
7 Diagonalization and Quadratic Forms

Diagonalization

Recall the definition of a diagonal matrix from Section 1.6.

Definition 7.1. A square matrix A is diagonalizable if there exists an in-
vertible matrix P such that P−1AP is diagonal. We say that P diagonalizes
A.

Remark. Why is this interesting? For many applications we need to com-
pute powers of matrices, for example

A7 = AAAAAAA.

To do this by direct calculation is a lot of work, but if A is diagonalizable,
say P−1AP = D diagonal, then A = PDP−1 so

A7 = (PDP−1)(PDP−1)(PDP−1)(PDP−1)(PDP−1)(PDP−1)(PDP−1) = PD7P−1.

and more generally, Ak = PDkP−1 for all k. We have seen in Exercise Sheet
5 that Dk is easy to compute, so this gives a much easier way to work out
Ak for large k.

Examples 7.2. Consider

A =

 0 0 −2
1 2 1
1 0 3

 , P =

 −1 0 −2
0 1 1
1 0 1

 , P−1 =

 1 0 2
1 1 1
−1 0 −1

 .

Then we can check that

P−1AP =

 2 0 0
0 2 0
0 0 1

 =: D,

so A is diagonalizable. Now for any m we have

Am = PDmP−1 = P

 2m 0 0
0 2m 0
0 0 1m

P−1

so to calculate Am we need only calculate the scalar power 2m and then
perform two matrix multiplications.
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Exercise. With A as above, work out A16. Then try and do it directly
without the “diagonalization”!

Given that diagonalizing a matrix is so useful, it is natural to ask which
matrices can be diagonalized. To answer this question we will need a lemma
giving yet another characterisation of invertible matrices.

Lemma 7.3. Let P be an n× n square matrix. Then P is invertible if and
only if its columns (viewed as column n-vectors) form a set of n linearly
independent vectors.

Proof. See Section 14.

Theorem 7.4. Let A be an n×n matrix. Then A is diagonalizable if and only
if A has n linearly independent eigenvectors. A matrix P diagonalizes A if
and only if P ’s columns form a set of n linearly independent eigenvectors for
A. If it does, then the main diagonal entries of the diagonal matrix P−1AP
are the eigenvalues of A (in the order corresponding to the columns of P ).

Proof. Suppose P−1AP = D is diagonal. Let c1, . . . , cn be the columns of
P . By Lemma 7.3, the columns are linearly independent. Now P−1AP = D
implies

AP = PD.

It follows from the definition of matrix multiplication that (i) the ith column
of PD isDiici and (ii) the ith column of AP = Aci. Thus we have Aci = Diici,
so each column ci is an eigenvector of A corresponding to the eigenvalue Dii.

Conversely, if A has n linearly independent eigenvectors c1, . . . , cn then
let P be the matrix with these as columns, and D the diagonal matrix with
the corresponding eigenvalues on the main diagonal. By Lemma 7.3, P is
invertible. Now reversing the argument above, the ith column of AP is Aci
and the ith column of PD is Diici so AP = PD, so P−1AP = D.

Example 7.5. Let

A =

(
3 0
8 −1

)
, u =

(
1
2

)
and v =

(
0
1

)
.

Then A has eigenvalues 3 and −1, with corresponding eigenvectors u and
v respectively (exercise: check this). It is easy to check that {u, v} is
linearly independent. If we let P be the matrix whose columns are u and v,

P =

(
1 0
2 1

)
, then P−1 =

(
1 0
−2 1

)
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and one can check (exercise) that

P−1AP =

(
3 0
0 −1

)
.

Definition 7.6. An n×n matrix A is called orthogonally diagonalizable
if there is an orthogonal matrix P such that P−1AP = P TAP is diagonal.

Theorem 7.7. Let A be an n×n matrix. Then the following are equivalent:

(i) A is orthogonally diagonalizable.

(ii) A has an orthonormal set of n eigenvectors;

(iii) A is symmetric.

Proof. (i) ⇔ (ii) This follows from Theorems 6.6, 6.8 and 7.4 (exercise:
write down exactly how).

(i) ⇒ (iii) If (i) holds, say P−1AP = D is diagonal with P orthogonal,
then we have A = PDP−1 = PDP T . Clearly D is symmetric, so

AT = (PDP T )T = (P T )TDTP T = PDP T = A

which means that A is symmetric.
(iii)⇒ (ii) Omitted (see for example the textbook of Anton).

