7 Diagonalization and Quadratic Forms

Diagonalization

Recall the definition of a diagonal matrix from Section 1.6.

Definition 7.1. A square matrix A is diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal. We say that P diagonalizes A.

Remark. Why is this interesting? For many applications we need to compute powers of matrices, for example

$$A^7 = AAAAAAA.$$

To do this by direct calculation is a lot of work, but if A is diagonalizable, say $P^{-1}AP = D$ diagonal, then $A = PDP^{-1}$ so

$$A^7 = (PDP^{-1})^7 = PD^7P^{-1}.$$

and more generally, $A^k = PD^kP^{-1}$ for all k. We have seen in Exercise Sheet 5 that D^k is easy to compute, so this gives a much easier way to work out A^k for large k.

Examples 7.2. Consider

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}, P = \begin{pmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}.$$

Then we can check that

$$P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} =: D,$$

so A is diagonalizable. Now for any m we have

$$A^m = PD^mP^{-1} = P \begin{pmatrix} 2^m & 0 & 0 \\ 0 & 2^m & 0 \\ 0 & 0 & 1^m \end{pmatrix} P^{-1}$$

so to calculate A^m we need only calculate the scalar power 2^m and then perform two matrix multiplications.
Exercise. With A as above, work out A^{16}. Then try and do it directly without the “diagonalization”!

Given that diagonalizing a matrix is so useful, it is natural to ask which matrices can be diagonalized. To answer this question we will need a lemma giving yet another characterisation of invertible matrices.

Lemma 7.3. Let P be an $n \times n$ square matrix. Then P is invertible if and only if its columns (viewed as column n-vectors) form a set of n linearly independent vectors.

Proof. See Section 14. □

Theorem 7.4. Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors. A matrix P diagonalizes A if and only if P’s columns form a set of n linearly independent eigenvectors for A. If it does, then the main diagonal entries of the diagonal matrix $P^{-1}AP$ are the eigenvalues of A (in the order corresponding to the columns of P).

Proof. Suppose $P^{-1}AP = D$ is diagonal. Let c_1, \ldots, c_n be the columns of P. By Lemma 7.3, the columns are linearly independent. Now $P^{-1}AP = D$ implies

$$AP = PD.$$

It follows from the definition of matrix multiplication that (i) the ith column of PD is $D_{ii}c_i$ and (ii) the ith column of $AP = Ac_i$. Thus we have $Ac_i = D_{ii}c_i$, so each column c_i is an eigenvector of A corresponding to the eigenvalue D_{ii}.

Conversely, if A has n linearly independent eigenvectors c_1, \ldots, c_n then let P be the matrix with these as columns, and D the diagonal matrix with the corresponding eigenvalues on the main diagonal. By Lemma 7.3, P is invertible. Now reversing the argument above, the ith column of AP is Ac_i and the ith column of PD is $D_{ii}c_i$ so $AP = PD$, so $P^{-1}AP = D$. □

Example 7.5. Let

$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}, u = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ and } v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Then A has eigenvalues 3 and -1, with corresponding eigenvectors u and v respectively (**exercise: check this**). It is easy to check that $\{u, v\}$ is linearly independent. If we let P be the matrix whose columns are u and v,

$$P = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \text{ then } P^{-1} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}.$$
and one can check (exercise) that
\[P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}. \]

Definition 7.6. An \(n \times n \) matrix \(A \) is called **orthogonally diagonalizable** if there is an **orthogonal** matrix \(P \) such that \(P^{-1}AP = P^TAP \) is diagonal.

Theorem 7.7. Let \(A \) be an \(n \times n \) matrix. Then the following are equivalent:

(i) \(A \) is orthogonally diagonalizable.

(ii) \(A \) has an orthonormal set of \(n \) eigenvectors;

(iii) \(A \) is symmetric.

Proof. (i) \(\iff \) (ii) This follows from Theorems 6.6, 6.8 and 7.4 (exercise: write down exactly how).

(i) \(\Rightarrow \) (iii) If (i) holds, say \(P^{-1}AP = D \) is diagonal with \(P \) orthogonal, then we have \(A = PDP^{-1} = PDP^T \). Clearly \(D \) is symmetric, so
\[A^T = (PDP^T)^T = (P^T)^TD^TP^T = PDP^T = A \]
which means that \(A \) is symmetric.

(iii) \(\Rightarrow \) (ii) Omitted (see for example the textbook of Anton).

Quadratic Forms

Definition 7.8. A quadratic form in \(n \) variables is a function \(f: \mathbb{R}^n \to \mathbb{R} \) of the form
\[f(x) = f(x_1, \ldots, x_n) = \sum_{1 \leq i \leq j \leq n} c_{ij}x_i x_j \quad (*) \]
where \(x \in \mathbb{R}^n \) and \(c_{ij} \in \mathbb{R} (1 \leq i \leq j \leq n) \). Alternatively, a quadratic form is a homogeneous polynomial of degree 2 in \(n \) variables \(x_1, \ldots, x_n \).

