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Abstract— This paper presents the whole-body modeling and control of a quadrotor unmanned aerial vehicle
serially coupled to a three-link manipulator. Dual quaternion algebra is used to obtain the kinematic model,
and the dynamic model expresses the influence of the manipulator movement in the center of mass of the entire
system. The proposed control strategy uses a cascade layout comprising a kinematic controller and an inverse
dynamics controller, whose main objective is to track a desired trajectory for the end-effector while keeping the
system stable. Finally, the performance of the proposed control strategy is evaluated through simulation results,
showing that a trajectory defined for the manipulator end-effector is successfully tracked while the quadrotor
remains stable.

Keywords— Unmanned Aerial Vehicle, Dual Quaternions, Whole-Body Modeling, Underactuated System
Control.

Resumo— Este trabalho apresenta a modelagem de corpo completo e controle de um veículo aéreo não tri-
pulado tipo quadrirrotor acoplado a um manipulador de três elos. A modelagem cinemática utiliza a álgebra de
quatérnios duais e o modelo dinâmico expressa a influência do movimento do manipulador no centro da massa
de todo o sistema. A estratégia de controle proposta utiliza um layout em cascata, composto por um controlador
cinemático e um controlador de dinâmica inversa, sendo seu principal objetivo acompanhar a trajetória desejada
para o efetuador enquanto mantém o sistema estável. Finalmente, o desempenho da estratégia de controle pro-
posta é avaliado através de resultados de simulação, mostrando que uma trajetória definida para o efetuador do
manipulador é rastreada com sucesso enquanto o quadrirrotor se mantém estável.

Palavras-chave— Veículos Aérios não Tripulados, Quatérnios Duais, Modelagem de Corpo Completo, Con-
trole de Sistema Subatuado.

1 Introduction

Mobile manipulators have attracted much atten-
tion in academic research in recent years, thanks
to the mobility offered by the mobile platform
and the manipulation capabilities offered by the
manipulator (Adorno, 2011; Jimenez-Cano et al.,
2013). The use of such systems provides a variety
of new applications, ranging from manufacturing
to robotic assistance. However, since most mo-
bile platforms are restricted to the ground, the
mobility can be compromised if the task requires,
for instance, climbing stairs or reaching difficult
places to perform the manipulation.

Unmanned aerial vehicles (UAVs), on the
other hand, have been used in several applica-
tions, such as exploration, detection, localization
and monitoring. However, they are mainly con-
sidered as platforms for environmental sensing.
Many of their tasks are limited since they cannot
directly interact with the environment. Therefore,
many researchers are working on aerial manipula-
tors, which are analogous to (terrestrial) mobile
manipulators, but are composed of a manipula-
tor attached to an aerial platform. The use of
aerial manipulators amplifies the range of tasks,
such as in the construction of high platforms and
load transportation to devastated areas (Korpela
et al., 2012, 2014).

Research involving aerial manipulators uses
mainly quadrotor or helicopters as aerial plat-

forms (Arleo et al., 2013; Jimenez-Cano et al.,
2013; Orsag et al., 2013) and some of the projects
use manipulators with a gripper (Danko & Oh,
2014) or even more than one arm (Korpela et al.,
2011; Orsag et al., 2013). Danko & Oh (2014)
showed that the manipulator design has an im-
portant impact on the system performance, and
then presented a hyper-redundant manipulator
that can perform tasks more efficiently.

Those researches also proposed some models
and control strategies to perform aerial manipula-
tion tasks. Arleo et al. (2013) developed a whole-
body model of an aerial manipulator and a cas-
cade controller to track the desired end-effector
trajectory by considering the inverse kinematics.
Similarly, Orsag et al. (2013) presented a whole-
body model, but the dynamics model was reduced
to two scenarios: i) Manipulation stage, where
the manipulator performs a certain task while the
quadrotor remains hovering; and ii) Flying stage:
the aerial manipulator flies to a desired position,
while the manipulator remains still in a home con-
figuration.

