7 Diagonalization and Quadratic Forms

Diagonalization

Recall the definition of a diagonal matrix from Section 1.6.

Definition 7.1. A square matriz A is diagonalizable if there exists an in-
vertible matriz P such that P~*AP is diagonal. We say that P diagonalizes
A.

Remark. Why is this interesting? For many applications we need to com-
pute powers of matrices, for example

AT = AAAAAAA.

To do this by direct calculation is a lot of work, but if A is diagonalizable,
say P~'AP = D diagonal, then A = PDP~! so

A" = (PDP " (PDP Y)(PDP 'Y (PDP " (PDP 'Y (PDP ") (PDP')=PD'P".

and more generally, A¥ = PD¥P~! for all k. We have seen in Exercise Sheet
5 that D" is easy to compute, so this gives a much easier way to work out
AF for large k.

Examples 7.2. Consider

00 —2 -1 0 -2 1 0 2
A=[1 2 1 P=| 0 1 1 P71 = 1 1 1
1 0 3 1 0 1 -1 0 -1

Then we can check that

P lAP =

S O N

0
2
0

so A is diagonalizable. Now for any m we have

om0 0
A" =ppmpt=pP| 0 2» (0 | P!
0o 0 1™

so to calculate A™ we need only calculate the scalar power 2™ and then
perform two matrix multiplications.



Exercise. With A as above, work out A%, Then try and do it directly
without the “diagonalization”!

Given that diagonalizing a matrix is so useful, it is natural to ask which
matrices can be diagonalized. To answer this question we will need a lemma
giving yet another characterisation of invertible matrices.

Lemma 7.3. Let P be an n X n square matriz. Then P is invertible if and
only if its columns (viewed as column n-vectors) form a set of n linearly
independent vectors.

Proof. See Section 14. O]

Theorem 7.4. Let A be an nxn matriz. Then A is diagonalizable if and only
if A has n linearly independent eigenvectors. A matriz P diagonalizes A if
and only if P’s columns form a set of n linearly independent eigenvectors for
A. If it does, then the main diagonal entries of the diagonal matriz P~*AP
are the eigenvalues of A (in the order corresponding to the columns of P).

Proof. Suppose P~'AP = D is diagonal. Let ci,...,c, be the columns of
P. By Lemma 7.3, the columns are linearly independent. Now P~*AP = D
implies

AP = PD.

It follows from the definition of matrix multiplication that (i) the ith column
of PD is Dj;c; and (ii) the ith column of AP = Ac;. Thus we have Ac; = D¢,
so each column ¢; is an eigenvector of A corresponding to the eigenvalue D;;.

Conversely, if A has n linearly independent eigenvectors cy, ..., ¢, then
let P be the matrix with these as columns, and D the diagonal matrix with
the corresponding eigenvalues on the main diagonal. By Lemma 7.3, P is
invertible. Now reversing the argument above, the ith column of AP is Ac;
and the ith column of PD is D;;c; so AP = PD, so P"'AP = D. O

Example 7.5. Let

(2 4)e () ()

Then A has eigenvalues 3 and —1, with corresponding eigenvectors u and
v respectively (exercise: check this). It is easy to check that {u,v} is
linearly independent. If we let P be the matrix whose columns are v and v,

(10 1 1 0
P—(2 1), then P —(_2 1)

2



and one can check (exercise) that

s (30
PAP_(O_l).

Definition 7.6. An n xn matriz A is called orthogonally diagonalizable
if there is an orthogonal matriz P such that P~*AP = PT AP is diagonall.

Theorem 7.7. Let A be an n xn matriz. Then the following are equivalent:
(i) A is orthogonally diagonalizable.
(ii) A has an orthonormal set of n eigenvectors;

(i1i) A is symmetric.

Proof. (i) < (i1) This follows from Theorems 6.6, 6.8 and 7.4 (exercise:
write down exactly how).

(i) = (i) If (i) holds, say P"*AP = D is diagonal with P orthogonal,
then we have A = PDP~! = PDPT. Clearly D is symmetric, so

AT = (PDP")" = (P")"D"P" = PDP" = A

which means that A is symmetric.
(74i) = (74) Omitted (see for example the textbook of Anton).

