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Abstract— We propose in this paper a new concept of unified
position/orientation control of robot manipulator by describing
the end-effector motion as a dual quaternion involving both
translation and rotation. The development of the forward
kinematic model and Jacobian matrix in dual quaternion space
is detailed as well as the stability of the controller. At last,
simulation and experimental results highlight the efficiency and
performance of this controller.

I. INTRODUCTION

Many robotic applications involve not only pick and place
operations but also grasping and fine manipulation of any
kind of objects. The task is then described by means of end-
effector motion which should be efficiently controlled. In the
case of a robot manipulator, the gripper or possibly the hand
attached to the end-effector can be viewed as an actuator
manoeuvring the position and the orientation of the object.
As a result, the desired task can be described by a desired
position and orientation of the coordinate frame attached to
the robot end-effector with respect to the base frame (i.e.
the task-space variables). Control of the end-effector motion
is commonly performed using feedback of either the joint
variables or the task-space variables. The joint-based control
requires the solution of the inverse kinematics to convert the
desired task-space trajectory into the desired joint trajectory,
but the inverse model is often difficult to obtain. In contrast,
task-space control does not need the inverse kinematics.
However, the precise and stable control of the end-effector
position and orientation must be ensured.

The position and orientation can be parametrized in differ-
ent ways, such as with the well-known 4× 4 homogeneous
transformation matrix, Euler angles [6], unit quaternion [9],
[10] or dual quaternion [3], [8]. In an homogeneous transfor-
mation matrix, twelve parameters are used to represent the
position and orientation of a body. When the unit quaternion
is adopted for the rotation, a seven-dimensional vector must
be defined. Only the Euler angles and any kind of three-
element orientation vectors can provide a six-dimensional
vector as a unified representation of position and orientation.
But a 4×4 matrix is still to be used for deriving the forward
kinematics and extracting the unit quaternion or the Euler
angles.

Moreover, all types of Euler angles have a "rotation-in-
sequence" nature. Thus, the Euler angle method is suitable
for representing a single frame orientation but not for rep-

resenting orientation paths in the case of trajectory tracking.
Another critical issue for the Euler angles is that they
suffer from representation singularities. The unit quaternion
represents the end-effector orientation without singularities
but complicates the controller design since the position and
orientation errors are separately calculated [9], [10].

Indeed, position control schemes are usually made of two
control loops, for controlling the rotation and the translation,
respectively [7]. The angular velocity is typically obtained
through the approximate differentiation of some orientation
representation, provided that it is differentiable.

Despite the eight-dimension of the dual quaternion, some
authors [1], [4] stated that the dual quaternion is the most
compact and efficient way to express the screw motion,
that is, both translational and rotational transformations in
a robot kinematic chain. The dual quaternion turns out to be
an elegant and useful tool for kinematic analysis in many
researches such as in inertial navigation [8] and computer
vision [3].

In this paper, we use the dual quaternion as the basis for a
position control scheme of a manipulator robot. The error
between desired and actual position/orientation is simply
expressed as a difference between both corresponding dual
quaternions, which widely facilitates the error computation
in comparison with classical methods. Considering main
position control strategies [7], we have built two different
control schemes - with pseudo-inverse Jacobian and Jacobian
transpose, respectively - allowing position and orientation
control in only one control loop, hereafter called dual po-
sition control strategy. The global asymptotic stability is
proven for each.

In order to test the validity of the computation methods and
to evaluate the efficiency of the control strategies, a 6-axis
Adept Viper robot is used in simulated and real conditions.

This paper is organized as follows: Section II presents
the mathematical background that will be useful for the
remaining of the paper. Two methods for dual position
control are proposed in Section III. Section IV describe a
systematic way for finding the forward kinematic model and
the Jacobian matrix in the dual quaternion space. Then, to
validate our technique based on dual quaternions, a variety
of experiments with computer simulations and a real robot
are carried out and reported in Section V. Finally, Section
VI presents the conclusions and proposes future works.



II. MATHEMATICAL BACKGROUND

To begin with, we recall in this section some necessary
definitions on quaternion and dual quaternion. More detailed
treatments on these mathematical tools can be found in
previous research works [8]. First, quaternion is explained,
followed by a short description of dual number. Finally, the
dual quaternion and its relevant properties are introduced.

