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Abstract— This paper addresses the H∞ robust control prob-
lem for robot manipulators using unit dual quaternion repre-
sentation, which allows an utter description of the end-effector
transformation without decoupling rotational and translational
dynamics. We propose three different H∞ control criteria
that ensure asymptotic convergence, whereas reducing the
influence of disturbances upon the system stability. Also, with
a new metric of dual quaternion error in SE(3) we prove
independence from robot coordinate changes. Simulation results
highlight the importance and effectiveness of the proposed
approach in terms of performance, robustness, and energy
efficiency.

I. INTRODUCTION

Kinematic control of manipulators have been extensively
studied in the last fourty years and is one of the classic topics
covered by most of robotics textbooks (for example, see [1],
[2]). This type of control is suitable when the robot dynamics
can be neglected, as in the case of stiff robots with harmonic
drives operating at relatively low velocities.

In a pratical scenario, tasks are usually defined at the end-
effector but the control signals are applied into actuators
located at joint level. When the robot inverse kinematics is
known, a desired configuration of the end-effector can be
mapped into a desired configuration of the robot joints and
trajectory planning can be used in conjunction to suitable
controllers to ensure that the current vector of joint posi-
tions converge to a desired value. The inverse kinematics,
however, is not easily obtained for the general case and, in
addition, most often modern manipulator robots are already
equipped with low level controllers at joint level. This way,
a convenient approach, firstly introduced by Whitney for
non-redundant manipulators [3], is to define control laws
directly at the end-effector and then invert the differential
foward kinematics model (FKM) in order to provide suitable
references for the low level controllers. The differential
FKM is usually written in the form of a Jacobian matrix
which is fairly easy to invert—in the general case when the
Jacobian matrix is not square, usually the Moore-Penrose
pseudoinverse is used [2].

When defining the task at the end-effector level, it is
important to use a suitable representation for the FKM.
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Minimal representations such as Euler angles plus Carte-
sian coordinates lead to singularities (i.e., ambiguities that
make the inverse problem ill-posed), whereas non-singular
representations usually cannot be used directly as control
variables. Homogeneous transformation matrices (HTM) are
a very popular choice for representing the FKM, but the
control parameters must be extracted from the matrix, which
requires additional calculations. Moreover, because of the
approximative nature of the extracted rotational parameters,
trajectory generation must be performed in order to guarantee
small rotational errors and thus ensure stability [4].

Recently, an increasing interest has been given to unit dual
quaternions, because they can completely represent the rigid
motion in a more compact way than HTM (eight elements
against twelve), it is straightforward to extract geometric
parameters from a given unit dual quaternion (translation,
axis of rotation, angle of rotation), and dual quaternions
multiplications are less expensive than HTM multiplications
[5, p. 42]. Furthermore, unit dual quaternions are more
straightforward to use than unit quaternions plus Cartesian
coordinates. This is thanks to the fact that a sequence of rigid
motions can be represented by a sequence of dual quaternion
multiplications (e.g., given two unit dual quaternions x1 and
x2, a sequence of rigid motions is given by xf = x1x2). On
the other hand, if unit quaternions plus Cartesian coordinates
are used, the calculations of rotation and position are made
separately. The final rotation will be given by a sequence
of unit quaternion multiplications and the position will be
given by a much more complicated term; that is, given
{r1,p1} and {r2,p2}, where r represents rotation and p
represents translation, the final rigid motion is given by
{r1r2,p1 + r1p2r∗1}, where r∗1 is the conjugate of r1.

Nevertheless, few attention has been given to the control
problem formulated directly in unit dual quaternion space.
Among recent works, some different control strategies should
be acknowledged thanks to their contribution to the analysis
within dual quaternion space. One of them, introduced by
[6]–[8], is based on a logarithmic mapping of the dual
quaternion error, thus taking into account the unit dual
quaternion Lie-group properties and its Lie-algebra. This
approach has been extended to dynamic controllers with a
metric invariant to changes in the body coordinate frame in
[9], [10].

On the other hand, [11], [12] propose a control strategy
based on the dual quaternion error mapping in an R8 mani-
fold. This technique has the advantages of being considerably
more intuitive and attractive from the control point of view,
although it is not invariant to changes in the reference



coordinate system.
All aforementioned works on control using dual quater-

nions provide feasible stability regions over a user defined
parameter, but with no discussion on the performance, ro-
bustness, or energy efficiency related. In this context and
motivated by the problem of optimizing the system perfor-
mance, we state novel stabilization techniques that explicitly
consider the system requirements into an H∞ control design.