Heredia & Jimenez-Cano (2014) designed an
aerial manipulator to perform outdoor tasks and
used a backstepping control law. Korpela et al.
(2013) developed two models for their system,
having a UAV model and a manipulator model.
However, the controllers considered the influence
of the end-effector movement on the center of mass
of the UAV.
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The present paper models the whole-body dy-
namics of an aerial manipulator, considering a
quadrotor UAV coupled to a three-link planar ma-
nipulator. The control strategy is composed of
two controllers in a cascade scheme. In the in-
ner loop control, an inverse dynamics controller is
designed in the configuration space to track the
trajectory generated by the outer loop. In the
latter, the kinematic controller performs the path
tracking of the end-effector. To evaluate the pro-
posed control strategy, two simulations that con-
sider one scenario without disturbances and other
with disturbances are carried out.

The paper is organized as follows: Sec-
tion 2 presents the mathematical background re-
lated to dual quaternions and kinematic modeling,
whereas Sections 3 and 4 present the main contri-
butions of the paper, that is, the system modeling
and control design. Section 5 reports the simula-
tions results to certify the approach and finally,
Section 6 concludes the paper.

2 Mathematical Background

The use of dual quaternion algebra in robotics
research has been increasing in recent years,
thanks to its computational efficiency, absence
of representational singularities and modeling
expressiveness—for instance, dual quaternions are
used to represent rigid motions, twists, wrenches,
and geometrical primitives (Adorno, 2011). This
section briefly describes the dual quaternion alge-
bra and its use in robot kinematic modeling.

2.1 Dual quaternion algebra

Quaternions, denoted by the set H, are an ex-
tension of complex numbers and are defined as
h,h1 + ı̂h2 + ȷ̂h3 + k̂h4, where h1, h2, h3, h4 ∈ R
and ı̂2=ȷ̂2=k̂2=ı̂ȷ̂k̂= − 1. Dual quaternions, de-
noted by the set H, are composed of two quater-
nions in addition to the dual unit ε, which has
the properties ε ̸= 0 and ε2 = 0 (Selig, 2005).
More specifically, a dual quaternion is given by
x , h1+ı̂h2+ȷ̂h3+k̂h4+ε

(
h5 + ı̂h6 + ȷ̂h7 + k̂h8

)

and we refer to P (x) , h1 + ı̂h2 + ȷ̂h3 + k̂h4 and
D (x) , h5 + ı̂h6 + ȷ̂h7 + k̂h8 as the primary part
and dual part of x, respectively. Sometimes, it is
convenient to map dual quaternions into an eight-
dimensional vector, by means of the mapping
vec : H → R8, where vecx ,

[
h1 · · · h8

]T .
Although quaternions are commonly used

to represent rigid body rotations in three-
dimensional space, they are also used to repre-
sent translations (Selig, 2005). For instance, given
the position

[
px py pz

]T , the corresponding
quaternion is represented by p = ı̂px + ȷ̂py + k̂pz.
On the other hand, the orientation is represented

by r = cos (ϕ/2) + n sin (ϕ/2), where ϕ is the ro-
tation angle around axis n = ı̂nx + ȷ̂ny + k̂nz.

Both translation and rotation—i.e., a com-
plete rigid motion—is represented in a unified way
by a unit dual quaternion x = r +(1/2) εpr. The
set of unit dual quaternions form the algebraic
group Spin(3) n R3.

A sequence of rigid transformations is rep-
resented by a sequence of unit dual quaternions
multiplications. For example, given that x0

1 rep-
resents frame F1 with respect to F0 and x1

2 repre-
sents frame F2 with respect to F1, then F2 with
respect to F0 is x0

2 = x0
1x

1
2.

Although dual quaternion multiplication is
not commutative, Hamilton operators can be used
to conveniently switch terms in a dual quater-
nion multiplication (Adorno, 2011). More specif-
ically, given x1,x2 ∈ H, the Hamilton opera-

tors
+

H (·) and
−
H (·) are matrices that satisfy

vec (x1x2)=
+

H (x1) vecx2=
−
H (x2) vecx1.