A. Quaternion

The quaternion, introduced by Hamilton in 1843 [5], is
an extension of the complex numbers to a four dimensional
manifold. There are two formalisms to define a quaternion.
The classical one is:

q = a0 + a1i+ a2j + a3k (1)

where a0, a1, a2, a3 ∈ < and the three imaginary components
i, j, k are defined as:

i2 = j2 = k2 = −1 (2)

and have the following properties:

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (3)

The other definition of a quaternion is as a pair (s,~v), where
s ∈ < is a scalar and ~v ∈ <3. By definition, a quaternion
satisfies the following property:

λ(s,~v) = (λs, λ~v) (4)

where λ is a scalar. and the addition and multiplication
between two quaternions q1 and q2 are respectively defined
as:

q1 + q2 = (s1 + s2, ~v1 + ~v2) (5)

q1q2 = (s1s2 − ~v1~v2, s1~v2 + s2~v1 + ~v1 × ~v2) (6)

Conjugation and norm of a quaternion are given by:

q∗ = (s,−~v) (7)

‖q‖ = qq∗ (8)

If ‖q‖ = 1, q is a unit quaternion. The unit quaternion can
be used to represent a rotation of an angle θ about a unit
vector ~n in the three-dimensional Euclidean space as [5]:

q = (cos (θ/2)), ~n sin (θ/2)) (9)

B. Dual number

The Dual numbers were introduced by Clifford [2] and
are defined as:

ẑ = a+ εa′ with ε2 = 0 but ε 6= 0 (10)

where a is the real part and a′ the dual part.
The operator ε can be used to represent any dual quantity

like dual vector, dual quaternion, etc. A useful concept
concerns dual vectors with orthogonal real and dual parts.
Such particular dual vectors represent lines in <3 known as
Plücker coordinates (or Plücker line). The real part ~l is the
direction of the line and the dual part ~m = ~p × ~l is its
moment, as illustrated in Fig. 1. The inner product between

Fig. 1: Geometrical representation of the Plücker line.

two such dual vectors is equal to the cosine of a dual angle
θ̂ = θ + εd, which has a nice geometric interpretation: θ is
the crossing angle between the two space lines and d their
common perpendicular distance.

C. Dual quaternion

The dual quaternion is defined as a dual number with
quaternion components:

q = q+ εq′ (11)

where q and q′ are quaternions. Alternatively, the dual
quaternions can be mapped in a vector space as

~q = [q1, q2, q3, q4, q5, q6, q7, q8]
T (12)

The usual algebraic quaternion operations, with the addi-
tion of the operator ε, can be applied to the dual quaternions,
that is:

λq = λq+ ελq′ (13)

q
1
+ q

2
= q1 + q2 + ε (q′1 + q′2) (14)

q
1
q
2
= q1q2 + ε (q1q

′
2 + q′1q2) (15)

The norm of a dual quaternion is given by ‖q‖2 = qq∗

with q∗ = q∗ + εq′∗ and the unity condition becomes:

qq∗ = 1 and q∗q′ + q′
∗
q = 0 (16)

Unit dual quaternions can be used to represent any rigid
transformation including translation and rotation, similarly to
the way unit quaternions can be used to represent rotations.
It can be shown [3], [8] that the rigid transformation of a
line through the point ~p, represented by its direction ~l and
moment ~m = ~p×~l, is given by:

q(l+ εm)q∗ (17)

where the dual quaternion q = q+ εq′ with q′ = 1
2tq, q is

the unit quaternion describing the rotation and t = (0,~t) is
the quaternion describing the translation represented by the
vector~t, and n and m are quaternions defined as l = (0,~l)
and m = (0, ~m), respectively.



Therefore, the unit dual quaternion is a useful tool to
represent the transformation between two frames F1 and F2

resulting from either a rotation q succeeded by a translation
t2 with respect to F2, that is,

q = q+ ε
1

2
qt2 (18)

or a translation t1 with respect to F1 succeeded by a
rotation q, i.e.,

q = q+ ε
1

2
t1q (19)

III. DUAL POSITION CONTROL SCHEME

Since a dual quaternion is a compact representation for the
position and the orientation, we can easily define the desired
position and orientation of the robot end-effector with respect
to the base frame by a unit dual quaternion as follows:

~q
d
=
(
~qd ~q′d

)T
(20)

where the unit quaternion ~qd represents the desired ori-
entation and the quaternion ~q′d representing the desired
translation is calculated according to (19).

When using joint based position controllers, a natural
metric for the error calculation arises as being the vector
difference between the desired input vector ~θd and the
measured vector ~θ. And the aim of the position control loop
is to make this error converge to zero. For this to happen,
two different position control schemes are commonly used,
based on the pseudo-inverse Jacobian matrix in one hand and
on the Jacobian transpose matrix in another hand [7].

Let us consider the dual quaternion error ~q
e

as being
the difference between the desired and the actual dual
quaternions:

~q
e
= ~q

d
− ~q (21)

The aim of the dual position control loop presented in this
paper is to make this dual quaternion error converge to zero.