Examples 7.9. The following are quadratic forms:

1. \(f(x_1) = x_1^2 \)
2. \(f(x_1, x_2) = 2x_1^2 + 3x_2^2 - x_1x_2 \)
3. \(f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3 \)
4. \(f(x_1, \ldots, x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 = \langle v | v \rangle \), where \(v = (x_1, \ldots, x_n) \). So the Euclidean inner product (see Chapter 6) gives rise to a quadratic form.

If we set \(a_{ii} = c_{ii} \) for \(i = 1, \ldots, n \) and \(a_{ij} = \frac{1}{2} c_{ij} \) for \(1 \leq i < j \leq n \), then (*') becomes

\[
 f(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{1 \leq i < j \leq n} 2a_{ij} x_i x_j
\]

and we can write this as

\[
 f(x) = x^T A x
\]

where \(A \) is the symmetric \(n \times n \) matrix with \((i,j)\)-th entry equal to \(a_{ij} \). Then \(A \) is called the matrix of the quadratic form \(f \).

Example 7.10. Let \(f(x_1, x_2) = 2x_1^2 - 3x_2^2 - x_1 x_2 \). Then

\[
 f(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 2 & -1/2 \\ -1/2 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.
\]

Now that a symmetric matrix is involved, we can take advantage of Theorem 7.7.

ie. there exists an orthogonal matrix \(Q \) such that

\[
 Q^T A Q = D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}
\]

where \(D \) is a diagonal matrix and \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(A \).

Now let \(y = Q^{-1} x = Q^T x \). Then \(x = Qy \) and

\[
 f(x) = (Qy)^T A(Qy) = y^T Q^T A Q y = y^T D y
\]

and if \(y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \) then

\[
 y^T D y = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2,
\]

a quadratic form in variables \(y_1, \ldots, y_n \) with no cross terms. This process is called **diagonalization** of the quadratic form \(f \). We have just proved a famous theorem, namely
Theorem 7.11. (The Principal Axes Theorem) Every quadratic form \(f \) can be diagonalized. More specifically, if \(f(x) = x^T Ax \) is a quadratic form in \(x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \), then there exists an orthogonal matrix \(Q \) such that

\[
f(x) = x^T Ax = \lambda_1 y_1^2 + \ldots + \lambda_n y_n^2
\]

where \(\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = Q^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \) and \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of the matrix \(A \).

From the first part of the course we know that \(Q \) is the matrix whose columns are the unit eigenvalues of the matrix \(A \) of \(f \).

Example 7.12. Let \(f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \). The matrix of \(f \) is

\[
A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.
\]

The eigenvalues of \(A \) are 2, \(-1\), \(-1\) with corresponding unit eigenvectors

\[
\begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}, \quad \begin{pmatrix} -2/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}
\]

and so we have

\[
Q = \begin{pmatrix} 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix}.
\]

If we set \(y = Q^T x \), we get

\[
y_1 = \frac{1}{\sqrt{3}}(x_1 + x_2 + x_3), \quad y_2 = \frac{1}{\sqrt{6}}(-2x_1 + x_2 + x_3), \quad y_3 = \frac{1}{\sqrt{2}}(x_2 - x_3).
\]

Then, expressed in terms of the variables \(y_1, y_2 \) and \(y_3 \), the quadratic form becomes \(2y_1^2 - y_2^2 - y_3^2 \).

Definition 7.13. A quadratic form \(f : \mathbb{R}^n \to \mathbb{R} \) is **positive definite** if

\(f(x) > 0 \) for all \(x \neq 0 \).
An immediate consequence of the Principal Axes Theorem is the following:

Theorem 7.14. Let $f(x) = x^T Ax$ be a quadratic form with matrix A. Then f is positive definite if and only if all the eigenvalues of A are positive.

Proof. By the Principal Axes Theorem, there exists an orthogonal matrix Q such that

$$f(x) = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$$

where $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = Q^T x$ and $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. If all the λ_i are positive then $f(x) > 0$ except when $y = \mathbf{0}$. But this happens if and only if $x = \mathbf{0}$ because Q^T is invertible. Therefore f is positive definite.

On the other hand if one of the eigenvalues $\lambda_i \leq 0$, letting $y = e_i$ and $x = Q y$ we get $f(x) = \lambda_i \leq 0$ and so f is not positive definite. \qed

We say that a symmetric matrix A is **positive definite** if the associated quadratic form

$$f(x) = x^T Ax$$

is positive definite.

The Principal Axes Theorem has important applications in geometry.