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Abstract— This paper presents a technique for the modeling and balance control of humanoid robots based on
dual quaternion algebra and the Cooperative Dual Task-Space Framework. A strategy for controlling the Center
of Mass (CoM) position that takes into account the system’s stability constraints is presented and validated in a
realistic simulation. The results show that the presented control strategy is able to track a desired 3D trajectory
for the CoM while ensuring the robot’s balance, and may potentially be extended to perform bipedal locomotion.
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Resumo— Este artigo apresenta uma técnica de modelagem e controle de equilíbrio de robôs humanóides
baseada na álgebra de quatérnios duais e no Espaço de Cooperação Dual. Uma estratégia para controlar a posição
do Centro de Massa (CM), que leva em consideração as restrições de estabilidade do sistema, é apresentada e
validada em um ambiente de simulação realístico. Os resultados obtidos mostram que esta estratégia de controle
é capaz de realizar o rastreamento de uma trajetória 3D desejada para o CM, enquanto garante o equilíbrio do
robô, e pode, potencialmente, ser estendida para a locomoção de robôs bípedes.

Palavras-chave— Robôs humanóides, Centro de Massa, Controle do Centro de Massa, Quatérnios duais,
Espaço de Cooperação Dual.

1 Introduction

The autonomous locomotion of legged robots,
such as humanoids, is a very challenging subject.
During the locomotion, some dynamic constraints
must be satisfied to guarantee a balanced motion.
However, this class of robots has a large number
of Degrees of Freedom (DOF), and obtaining a
dynamic model in this case requires extensive cal-
culations. To avoid this, a simplified model can
be used to represent the system and generate bal-
anced trajectories (Kajita et al., 2003; Kim, 2007).
This approach is often used to generate walking
patterns, however the motion still must be con-
trolled to avoid disturbances and to guarantee sta-
bility.

The robot’s Center of Mass (CoM) is directly
related to the robot’s balance, and its control is
of great interest to design a balanced walking mo-
tion. As a consequence, the CoM control is a prob-
lem widely treated in the literature. Some works
focus on the robot stabilization during the walk-
ing motion, in which the walking pattern param-
eters are manipulated in order to adjust the CoM
to its reference trajectory. Hof (2008) proposed a
new concept named “extrapolated center of mass”
(XcoM), which combines the CoM projection onto
the ground and its velocity. In addition to disturb-
ance rejection, Graf (2010) eliminated the double
support phase—i.e., the one where both feet are
on the ground—to obtain a faster walking motion,
planning the next swing-foot trajectory regarding
the current CoM. Missura and Behnke (2011) pro-
posed a control method capable of rejecting lat-
eral disturbances in the CoM trajectory during

the walking motion.
Other approaches addressed the problem of

balance control of standing robots through the
CoM manipulation. The goal of those approaches
is to lead the CoM projection onto the ground into
the robot’s support polygon, which are stable re-
gions characterized by the convex hull of the feet
contact-points with the ground. Hofmann et al.
(2004) adopted a strategy based on a PD con-
troller and the robot’s dynamic model that allows
the stabilization of a robot in unstable initial con-
ditions, through the control of both CoM, robot’s
orientation, and swing-foot pose. The controller
maneuver the robot’s limbs that are not in contact
with the ground, excluding the upper-body limbs.
Stephens (2007) combined two strategies: the an-
kle strategy and the hip strategy. The first one
designs a controller that keeps all joints torques
neglected, except the ankle joint. As this behav-
ior can lead the CoM to unstable regions, the hip
strategy is applied, which consists of maneuvering
the hip angles in order to incline the torso and
lead the CoM to the desired target. This strat-
egy also does not takes the upper-body limbs into
consideration. Cotton et al. (2009), on the other
hand, used a concept defined as “Statically Equiv-
alent Serial Chain” to obtain the CoM Jacobian
matrix relating the joint velocities and the CoM
linear velocity. The aim of that work was to build
the CoM Jacobian without the robot’s dynamic
parameters, in order to control its CoM. To do
that, the joint angles for some stable configura-
tions of the robot are recorded and used in a sys-
tem of linear equations to obtain the parameters
of the CoM Jacobian. Boulic et al. (1995) and
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Phillips and Badler (1991) also solved the balance
control of standing configurations, but instead of
controlling specifically biped robots, they focused
on posture optimization of articulated bodies in
general. More specifically, Boulic et al. (1995) in-
troduced the concept of augmented bodies and
used the pseudoinverse of the CoM Jacobian in
the control strategy, whereas Phillips and Badler
(1991) considered the robot’s CoM attached to the
torso’s lower part and used inverse kinematics to
control the approximated CoM.