This dual quaternion error ~q
e

turns out to be an arbitrary
vector in a <8 manifold. Although this vector does not
satisfy the constraints of (16), it can be used as a metric
for the error in a joint based position scheme provided that
an appropriate analytical Jacobian matrix JA(q) is derived
in the dual quaternion space of the manipulator, relating the
joint velocity vector ~̇θ and the time derivative of the dual
quaternion as:

~̇q = JA(q)~̇θ (22)

The usual position control schemes are modified accord-
ingly to (22) and are represented in Fig. 2a and Fig. 2b,
respectively.

Let us prove in the following that both solutions ensure
the convergence of the dual quaternion error to zero. The
time derivation of (21)

~̇q
e
= ~̇q

d
− ~̇q (23)
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Fig. 2: Dual position control strategies.

leads to
~̇q
e
= −JA(q)~̇θ (24)

when the reference ~q
d

is constant. In the case of the pseudo-

inverse Jacobian scheme (Fig. 2a), the choice ~̇θ = J+
AK~qe

leads to the equivalent linear system

~̇q
e
+K~q

e
= 0 (25)

If K is a positive definite (usually diagonal) matrix, the
error tends to zero with a convergence rate that depends on
the eigenvalues of matrix K; the larger are the eigenvalues,
the faster is the convergence. The system is asymptotically
stable.

In the case of the Jacobian transpose scheme (Fig. 2b),
let us choose as Lyapunov candidate the positive definite
quadratic function:

V (~q
e
) =

1

2
~qT

e
K~q

e
(26)

where K is assumed to be a symmetric matrix.
Differentiating (26) with respect to time gives:

V̇ =
1

2
~̇qT
e
K~q

e
+

1

2
~qT

e
K~̇q

e
(27)

=
(24)
−1

2
~̇θTJT

AK~qe
− 1

2
~qT

e
KJA

~̇θ (28)

Since K is a symmetric matrix, the choice ~̇θ = JT
AK~qe

leads to
V̇ = −~qT

e
KJAJ

T
AK~qe

(29)

If K is positive definite, the derivative of the Lyapunov
function obtained in (29) is negative. Hence, the system is
asymptotically stable.

Both control schemes ensure stable control of the end-
effector motion proving that the task can efficiently be
described in terms of dual quaternions, which greatly sim-
plifies the implementation of the controller since position
and orientation are no more separately controlled. The posi-
tion/orientation error is expressed in a unified and compact
vector which avoids singularities related to the representation
of the orientation.



IV. ROBOT KINEMATICS IN DUAL QUATERNION
SPACE

This section details the computation of the forward kine-
matic model (FKM) and of the Jacobian matrix in the dual
quaternion space that are required in both control schemes.

A. Forward kinematic model in dual quaternion space

To derive the forward kinematic model (FKM) of a serial
link manipulator, the standard Denavit-Hartenberg conven-
tion [6] has widely been used. Having assigned coordinate
frames to each link, the transformation between two succes-
sive frames Fn−1 and Fn is described with the following
rotations and translations:

1) Rotation about axis zn−1 of an angle θn :
Rot(zn−1, θn)

2) Translation along axis zn−1 of a distance dn:
Trans(zn−1, dn)

3) Translation along axis xn of a distance an:
Trans(xn, an)

4) Rotation about axis xn of an angle αn: Rot(xn, αn)

Similarly, in the dual quaternion space, the transformation
between these frames is obtained by multiplication of the 4
dual quaternions corresponding to each transformation:

q
n−1,n =

q
rot
(zn−1, θn)qtrans

(zn−1, dn)qtrans
(xn, an)qrot

(xn, αn)

(30)

The subscripts rot and trans indicate whether the trans-
formation is a pure rotation or a pure translation, respectively.
In these cases, the dual quaternions are simplified. For a pure
rotation, the translation vector is ~0 and thus q

rot
= qrot. For

a pure translation, the rotation quaternion is the identity and

hence q
trans

= 1 + ε
t

2
.

The FKM can be then calculated for an n-link robot as:

q = q
01
q
12
. . .q

n−1,n (31)

B. Jacobian matrix in the dual quaternion space

For any robot manipulator with n joints, the kinematic
expression that relates the end-effector velocity vector Ẋ
to the joint velocity vector θ̇ is given by the well-known
relationship [6]:

~̇X = J(θ)~̇θ (32)

where the Jacobian matrix J(θ) is given analytically by

J(θ) =
d ~X

d~θ
(33)

In the dual quaternion space, (32) becomes

~̇q = J(q)~̇θ (34)

Now the Jacobian matrix relating the joint velocity vector
θ̇ and the time derivative of the dual quaternion ˙̂q is given
analytically by

J(q) =
d~q

d~θ
=

d

dθ



q1
...
q4
q5
...
q8


=


∂q1
∂θ1

. . .
∂q1
∂θn

...
. . .