The H∞ control theory, originated as a technique to
reduce the feedback system sensitivity [13], allows the
designer to incorporate robustness requirements, disturbance
attenuation, and performance properties into one stabilization
problem [14]. To the best of the authors knowledge, these
concepts have never been exploited in previous works on
control using dual quaternions. Therefore, the present paper
brings an important contribution to control analysis for robot
manipulators by developing H∞ control schemes using the
dual quaternion space to avoid decoupling the end-effector
rotational and translational dynamics and representation sin-
gularities. Moreover, we propose a new error metric, which
still maps the error in an R8 manifold, but is invariant to
coordinate changes.

The paper is organized as follows: Section II presents the
mathematical background related to dual quaternions and
H∞ control, whereas Section III presents the robot kinematic
modeling. Section IV presents the main contributions of the
paper; namely, a new error metric in dual quaternion that
is invariant to changes in the reference coordinate system,
and three different H∞ control schemes. Section V reports
simulations results used to validate the approach and lastly
Section VI closes the paper.

II. MATHEMATICAL BACKGROUND

Let ı̂, ̂, k̂ be the three quaternionic units such that ı̂2 =
̂2 = k̂2 = −1 and ı̂̂k̂ = −1. A unit quaternion r =
cos(φ/2) + sin(φ/2)n represents the rotation in SO(3),
where φ is the rotation angle around the rotation axis n =
nx ı̂+ny ̂+nz k̂ [15]. For unit quaternions, the inverse oper-
ation is given by the conjugate r∗ = cos(φ/2)− sin(φ/2)n.

A rigid motion in SE(3) can be represented by the unit
dual quaternion x = r + ε(1/2)pr, where r is a unit
quaternion that represents the rotation, p = px ı̂+py ̂+pz k̂ is
a pure quaternion (i.e., a quaternion with real part equal to
zero) that represents the translation, and ε is the nilpotent
Clifford unit; that is, ε 6= 0 but ε2 = 0 [16]. For unit
dual quaternions, the inverse operation of x is given by the
conjugate x∗ = r∗+ε(1/2)r∗p∗, such that x∗x = xx∗ = 1.

A sequence of rigid motions can be represented by a
sequence of unit dual quaternion multiplications; for in-
stance, given that x0

1 represents frame F1 with respect to
F0 and x1

2 represents frame F2 with respect to F1, then the
transformation from F0 to F2 is x0

2 = x0
1x

1
2. Alternatively,

the transformation x0
2 can be regarded as a coordinate change

from the coordinate system F0 to the coordinate system F2.
It is well known that SE(3) is a non-commutative group,

so unit dual quaternion multiplication is not commutative
either; that is, if x and y are unit dual quaternions, then xy 6=

yx. Nonetheless, when dual quaternions are mapped into
R8, Hamilton operators can be used to commute terms when
performing dual quaternions multiplications. Let us consider
the mapping

vec : H → R8, (1)

where H is the set of dual quaternions. For the dual quater-
nion z = xy, the Hamilton operators are matrices that satisfy
[17]

vec z =
+

H (x) vecy

=
−
H
(
y
)
vecx.

In addition, using the definition of conjugate of dual quater-
nions it is easy to show that vecx∗ = C8 vecx, where
C8 = diag(1,−1,−1,−1, 1,−1,−1,−1).

Let us now regard a continuous-time system

ẋ(t) = Ax(t) +Bu(t)) +Bwω(t),

z(t) = Cx(t),

where x(t) and u(t) denote the system’s state and control
input, whereas ω(t) is an exogenous input representing the
disturbance acting on the system, whose effect on the output,
z(t), we want to minimize. Suppose that u(t)=Kx(t) is
some stabilizing controller. If we set x(0)=0, the controlled
closed-loop system defines a map from ω(t)∈L2[0,∞)1 to
z(t)∈L2[0,∞), [14]. The gain that defines the H∞ norm of
the closed-loop system is described as

sup

{
‖z(t)‖2
‖ω(t)‖2

, ω(t)∈L2 \ {0}
}
.