Quadratic Forms

Definition 7.8. A quadratic form in n variables is a function f : R"™ — R
of the form

fx) = flon,nmn) = D eymay (%)

1<i<j<n

where v € R™ and ¢;; € R(1 <1 < j <mn). Alternatively, a quadratic form is
a homogeneous polynomial of degree 2 in n variables x1, ..., T,.

Examples 7.9. The following are quadratic forms:
L f(x) = o7
2. f([[‘l, 112) = 21‘% + 31‘3 — T1T9

3. f(.’l?l, Xa, 1’3) = SL’% + LU% + SL’% — 2%1132 — 25(71373 — 21’21‘3



4o fxy, ..y xn) =23+ 23+ -+ 22 = (v|v), where v = (z1,...,2,). So
the Euclidean inner product (see Chapter 6) gives rise to a quadratic
form.

1
If we set a; = ¢; for ¢ = 1,...,n and a;; = §cij for 1 <i < j <n, then
(%) becomes
n
f(l') = Z (luiClQ + Z 2al-j:1;l-xj
i=1 1<i<j<n
and we can write this as

f(z) =2 Az

where A is the symmetric n x n matrix with (¢, j)-th entry equal to a;;. Then
A is called the matrix of the quadratic form f.

Example 7.10. Let f(z1,79) = 22?2 — 325 — z125. Then
f(IL’ . ) _ ( A ) 2 —1/2 T
1,42 1 2 _1/2 -3 To .

Now that a symmetric matrix is involved, we can take advantage of The-
orem 7.7.
ie. there exists an orthogonal matrix () such that

Ao 0

Q"AQ=D=| : -~

0 ... A\,

where D is a diagonal matrix and Ay, ..., A, are the eigenvalues of A.
Now let y = Q 'z = QTx. Then z = Qy and

f(x) = (Qy)"A(Qy) = y"Q"AQy = y" Dy

Y
and if y = : then

Yn
yTDy = /\1yf + ...+ /\nyfl,

a quadratic form in variables yi,...,v, with no cross terms. This process
is called diagonalization of the quadratic form f. We have just proved a
famous theorem, namely



Theorem 7.11. (The Principal Azes Theorem) Every quadratic form f can
be diagonalized. More specifically, if f(x) = 2T Az is a quadratic form in

L1
T = : , then there exists an orthogonal matriz () such that
T
flx)=a"Av = Nyl + ... + 2
Y1 1
where : =QT : and My, ..., \, are the eigenvalues of the matrix
Yn Tn

From the first part of the course we know that () is the matrix whose
columns are the unit eigenvectors of the matrix A of f.

Example 7.12. Let f(x1,z9, x3) = 22129 + 22123 + 22923. The matrix of f
18

011
A= 1 0 1
1 10
The eigenvalues of A are 2, —1, —1 with corresponding unit eigenvectors
1/V3 —2/1/6 0

e | ave | Ve
1/v3 1/v6 —1/v/2
and so we have
1/vV3 —=2/vV6 0
Q=1 1/v3 1/v6  1/v2
1/V3 1/V/6 —1/V2

If we set y = QT x, we get

1 1 1
hn = —<I1 + X9 + $3)7Z/2 = —(_21’1 + 2 +x3),y3 =

Ve NG VoA

Then, expressed in terms of the variables y,y2 and y3, the quadratic form
becomes 2y7 — y3 — 3.

Definition 7.13. A quadratic form f : R® — R is positive definite if
f(x) >0 for all z # 0.



An immediate consequence of the Principal Axes Theorem is the follow-
ing:

Theorem 7.14. Let f(z) = 27 Az be a quadratic form with matriz A. Then
f is positive definite if and only if all the eigenvalues of A are positive.

Proof. By the Principal Axes Theorem, there exists an orthogonal matrix ()
such that
f@) =Myt + .+ Ay

Y1
where y = : = QTx and )\, ..., \, are the eigenvalues of A. If all the

Yn
A; are positive then f(z) > 0 except when y = 0. But this happens if and
only if = 0 because Q7 is invertible. Therefore f is positive definite.
On the other hand if one of the eigenvalues \; < 0, letting y = e; and
r = Qy we get f(z) =X\ <0 and so f is not positive definite. O

We say that a symmetric matrix A is positive definite if the associated
quadratic form

f(z) =2 Az

is positive definite.
The Principal Axes Theorem has important applications in geometry.