2.2 Kinematics Modeling

The forward kinematics model (FKM) provides
the mapping f : Rn → Spin (3) n R3 between
the joint configurations and the end-effector pose;
that is, x = f (q), where x is the end-effector pose
and q is the vector of joint variables. The dif-
ferential forward kinematics model (DFKM), on
the other hand, provides a mapping between the
derivatives of the vector of joint variables and the
derivatives of the dual quaternion representing the
end-effector pose (Adorno, 2011); that is,

vec ẋ = J q̇, vec ẍ = J̇ q̇ + J q̈, (1)

where J = ∂ vecx/∂q is the analytical Jacobian.

3 System Modeling

The structure of the aerial manipulator proposed
in this paper consists of a quadrotor coupled to a
three-link manipulator. The coordinate systems
are the inertial reference frame F0, the vehicle
frame Fq, and the manipulator frame Fm (Fig-
ure 1).

The quadrotor has six degrees of freedom
qq,

[
x y z ϕ θ ψ

]T . The variables x, y,
and z express the position of Fq in relation
to F0 and ϕ, θ, and ψ represent the rotations
about the moving axes X, Y , and Z, respec-
tively. The manipulator consists of three links
connected by revolution joints, which are given by
qm,

[
β1 β2 β3

]T . The whole system has nine
degrees of freedom, which are q,

[
qT

q qT
m

]T .
Next, the kinematics and dynamics modeling

of the system are developed, so that the aerial
manipulator are able to perform tasks defined at
the end-effector level.
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Figure 1: Coordinate systems: F0 is the inertial
reference frame; Fq is the vehicle frame; and Fm

is the manipulator frame.

Table 1: DH parameters of the manipulator

Link d (m) θ (rad) a (m) α (rad)
L1 0 π/4 + β1 0.15 0
L2 0 π/4 + β2 0.15 0
L3 0 π/4 + β3 0.15 π/2

3.1 Kinematic Modeling

The FKM of the aerial manipulator takes into ac-
count quadrotor and manipulator models to rep-
resent the pose of the end-effector, represented
by the coordinate system Fm, with respect to
the inertial frame F0. The quadrotor FKM is
given by xq=rq+(1/2) εpqrq, where rq=rzryrx

and pq=ı̂x+ȷ̂y+k̂z, being rx a rotation ϕ around
the moving axis X, ry a rotation θ around the
moving axis Y , and rz a rotation ψ around the
moving axis Z.

The manipulator FKM is obtained by
using the standard Denavit-Hartenberg (DH)
convention—whose parameters are shown in
Table 1—applied to dual quaternion algebra
(Adorno, 2011). Furthermore, an additional ro-
tation in the end-effector frame is considered,
so that the z-axis is the approach direction,
the y-axis is the sliding direction (the direc-
tion along which the gripper slides to open and
close), and the x-axis is the normal direction
of the plane formed by preceding axes (Spong
et al., 2006). This rotation is represented by
xL3

E =(cos (π/4) + sin (π/4) ı̂). The manipulator
FKM is thus given by xm=xL1

xL2
xL3

xL3

E .
The FKM of the whole system x is

x = xqxaxm, (2)

where xa = ra + (1/2) εpara is a transformation
from Fq to the manipulator basis and ra =

(cos (π/4) − sin (π/4) ı̂)
(
cos (π/2) − sin (π/2) k̂

)

and pa = −0.075k̂.
In order to obtain the DFKM of the whole

system, we perform the time derivative of (2) and
map the resulting equation to R8, which yields

vec ẋ = J q̇, (3)

where J ,
[ −
H (xaxm)Jq

+

H
(
xqxa

)
Jm

]
.