The H∞ norm denotes the induced norm of the map ω(t)→
z(t), i.e., the supremum of the noise amplification upon the
system output. If we introduce the index γ, such that

‖z(t)‖2≤γ ‖ω(t)‖2 ,

then γ denotes an upper bound for the induced norm. The
smaller the performance upper bound γ, yields a smaller
influence of ω(t) over z(t). Thus, the reduction of the
index γ enlightens the aim of decoupling the disturbance
influence from the output, z(t). The H∞ control therefore
strives to reduce the performance upper bound γ, through its
relationship withK, whereas maintaining the system internal
stability.

III. KINEMATICS MODELING

Consider a serial manipulator with n joints, each joint
attached to the beginning of a link. The unit dual quater-
nion xii+1 represents the rigid transformation between the
extremities of link i and is a function of the i-th joint angle
θi. The forward kinematics relates the configuration of all
joints to the configuration xm of the end-effector; that is,
xm := x0

1x
1
2 . . .x

n−1
n .

Because xii+1 is a function of θi, i.e., xii+1 = f(θi),
the forward kinematics is a function of all joints—i.e.,

1L2 is the Hilbert space of all square-integrable functions.



xm = f(θ0, . . . , θn+1)—the differential forward kinematics
is given by ẋm = f ′(θ0, . . . , θn+1), where f ′ , df/dt. If
the mapping (1) is used, then the differential kinematics is
given by

vec ẋm = Jθ̇, (2)

where θ = [θ0 . . . θn−1]
T is the measured vector of joint

variables and J = ∂f/∂θ is the analytical Jacobian.
Nonetheless, in practical applications, there exists several
influences acting upon the system, such that the description
of (2) is not perfect, and it is interesting to consider the
effects of different disturbances over the system. In this case,
we shall regard

vec ẋm = Jθ̇ +Bω (3)

where B is a known matrix and ω is the vector of exogenous
disturbances, whose influence we want to minimize.

IV. H∞ CONTROL STRATEGIES
In this section, we address three different control de-

sign strategies for the kinematic model (3). As previously
stressed, the measured and desired attitude and position
configurations can be compactly and utterly represented in
dual quaternion space, and its dynamics related to the angular
and linear joint vector velocity θ̇(t). In this framework, the
aim of the control scheme is to synthesize a joint based
feedback controller to make the current configuration of the
robot end-effector converge to a desired reference without
decoupling the rotational and translational dynamics.

A. Error definition

Given the desired unit dual quaternion configuration xd
and the current configuration xm, we define the spatial
difference in SE(3) as

xe = x
∗
mxd. (4)

When xm is equal to xd, the spatial difference xe equals 1.
In this context, we introduce a novel error metrics

e = 1− xe, (5)

such that, if xm converges to xd, the dual quaternion error
e→ 0. Rewriting (4)-(5), we have

e = (x∗d − x∗m)xd,

which can be mapped into the R8 manifold, using (1), as

vec e =
−
H (xd)C8 vec (xd − xm) . (6)

For xd constant, the first derivative of (6) yields

vec ė = −
−
H (xd)C8 vec ẋm.

Since the dual quaternion dynamics ẋm is given by the robot
forward kinematic model (2), then

vec ė = −
−
H (xd)C8Jθ̇

= −Nθ̇,
(7)

where N =
−
H (xd)C8J .

It is interesting to highlight that the convergence properties
from xm to xd are utterly related to the definition of the
novel error metrics, e, which is invariant with respect to
coordinate changes. For instance, let us assume that both
base frame and desired set point have been transformed by
a coordinate change represented by the unit dual quaternion
y; that is,

x′m = yxm

x′d = yxd.

Since e = 1−xe, the error in the new coordinate system is
given by

e′ = 1− x′e = 1− x′∗mx′d
= 1− x∗my∗yxd
= e,

which is independent of y. In this context, and using the
novel error metrics (6), to asymptotically stabilize the system
(7) is to assume x(t) → xd(t) as t → ∞, independently
from the choice of the robot base coordinate systems and
from coordinate changes.

In a more practical scenario, the existence of disturbances
leads the more accurate differential kinematics description
(3). The error dynamics in this case, can be described by

vec ė(t) = −Nθ̇ −Bwω(t), (8)

where Bw =
−
H (xd)C8B.

B. H∞ control design

For the H∞ control, we seek a joint based control law
that makes the dual quaternion configuration xm(t) asymp-
totically converges to xd(t), whereas ensuring disturbances
attenuation properties, i.e., attenuating the influence of any
exogenous signal ω(t) ∈ L2[0,∞). In this context and
based on [14], the following definition describes the robust
performance in the H∞ sense.