Quadratic Forms

Definition 7.8. A quadratic form in n variables is a function f : Rn → R
of the form

f(x) = f(x1, ..., xn) =
∑

1≤i≤j≤n

cijxixj (∗)

where x ∈ Rn and cij ∈ R(1 ≤ i ≤ j ≤ n). Alternatively, a quadratic form is
a homogeneous polynomial of degree 2 in n variables x1, ..., xn.

Examples 7.9. The following are quadratic forms:

1. f(x1) = x21

2. f(x1, x2) = 2x21 + 3x22 − x1x2

3. f(x1, x2, x3) = x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3
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4. f(x1, . . . , xn) = x21 + x22 + · · · + x2n = 〈v|v〉, where v = (x1, . . . , xn). So
the Euclidean inner product (see Chapter 6) gives rise to a quadratic
form.

If we set aii = cii for i = 1, ..., n and aij =
1

2
cij for 1 ≤ i < j ≤ n, then

(∗) becomes

f(x) =
n∑

i=1

aiix
2
i +

∑
1≤i<j≤n

2aijxixj

and we can write this as
f(x) = xTAx

where A is the symmetric n×n matrix with (i, j)-th entry equal to aij. Then
A is called the matrix of the quadratic form f .

Example 7.10. Let f(x1, x2) = 2x21 − 3x22 − x1x2. Then

f(x1, x2) =
(
x1 x2

)( 2 −1/2
−1/2 −3

)(
x1
x2

)
.

Now that a symmetric matrix is involved, we can take advantage of The-
orem 7.7.

ie. there exists an orthogonal matrix Q such that

QTAQ = D =

 λ1 ... 0
...

. . .
...

0 ... λn


where D is a diagonal matrix and λ1, ..., λn are the eigenvalues of A.

Now let y = Q−1x = QTx. Then x = Qy and

f(x) = (Qy)TA(Qy) = yTQTAQy = yTDy

and if y =

 y1
...
yn

 then

yTDy = λ1y
2
1 + ...+ λny

2
n,

a quadratic form in variables y1, ..., yn with no cross terms. This process
is called diagonalization of the quadratic form f . We have just proved a
famous theorem, namely
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Theorem 7.11. (The Principal Axes Theorem) Every quadratic form f can
be diagonalized. More specifically, if f(x) = xTAx is a quadratic form in

x =

 x1
...
xn

, then there exists an orthogonal matrix Q such that

f(x) = xTAx = λ1y
2
1 + ...+ λny

2
n

where

 y1
...
yn

 = QT

 x1
...
xn

 and λ1, ..., λn are the eigenvalues of the matrix

A.

From the first part of the course we know that Q is the matrix whose
columns are the unit eigenvectors of the matrix A of f .

Example 7.12. Let f(x1, x2, x3) = 2x1x2 + 2x1x3 + 2x2x3. The matrix of f
is

A =

 0 1 1
1 0 1
1 1 0

 .

The eigenvalues of A are 2,−1,−1 with corresponding unit eigenvectors 1/
√

3

1/
√

3

1/
√

3

 ,

 −2/
√

6

1/
√

6

1/
√

6

 ,

 0

1/
√

2

−1/
√

2


and so we have

Q =

 1/
√

3 −2/
√

6 0

1/
√

3 1/
√

6 1/
√

2

1/
√

3 1/
√

6 −1/
√

2

 .

If we set y = QTx, we get

y1 =
1√
3

(x1 + x2 + x3), y2 =
1√
6

(−2x1 + x2 + x3), y3 =
1√
2

(x2 − x3).

Then, expressed in terms of the variables y1, y2 and y3, the quadratic form
becomes 2y21 − y22 − y23.

Definition 7.13. A quadratic form f : Rn → R is positive definite if
f(x) > 0 for all x 6= 0.
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An immediate consequence of the Principal Axes Theorem is the follow-
ing:

Theorem 7.14. Let f(x) = xTAx be a quadratic form with matrix A. Then
f is positive definite if and only if all the eigenvalues of A are positive.

Proof. By the Principal Axes Theorem, there exists an orthogonal matrix Q
such that

f(x) = λ1y
2
1 + ...+ λny

2
n

where y =

 y1
...
yn

 = QTx and λ1, ..., λn are the eigenvalues of A. If all the

λi are positive then f(x) > 0 except when y = 0. But this happens if and
only if x = 0 because QT is invertible. Therefore f is positive definite.

On the other hand if one of the eigenvalues λi ≤ 0, letting y = ei and
x = Qy we get f(x) = λi ≤ 0 and so f is not positive definite.

We say that a symmetric matrix A is positive definite if the associated
quadratic form

f(x) = xTAx

is positive definite.
The Principal Axes Theorem has important applications in geometry.
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