3.2 Dynamic Modeling

The dynamic equations are used in the inverse
dynamics controller design, as well as in the sys-
tem representation for simulation purposes. They
are obtained through Euler-Lagrange formulation
(Spong et al., 2006) and are described by

M (q) q̈ + C (q, q̇) q̇ +G (q) = B (q)Γ, (4)

where M (q) is the inertia matrix, C (q, q̇)
is the Coriolis matrix, G (q) the gravitational
forces vector, B (q) is the coupling matrix, and
Γ=[ f1 f2 f3 f4 τ1 τ2 τ3 ]

T

are the ap-
plied forces and torques. More specifically, fi,
with i= {1, . . . , 4}, is the thrust generated by the
i-th rotor (Mistler et al., 2001; Raffo, 2011), and
τj , with j= {1, 2, 3}, is the torque at the j-th ma-
nipulator joint.

Our aerial manipulator is an underactuated
system, since it has less actuators than degrees
of freedom (Raffo, 2011). Indeed, angles ϕ and θ
(which correspond to roll and pitch, respectively)
can only be stabilized, which means that it is not
possible to regulate them into a specific operation
point at the same time instant in which the others
DOF are regulated.

The coupling matrix B (q) is given by

B (q) =

[
N (q) 04×3

03×3 I3

]
,

where

N (q)=

[
WT 03×3

03×3 R

] [
N1 N2

N3 N4

]
, with

N1=




0 lcαT
−lcαT 0
ktcαT

b −ktcαT
b


, N2=




0 −lcαT
lcαT 0
ktcαT

b −ktcαT
b


,

N3=




−sαT 0
0 −sαT

cαT cαT


, N4=



sαT 0
0 sαT

cαT cαT


,

and cαT , cosαT , sαT , sinαT . Furthermore, R
is the rotation matrix that describes the orienta-
tion of the body frame Fq with respect to the in-
ertial frame F0; the matrix W relates the angular
velocity of the body frame to the time derivative
of the Euler angles (Raffo, 2011); In ∈ Rn×n is the
identity matrix and 0n×m ∈ Rn×m is the zero ma-
trix; l = 0.332m is the distance between the center
of mass and the rotor; b = 9.5 · 10

−6

N · s2 is the
rotor’s thrust coefficient; kt = 1.7 · 10

−7

N·m · s2 is
the rotor’s drag coefficient; and αT = 5o is the an-
gle of the rotors with respect to the vertical axis.
Thanks to this angle, the thrust forces also gener-
ate longitudinal and lateral movements on axis X
and axis Y , respectively.

The model parameters of the aerial manipu-
lator are shown in Table 2, where the first link
corresponds to the quadrotor and the other links
correspond to the manipulator ones.
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Table 2: Model parameters of the aerial vehicle.

Link
mi Ixx Iyy Izz

(kg)
(
kg.m2

) (
kg.m2

) (
kg.m2

)

1 2.24 0.0363 0.0363 0.0615

2 0.2 7.53 10−6 6.48 10−6 6.48 10−6

3 0.2 7.53 10−6 6.48 10−6 6.48 10−6

4 0.2 7.53 10−6 6.48 10−6 6.48 10−6

Kinematic

Controller

Inverse
Dynamic
Controller

Aerial
Manipulator

Forward
Kinematics

qqd, q̇d Γ

x, ẋ

xd

ẋd q̈d q̇

Figure 2: Block diagram of the control architec-
ture.

4 Control Design

The main objective of the control system is to per-
form tasks at the end-effector level, in which it is
required to track both desired pose xd and desired
velocities ẋd of the end-effector, while keeping the
whole system stable.

The cascade control structure is composed of
two levels. In the outer loop, the kinematic con-
troller vc computes the joint-space motion refer-
ences qd, q̇d, and q̈d, which are tracked by an
inverse dynamics controller Γ in the inner loop.
This scheme is summarized in Figure 2.

In order to stabilize variables ϕ and θ, while
performing the task in the end-effector level, the
kinematic control law vc is divided into two parts:

vc =
[
vT

1 vT
2

]T
. (5)

Therefore, we also split the Jacobian matrix into
two blocks—J1 and J2—where J1, which is re-
lated to ϕ and θ, is composed of the first two
columns of J (q), and J2 is composed of the re-
maining columns. The vector q of generalized co-
ordinates is also partitioned accordingly, that is,
qT =

[
qT

1 qT
2

]T
.