Definition 1: For a prescribed scalar γ > 0, the robust
control performance is achieved with an H∞ norm bound γ,
if the following hold

(1) The error dynamics (8) is asymptotically stable for
ω(t) ≡ 0;

(2) Under the assumption of zero initial conditions, the
disturbance influence on the error, vec e(t), is attenuated
below a desired level γ, || vec e(t)||2 ≤ γ||ω(t)||2 for all
nonzero ω(t) ∈ L2[0,∞).

Considering the system description and Definition 1, we
state a solution for the H∞ control problem in the following
criterion.

Theorem 1 (LMI-based H∞ controller): For a prescribed
γ > 0, there exist a joint based controller such that (8)
achieves robust stability with H∞ performance γ, in the



sense of Definition 1, if there exist matrices P = P T > 0
and G = GT > 0, such that[

(−2G+ I) −PBw

−BT
wP −γ2I

]
< 0. (9)

Moreover, if the above conditions are satisfied, a stabi-
lizing joint vector velocity control is given by θ̇(t) =
N+

(
P−1G

)
vec e(t), where N+ is the pseudo-inverse of

N .
Proof: Let us choose as Lyapunov function candidate

the positive definite quadratic function:

V (t) = vec e(t)TP vec e(t). (10)

Taking the time-derivative of (10) with respect to t along the
trajectory (8) yields

V̇ (t) = vec ė(t)TP vec e(t) + vec e(t)TP vec ė(t)

= 2 vec e(t)TP vec ė(t)

= −2 vec e(t)TP
(
Nθ̇(t) +Bwω(t)

)
Choosing θ̇(t) :=N+KP vec e(t), gives

V̇ (t) = −2 vec e(t)TP
(
NN+KP vec e(t) +Bwω(t)

)
= −2 vec e(t)TP (KP vec e(t) +Bwω(t)) .

For any K > 0, it is easy to see that V̇ (t) < 0 holds
for ω(t) ≡ 0, which in turn implies V (t) → 0 as t → ∞.
Hence, vec e(t) converges to zero, and the first condition
in Definition 1 is satisfied. Now, let us define V̇ H∞(t) :=
V̇ (t) + vec e(t)T vec e(t)− γ2ωT (t)ω(t), such that

V̇ H∞(t) = − vec e(t)T (2PKP − I) vec e(t)
− 2 vec e(t)TPBwω(t)− γ2ωT (t)ω(t),

which can also be written as

V̇ H∞(t) =

[
vec e(t)
ω(t)

]T [
(−2G+ I) −PBw

−BT
wP −γ2I

] [
vec e(t)
ω(t)

]
,

for G = PKP . Note that the condition (9) holds if and
only if the term V̇ H∞(t) is negative definite. Thus, we must
have

V̇ (t) + vec eT (t) vec e(t)− γ2ωT (t)ω(t) < 0,

and integrating the inequality from 0 to t, yieldsˆ t

0

[
V̇ (t) + vec eT (t) vec e(t)− γ2ωT (t)ω(t)

]
dt =

V (t)−V (0)+

ˆ t

0

[
vec eT (t) vec e(t)−γ2ωT (t)ω(t)

]
dt < 0.

Now, under zero initial conditions and given the Lyapunov
function positiveness properties, we haveˆ t

0

vec eT (t) vec e(t)dt−
ˆ t

0

γ2ωT (t)ω(t)dt < 0,

for all t>0. Note that ω(t) ∈ L2[0,∞), thus vec e(t) is also
L2 and the inequality converges, which in turn is equivalent

to || vec e(t)||2 < γ||ω(t)||2. Hence, the conditions in
Definition 1 are satisfied, and the proof is completed.

Theorem 1 provides a feasible solution for the H∞ prob-
lem that ensures the asymptotic stability of the dual quater-
nion error dynamics, while attenuating all exogenous dis-
turbances. The resulting control scheme is obtained through
the solution of an LMI2. Alternatively, we can state a new
control procedure based on the solution of an algebraic
Riccati equation,

AT
AREP + PAARE − PMP +CARE = 0. (11)

Theorem 2 (ARE-based H∞ controller): For a given
scalar α>1, and a prescribed γ > 0, a joint vector velocity
H∞ control that stabilizes the error dynamics, whereas
ensuring disturbance attenuation properties in the sense of
Definition 1, is given by θ̇(t) = N+K vec e(t), where
K = 1

2

(
1
γ2BwB

T
w +M

)
P , for any positive definite

matrix M , and with the matrix P given as the solution of
the ARE (11), for AARE = 0, and CARE = αI .

