let F denote the set of all functions from R — R and for
fiR—=>R,g:R— R and c € R define

(f+9)(x) = f(z)+g(z), (cf)(z) = c.f(x), Vz € R.

Then F is a vector space over R.

The zero is the constant function fy such that fo(z) = 0,Ve € R and
for any f € F, —f is the function defined by

(=f)(x) =—f(), Vr € R.

5. The set C of complex numbers is a vector space over R with the usual
addition of complex numbers and multiplication by real numbers.

6. An unusual example: Let U be a set. Consider the power set
P(U)={A|ACU}. For A, B C U define

A+ B=(AUB\(ANB).

This definition satisfies conditions 1(i)-(iv) of Definition 8.1.
The zero in P(U) is ) and —A = A.
Consider the field Zy = {0,1} and define

LA=A, 0A=0, VYACU

We can show that 2(i)-(iv) of Definition 8.1 are satisfied.

Hence P(U) is a vector space over Zs.

Theorem 8.3. Let V' be a vector space over K. Then, for allu € V and all
a € K we have:

(i) Ou=0;
(ii) a0 = 0;
(111) (—1)u = —u; and

(iv) if au =0, then a =0 or u = 0.

Proof. (i) Ou= (0+0)u = Ou+ Ou
= 0= 0u — O0u = (Ou+ Ou) — Ou = Ou + (Ou — Ou) = Ou.
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(i) a0 =a(0+0) = a0 + a0
= 0=a0—a0 = (a0 + a0) — a0 = a0 + (a0 — a0) = 0.

(iii) We need to show that v + (—1)u = 0. We have

u+ (—Du=1lu+(-1)u= (1 —-1)u=0u=0.

(iv) If au = 0 and a # 0, then there exists a=! € K. We have
a Hau)=a'0=0

but also a~!(au) = (e 'a)u = lu = u and therefore u = 0.

Subspaces

Definition 8.4. A non-empty subset W of a K—space V' is a subspace if
(i) u+vew, Yu,v € W; and
(ii) au € W, Yu € W,Va € K.

Theorem 8.5. A subspace W of a K—space V is itself a vector space over
K with the same addition and scalar multiplication as in V.

Proof. Since W # (), there exists u € W and then 0 = 0.u € W by (ii) of
Definition 8.4. For each v € W we have —v = (—1)v € W. The remaining
properties of a vector space hold in W because they hold in V and W C
V. O

x
Examples 8.6. (i) InR", let W = || €Rzy =0p. Then W
Tn
satisfies the two conditions of Definition 8.4 and is a subspace of R™.

(ii) In M, (K) let
W ={A¢c M,(K)| A= A"}

be the subset of all symmetric matrices. Then W is a subspace because
the sum of two symmetric matrices is symmetric and any scalar multiple
of a symmetric matrix is also symmetric.



(iii) For all n, P, is a subspace of P because the sum of two polynomials
with degree < n is a polynomial of degree < n and any scalar multiple
of a polynomial of degree < n has degree < n.

Also P, is a subspace of P, for all n < m.
(iv) In the space of real-valued functions F let
W ={feFlfQ1) =0}
Then W is a subspace of F because if f,g € W then
(f+9)(1)=f1)+9(1) =0+0=0
and for all a € R,

(af)(1) = af(1) = a0 = 0,

(v) In any vector space V, the subset {0} is a subspace, called the zero
subspace.

Theorem 8.7. Let Wy and Wy be subspaces of the vector space V. Then
Wi N Wy is also a subspace of V.

Proof. First note that 0 € Wi NW5 and so Wy NW, # 0. Let u,v € WiNWs.
Then v +v € W, and u + v € Wy because Wy, W, are subspaces. Hence
uU+v e W1 N W2.

Similarly if a € K and v € Wy N Ws, then au € W, and au € W5 and so
auw € Wi, N Wy, Therefore Wi N Wy satisfies the two conditions of Definition
8.4 and is a subspace of V. O

Definition 8.8. Let Wy and W5 be subspaces of a vector space V. Then the
set
Wi+ W, = {u+v|u€ Wl,U € WQ}

is called the sum of Wy and Wy in V.

Theorem 8.9. The sum of two subspaces of a vector space V is a subspace
of V.

Proof. We have 0 =040 € Wy + W,
Let u+wv,u + v € Wy + Wy, where u, v’ € Wi and v,v' € W,. Then

(u+v)+@W+V)=(u+u)+ (v+0) e Wy + W,
and for any ¢ € K,
c(u+v)=cu+cve W, + W,
because W, and W, are subspaces of V. O
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Example 8.10. In M, (R) consider the subsets
Wy ={Ae M,(R)|A= A"}y, W,={Bec M,(R)|B=-B"}.

We have already seen that W; is a subspace and it’s not hard to show that
Wy is a subspace. We have

WinNnWsy = {A S MH(R” A=AT and A = —AT}.

Soif A € WyNWs, then AT = — AT and we get AT = 0 and A = 0. Therefore
W1 N W2 = {Q}
Let A € M,(R). Then we can write

A %(A+AT) +%(A—AT)

1 1
and by properties of the transpose we have §(A+AT) € W; and §(A—AT) €

W;. Therefore A € Wy + Wy and Wy + Wy = M, (R).

We can extend Definition 8.8 to the sum of more than two subspaces:
Definition 8.11. Let W1, W5, ..., W, be subspaces of the vector space V. Then
Wi+ Wo+ o+ Wy ={w +we + ... +wyw; € Wyii=1,...,t}

1s the sum of the subspaces W1, ..., W;.

An easy induction on t and Theorem 8.9 show that this sum is a subspace
of V.