The first part of the controller,
v1=Kp2

[
ϕ̇ θ̇

]T ∈ R2, is a proportional con-
troller of the variables ϕ̇ and θ̇, with gain matrix
Kp2 ∈ R2×2. The desired values for these veloc-
ities are zero, since the goal is to maintain the
quadrotor stable while performing the task. The
second part, v2 ∈ R7, is based on the DFKM,
with an additional control law U in the null
space of matrix J2, and its objective is to track
the trajectory, while keeping the joints of the
manipulator as far as possible from their limits.
Thus, v2 is given by

v2 = J#
2

(
Qx − J̇2q̇2

)
+

(
I7 − J#

2 J2

)
U , (6)

where Qx,Kpc vec (xd − x) + Kdc vec (ẋd − ẋ),
and Kpc ∈ R8×8 and Kdc ∈ R8×8 are pro-

portional and derivative gains matrices, re-
spectively. Considering d (qm) ,

∑3
i=1 d̄i,

where d̄i,1/2β2
i , with i= {1, 2, 3} and

dp,∂d (qm) /∂qm, the secondary control law
is U,J#

ns

(
Kns1d (qm) +Kns2ḋ (qm) − ḋpq̇m

)
,

where Jns=
[
01×4 dp

]
, and Kns1∈ R and

Kns2∈ R are proportional and derivative scalar
gains, respectively.

The inverse dynamic controller is given by

Γ = B (q)
#

(M (q)v + C (q, q̇) q̇ −G (q)) , (7)

where v,Kp (qd − q) +Kd (q̇d − q̇) + q̈d is a PD
controller with feedforward action in acceleration
and Kp ∈ R9×9 and Kd ∈ R9×9 are diagonal ma-
trices representing the proportional and derivative
gains, and q̈d , vc. The values of q̇d and qd are
obtained by integration of q̈d.

5 Results and discussions

The proposed control strategy has been tested
via numerical simulations in Matlab/Simulink
environment. We have considered the quadro-
tor model described by Raffo (2011) and
the manipulator parameters were obtained
through the designed CAD model. The gain
matrices Kpc=blkdiag (0.0045 I4; 0.006 I4) and
Kdc=blkdiag (0.04 I4; 0.078 I4) in (6) are adjusted
empirically. The submatrices related to the pri-
mary parts of the pose and pose derivative errors
have lower values than the submatrices related to
their dual parts (which embed the translational
components), because the system’s translational
dynamics is slower than its rotational dynamics.
The inverse dynamic controller’s gain matrix
Kp=blkdiag (02×2; I4; 2 I3) is adjusted taking into
account that ϕ and θ cannot be controlled, and
therefore their gains are zero. On the other hand,
the gain matrix Kd=blkdiag (50 I2; I4; 50 I3) is
adjusted considering that ϕ, θ and βi, with
i= {1, 2, 3}, must stabilize faster than the other
variables. The same arguments have been used
to adjust Kp2= − 5 I2, Kns1=0.5, and Kns2=100.

An external disturbance vector
Γ̄=

[
01×3 0.1 01×3

]T is also applied to the
system at t=400 s. The end-effector task consists
in following a circular trajectory defined as

xd =
(
1+ε

(
C1 ı̂+C2ȷ̂+(3−4C1) k̂

))
x (0) , (8)

along with ẋd, which is directly computed tak-
ing the time derivative of (8). In addition, C1 ,
(1/2) cos (wt), and C2 , (1/2) sin (wt), where
w = 2π/Ts is the angular velocity and Ts = 1000 s
is the total simulation time.