Proof: From the Schur complement of the LMI condi-
tion in Theorem 1, we have that (9) holds if and only if

I − 2PKP + PBw
1

γ2
BT
wP

= P

(
1

γ2
BwB

T
w − 2K

)
P + I < 0,

where PKP = G. Then, choosing

K := 1
2

(
1
γ2BwB

T
w +M

)
, (12)

we obtain the inequality

−PMP + I < 0, (13)

which is satisfied by the Riccati equation in (11), if CARE

is chosen such that CARE > I .
To further simplify the choice of a feasible gain M > 0,

we may consider M = σI , where σ is a positive scalar.
In this particular case, the following corollary presents an
optimal choice of σ in the sense of minimizing the norm of
the control gain K in Theorem 2.

Corollary 1 (Closed-form solution): For a prescribed γ >
0, a joint vector velocity H∞ control that stabilizes the
error dynamics, whereas ensuring disturbance attenuation
properties in the sense of Definition 1, is given by θ̇(t) =
N+K vec e(t), where

K =
1

γ

(
BwB

T
w +

[√
2

4
BT
wBw

]
I

)
α√

BT
wBw

√
2
, (14)

for any scalar α > 1. Moreover, the norm of K is given by
||K||2 = 1

γα
√

1
2 (1+

√
8)BT

wBw.

2Interior point based algorithms, as the LMI Control Toolbox from
Matlab, can solve this convex problem in polynomial time.



Proof: From (13) and taking the positive matrix M to
be M=σI , where σ is a positive scalar, we have −σPP +
I<0, which is satisfied if

−σPP + α2I=0

holds for α > 1. A trivial solution for the above equation is
P=

α√
σ
I . Then, substituting this feasible P in K yields

K =
1

2

α√
σ

(
1

γ2
BwB

T
w+σI

)
. (15)

The Frobenius norm of K is given by

||K||2=
1

2

α√
σ
|| 1
γ2
BwB

T
w+σI||2

=
1

2

α√
σ

√√√√tr

(
BwB

T
wBwB

T
w

γ4
+
2σ

γ2
BwB

T
w+σ

2I

)
.

Using trace properties, we are looking for the σ that mini-
mizes ||K||2, i.e., σ̂ = argmin

σ
||K||2,

σ̂=argmin
σ


α

2

√√√√√√ 1

σ


[
BT
wBw

]2
γ4

+
2
[
BT
wBw

]
γ2

σ + 8σ2



=argmin
σ

 1

σ


[
BT
wBw

]2
γ4

+
2
[
BT
wBw

]
γ2

σ + 8σ2

 .

After some manipulation, we find σ̂ =
√
2

4γ2B
T
wBw, and the

minimum norm given by ||K||2 = 1
γα
√

1
2 (1+

√
8)BT

wBw.
Thus, replacing σ in (15) yields the control gain given in
(14).

Corollary 1 provides a straightforward solution for the H∞
control problem. The resulting joint based control strategy
is easier to implement than the one of Theorem 1, as the
control gain K in (14) is a closed-form expression. Also,
the solution is based on the optimal value for M=σI , in
the sense of reducing the gain norm, which in turn reduces
the control effort required to maintain the H∞ performance.

Remark 1: Both position and orientation configurations
are regarded in an unified framework, which allows
more efficient control techniques compared to conventional
decoupled-based control. This is thanks to the fact that in our
unified framework the error is invariant with respect to the
choice of coordinate system (recall Section IV-A), whereas
in the decoupled-based approach the error in position will
always be dependent on the choice of coordinate system;
that is, given the error

ep = pd − pm (16)

between the desired and measured positions, a coordi-
nate change given by a rotation r will result in ep =
r (pd − pm) r∗, which is clearly different from the original

position error (16). This way, using unit dual quaternions
with an invariant error definition, all the proposed control
strategies ensure the asymptotically convergence of the error
to zero, while satisfying the attenuation properties described
in Definition 1, and with a behavior that is independent of
the choice of coordinate system. The results from Theorem
1, which can be shown to be equivalent to Theorem 2,
are more general and less conservative than Corollary 1.
However, the proposed conditions yield any feasible result,
without regard to the control effort. In this context, Corollary
1, although being slightly more conservative, provides an
easy to implement closed-form gain expression that also
represents the minimum norm solution for (12) with M=σI .
To the best of the authors knowledge, this is the first work
to exploit any of the aforementioned characteristics in the
control design within the dual quaternion space.