All these strategies are very useful for the pur-
pose they were designed for, but none of them is
flexible enough in order to control the CoM both
in walking motion and in standing configurations.
The solution of this problem using the whole-body
was addressed by Choi et al. (2007), which used
the pseudoinverse of the CoM Jacobian matrix,
obtained by a weighted sum of the CoM Jaco-
bian matrix of each link, in the CoM control strat-
egy. Sentis et al. (2010) solved a slightly different
problem—the control of multicontact compliant
tasks— while the balance constraints are satisfied.

The aforementioned balance control tech-
niques rely on a suitable model, which may be in-
trinsically complex for humanoid robots, mainly
due to their high number of DOF and also be-
cause of their hybrid kinematic structure. More
specifically, the two legs and the two arms may be
regarded as two parallel kinematic chains, respec-
tively, whereas they are serially coupled through
the torso. Regarding the kinematic modeling,
humanoid robots are, generally, modeled as a
free-floating point with attached limbs in contact
with the ground. The kinematic model of each
one of these limbs is then obtained separately, in
general using the Denavit-Hartenberg convention.
Toscano et al. (2014) proposed a method using
the Screw Theory to obtain the kinematic model
of the robot’s limbs, including virtual joints within
the model in order to apply the Davie’s Method
to solve the inverse kinematics of the robot. Park
and Lee (2013) decoupled the robot’s body in up-
per and lower body, and used the approach pro-
posed by Adorno et al. (2010), named Cooperative
Dual Task-Space (CDTS), to model the coopera-
tion between the robot’s legs.

In this paper we present a modeling method
for humanoid robots by using dual quaternion
(DQ) algebra, and we also implement a balance
control strategy based on the work of Park and
Lee (2013), which uses the CDTS together with
the CoM control.

The remainder of this paper is organized as
follows. Section 2 presents the mathematical
background, whereas Section 4 presents the mod-
eling of a humanoid robot using DQs and the
CDTS. In Section 5, the balance control strat-
egy is described. Finally, Section 6 presents the
results, and Section 7 concludes the paper and

presents a suggestion of future works.

2 Mathematical Background

According to Adorno (2011), dual quaternion
(DQ) algebra has gained popularity in the last two
decades within the context of kinematics, robotics,
and control systems. A specific class of DQs, the
ones with unit norm, is particularly interesting be-
cause it represents rigid motions in a very com-
pact way without suffering from representational
singularities. For instance, DQs are more com-
pact than homogeneous transformation matrices
(HTM), since the former has only eight parame-
ters whereas the latter has twelve. In addition,
DQ multiplications are less expensive than HTM
multiplications (Adorno, 2011). Also, the DQ co-
efficients can be directly used in a control law,
differently from HTMs.

This section reviews the basic concepts and
definitions about dual quaternions and establishes
the basic notation that will be used throughout
the rest of the paper. The concepts and notations
presented herein are based on the work of Adorno
(2011).

Quaternions, which can be regarded as an
extension of complex numbers, are defined as
h,h1 + h2 ı̂ + h3̂ + h4k̂, where h1, h2, h3, h4 ∈ R,
and ı̂, ̂, and k̂ are imaginary units that obey the
properties

ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. (1)

The conjugate of h is h∗,h1 −
(

h2 ı̂ + h3̂ + h4k̂
)
.

Complex numbers are a particular case of quater-
nions by letting h3 = h4 = 0.