Figures 3–7 show the simulations results of
the path tracking for the aerial manipulator, con-
sidering one scenario without disturbances and
other with disturbances. In detail, Figure 3 shows
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Figure 3: Desired and actual trajectories for the
end-effector (EF ) and the quadrotor (QR).

a 3D view of the trajectory followed by end-
effector and quadrotor. Even in the presence
of disturbances, the aerial manipulator followed
the specified trajectory while remaining stable.
The time response of each component of the dual
quaternion is shown in Figure 4. Despite the dis-
turbance, each component converges asymptoti-
cally to its desired reference.

Figure 5a presents the time response of the
Euler angles corresponding to the quadrotor ori-
entation. Since the desired orientation is always
constant—see (8)—we conclude that the cascade
scheme had a satisfactory performance as the vari-
ations in each orientation component were very
small and fluctuated around 0 rad, which ensures
stability. Figure 5b presents the time evolution of
the quadrotor’s translational motions, indicating
that the control strategy was capable of guiding
the vehicle smoothly. Moreover, the controllers
provided null steady-state error in both transla-
tional and rotational motions. Figure 6 shows
the time response of the manipulator joint angles.
As one can see, the secondary control objective,
which was projected in the null space of the pri-
mary task, was successful in keeping these angles
close to their desired values, which correspond to
the manipulator home configuration (π/4 for all
angles). The error in these angles were non-zero,
as expected, due to the requirements imposed by
the primary task to follow the desired trajectory.
Finally, Figure 7 shows the control efforts. More
specifically, the upper graph shows the thrust of
each rotor of the vehicle, whereas the lower graph
shows the torques in each joint of the manipulator.
Both indicate that the inputs were not aggressive,
even in the presence of disturbances.

It is also possible to note the effects of the
whole-body control in the results. For example,
due to the geometric restrictions of the planar ma-
nipulator, the end-effector can move only along
axes X and Z. In the beginning of the simulation,
the end-effector is located below the desired posi-
tion specified by the trajectory. Since at the be-
ginning of the simulation the first two manipulator
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Figure 4: Desired and actual trajectories of x.
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Figure 5: Variables of the quadrotor during the
tracking of the circular trajectory.

XII Simpósio Brasileiro de Automação Inteligente (SBAI)

973



β
1
[r
a
d
]

β
2
[r
a
d
]

β
3
[r
a
d
]

time[s]
0 100 200 300 400 500 600 700 800 900 1000

0.75

0.8

0.85

0.76

0.78

0.8

0.76

0.78

0.8

Desired
Nominal
Disturbance

Figure 6: Time evolution of the joint angles of the
3 DOF manipulator arm for the circular trajec-
tory.

f
i
[N

]

6.98

6.985

6.99

6.995

7

τ
i
[N
.m

]

time[s]
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

τ1 Nominal

τ2 Nominal

τ3 Nominalτ1 Disturb.

τ2 Disturb.

τ3 Disturb.

f1 Nominal

f4 Nominalf2 Nominal

f3 Nominal

f1 Disturb.

f4 Disturb.f2 Disturb.

f3 Disturb.

Figure 7: Time evolution of the control efforts.

links move in such a way that the displacement in
Z is reduced (when it should be increased), the
third link and the quadrotor move in the opposite
direction in order to compensate for the motion
of these first two links, as shown in Figure 5b and
Figure 6 between 0s and 100s.

6 Conclusions

Aerial robotics is evolving to include not only sys-
tems with sensing capabilities but also with the
possibility to act on the environment, and partic-
ularly with manipulation capabilities. This paper
has proposed a new kinematic model, based on
dual quaternion algebra, for an unmanned aerial
vehicle serially coupled to a manipulator robot. In
addition, a cascade control strategy, which com-
prises a kinematic controller and an inverse dy-
namics controller, has been proposed to track a de-
sired trajectory for the end-effector while keeping
the system stable and avoiding the manipulator
joint limits. Finally, the performance of the pro-
posed control strategy has been evaluated through
simulation results, showing that a trajectory de-
fined for the manipulator end-effector is success-
fully tracked while the quadrotor remains stable.
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