V. EXPERIMENTS

In this section, we present some experimental results in
order to demonstrate the effectiveness of the proposed H∞
control criteria presented in Section IV. The H∞ control
criteria is applied to a six-link manipulator. To this aim, we
have derived for a Comau SMART SiX robot, the forward
kinematics model in the dual quaternion space and the
corresponding Jacobian matrix.

In the experiment, we seek to make the initial dual
quaternion configuration xinit converge to a desired config-
uration xd, whereas reducing the influence of an exogenous
disturbance over the system in the H∞ sense. As initial
configuration, we regard all joint positions equal to θinit =[
−54 36 −90 0 90 0

]T
, which corresponds to the

following vector in dual quaternion space:

vecxinit = [−0.275 − 0.432 0.847 − 0.140

− 0.184 − 0.387 − 0.197 0.362]T .

The desired end-effector position and orientation configura-
tion is given by

vecxd = [0.0 0.707 0.707 0.0

0.282 − 0.380 0.380 0.282]T .

The exogenous disturbance acting on the system is supposed
to be ω(t) = 1.1 cos(5t), with B = [1 1 1 1 1 1 1 1]T .
The control requirement is to maintain the noise to error
amplification less than the upper bound γ = 0.002. All
controllers, from Theorem 1 and 2, and Corollary 1, yield
feasible results for this control problem. In this example,
we shall consider the controller resulting from Corollary 1,
which minimizes the Frobenius norm of (12) with M=σI .

The first result regards the time response of each compo-
nent of the dual quaternion vector, shown in Fig. 1. Besides
the large disturbance, each component asymptotically con-
verges to its desired reference. The end-effector position are
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shown in Fig. 2, which also demonstrates the convergence
efficiency of the control technique. Fig. 3 regards the evo-
lution of the convergence error, which is described by the
evolution of its norm, i.e., || vec e(t)||2. It is clear that the
H∞ control technique succeeded in reducing the disturbance
influence upon the closed-loop system, whereas maintaining
the system stability. Indeed, under zero initial conditions and
numerically computing the error and noise norms, the result-

ing noise to error amplification is
´ t1
t0
|| vec e(t)||2´ t1

t0
||ω(t)||2

= 0.0013,

which is less than the calculated upper bound γ = 0.002.

Moreover, in order to allow comparison with previous
results, we have empirically chosen a controller, using the
results from [11], with the same control performance ob-
tained with Corollary 1, i.e., with a noise to error attenuation
of 0.0013. The control effort of this brute-force manually
chosen controller is shown in Fig. 4 (light green). The
resulting control is up to 5 times more expensive than the

time (s)

E
rr

or
no

rm
of

v
ec

e

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

1.5
Error norm

Exogenous disturbance norm

Fig. 3. Error norm with noise.

time (s)

In
pu

t
co

nt
ro

l
no

rm
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14
Control using manually chosen K
Result from Corollary 2

Fig. 4. Comparison from control effort .

controller obtained with Corollary 1, which minimizes a
given energy criterion. The result enlightens the importance
of the proposed robust control techniques in comparison to
previous results.

VI. CONCLUSIONS

In this paper, we have presented new control strategies for
robot manipulators directly in dual quaternion space. From
a compact and complete representation of the end-effector
position and orientation using unit dual quaternion, we
proposed novel stabilization techniques for the asymptotic
convergence of the dual position to a desired reference with-
out decoupling rotational and translational dynamics. The
control criteria also ensure disturbance attenuation properties
in the H∞ sense, and are invariant with regard to coordinate
changes. The H∞ control procedures may either rely on
the solution of an LMI, or on the solution of an algebraic
Riccati equation. Alternatively, we also proposed an easy
to implement closed-form solution for the H∞ problem,
which additionally minimizes a given control effort criterion.
The advantages and benefits from the proposed criteria are
further highlighted with experimental results that illustrates
the efficiency of the proposed methods.
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