...
∂q8
∂θ1

. . .
∂q8
∂θn

 (35)

where ~q = [q1, q2, q3, q4]
T and ~q′ = [q5, q6, q7, q8]

T , with
q and q′ being the components of the dual quaternion q =
q+ εq′.

V. EXPERIMENTS

To validate the dual position control approach proposed
and presented in Section III, we have implemented both con-
trol schemes (Fig. 2a and Fig. 2b) on a six-link manipulator.
To this aim, we have derived for this Adept Viper robot
(Fig. 3) the forward kinematic model in the dual quaternion
space and the corresponding Jacobian matrix using (31) and
(35).

Fig. 3: Adept Viper s850 robot

A. Chosen task

We have conducted a variety of experiments in simulated
and real conditions, and in all of them the proposed ap-
proaches achieved an efficient performance.

As initial configuration, we consider all joint positions
equal to θinit =

(
20 −110 190 25 45 20

)T
. This

configuration corresponds to the following vector in the dual
quaternion space:

~q
init

= (0.3530 0.0651 0.8660 0.3482

−0.2192 −0.2526 −0.0098 0.2938)T
(36)

The task consists of moving the robot’s end-effector so
that the tool frame coincides with the desired frame, as
illustrated in Fig. 4. This movement combines a translation



and a rotation of a 60◦ angle about the global axis y leading
to the final end-effector position and orientation:

~q
d
= (0.8660 0 0.5 0

−0.0160 0.2197 0.0277 0.3706)T
(37)

Fig. 4: Description of the task

In terms of homogeneous transformation matrix, these
initial and final configurations are written as following:

Tinit =


−0.7423 −0.1331 0.6567 0.3658
0.3585 0.7491 0.5570 0.1586
−0.5661 0.6489 −0.5083 0.7963

0 0 0 1



Td =


0.5 0 0.866 0.7511
0 1 0 0.0641

−0.8660 0 0.5 0.4223
0 0 0 1


Motion control between both configurations will be as-

sumed by the control schemes described in Section III.

B. Results

First results are obtained with the control solution involv-
ing the pseudo-inverse Jacobian matrix (Fig. 2a). In order
to ensure a same dynamic behaviour for each component of
the dual quaternion vector, the positive definite gain matrix
K is chosen as k ∗ diag(1, 1, 1, 1, 1, 1, 1, 1) where the scalar
k is tuned to minimize the time response and the overshoot.
Fig. 5 shows the time response of each component of the dual
quaternion vector. Each component asymptotically converges
to its desired value. The resulting trajectory of the end-
effector is illustrated in Fig. 6. The end-effector position and
the angle of rotation are shown in Fig. 7a and Fig. 7b, which
demonstrate the efficiency of the method. Tuning the gain k
to a higher value leads to a shorter time response as shown
in Fig. 8.

Next results aim to compare the performance of the
pseudo-inverse based position control loop to the perfor-
mance of the transpose based position control loop. The pos-
itive definite gain matrix K in the second solution (Fig. 2b) is
also chosen as k ∗ diag(1, 1, 1, 1, 1, 1, 1, 1) where k imposes
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Fig. 5: Time response of the dual quaternion components
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Fig. 6: Trajectory of the end-effector

the dynamic behaviour of each dual quaternion component.
This symmetric form also ensures that the system is asymp-
totically stable as stated in Section III.
Fig. 9 shows the time response of the rotation angle. It looks
similar to the previous one. The control scheme with the
Jacobian transpose is as efficient as the one with the pseudo-
inverse. But this second solution avoids the computation of
the inverse matrix.

VI. CONCLUSIONS

We have presented in this paper the concept of dual
position control in dual quaternion space, exploiting the
compactness of this mathematical tool. Position and ori-
entation are defined in a common vector which simplifies
the design of the controller and avoids the computation
of complex transformations to obtain the orientation error.
Two dual position control schemes have been presented
as an adaptation of classical ones and their convergence
has been proven. The necessary forward kinematic model
and Jacobian matrix have been derived in dual quaternion
space. Several experimental results have demonstrated the
efficiency of the proposed solutions. This new formulation
avoids representation singularities. Future works will study
the kinematic singularities involved by the new Jacobian
matrix and intend to use these control schemes for redundant
robots.
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Fig. 7: Dual position control using the pseudo-inverse Jaco-
bian matrix
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values of K when using the pseudo-inverse Jacobian matrix
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Fig. 9: Time response of the angle of rotation for the dual
position control using the transpose Jacobian matrix
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