While quaternions are primarily known to
represent rotations (Kuipers, 1999), they may also
be used to represent translations (Adorno, 2011).
For instance, a translation

[
tx ty tz

]T is repre-
sented by the quaternion t = tx ı̂ + ty ̂ + tz k̂. On
the other hand, a rotation of an angle φ around
the unit norm rotation axis

[
nx ny nz

]T is
represented by the unit-norm quaternion r =
cos (φ/2)+n sin (φ/2), where n = nx ı̂+ny ̂+nz k̂.

DQs are composed of two quaternions in ad-
dition to the dual unit ε, which is nilpotent (Selig,
2005); that is,

ε Ó= 0, but ε2=0. (2)

More specifically, a DQ is defined as
h,h1+h2 ı̂+h3̂+h4k̂+ε

(
h5+h6 ı̂+h7̂+h8k̂

)
,

where h1, . . . , h8 ∈ R. We also de-
fine P(h) , h1 + h2 ı̂ + h3̂ + h4k̂ and
D(h) , h5 + h6 ı̂ + h7̂ + h8k̂, which are the
primary and the dual part of h, respectively.
The conjugate of h is h∗=P (h)∗ +ε D (h)∗. The
multiplication between DQs behave the same way
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as the multiplication between complex numbers;
indeed, we must only respect the axioms (1) and
(2) of the algebra. (From (1), it is easy to see
that the imaginary units do not commute, hence
DQ multiplication is not commutative.)

We also define an operator to map a DQ into
an eight-dimensional vector:1

vec8 h ,
[
h1 · · · h8

]T
. (3)

Furthermore, given the DQ multiplication c =
ab, the Hamilton operators

+
H (·) and

−
H (·) are

the matrices that satisfy the following relation
(Adorno, 2011):

vec8 c =
+
H (a) vec8 b =

−
H (b) vec8 a. (4)

Rigid motions may be represented by DQs,
which describe simultaneously position and ori-
entation. More specifically, given the translation
quaternion t and the unit-norm rotation quater-
nion r, the unit DQ that represents the rigid mo-
tion is given by x = r + ε(1/2)tr (Selig, 2005).

Since a rigid motion represents a transforma-
tion between different frames, in this paper we
adopt the following convention: a rigid motion
from frame Fa to frame Fb is represented by xa

b . A
sequence of rigid motions is represented by a mul-
tiplication of DQs. For instance, a rigid motion
from Fa to Fb, followed by a rigid motion from
frame Fb to Fc, is represented by xa

c = xa
b xb

c.

3 Cooperative Dual Task-Space

Consider a serial kinematic chain with n joints
(e.g., humanoid arms or humanoid legs), where
one extremity is the base and the other one is the
end-effector (e.g., hands in case of arms and feet
in case of legs). The forward kinematics model
(FKM) provides the mapping between the vector
θ=

[
θ1 · · · θn

]T of joint angles and the DQ
x representing the pose of the end effector; that
is, x = f(θ). The differential FKM (DFKM) is
given by vec8 ẋ = Jθ̇, where J = ∂ vec8 x/∂θ is
the system’s Jacobian matrix. Both FKM and
DFKM can be found for any serial kinematic chain
by using dual quaternion algebra (Adorno, 2011).

The CDTS was proposed by Adorno et al.
(2010) to represent the geometrical relationships
between two kinematic chains using dual quater-
nion algebra. In this framework, the state of the
system is completely determined by two variables:
the relative pose xr and the absolute pose xa. The
relative pose xr provides the relationship between
the poses of two chain extremities—denoted by x1
and x2—, and xa is an intermediate pose between
them. These variables, shown in Fig. 1, are called
"cooperative variables", as they are often used in

1We also define the vec4 operator in an analogous way
for quaternions.

tr

tr
2

x1 x2xa

xr

F0

φ
2r

Figure 1: Cooperative variables of two chains.

cooperative systems, and are given by (Adorno
et al., 2010)

xr , x∗
1x2, (5)

xa , x1x{1/2}
r , (6)

where x
{1/2}
r represents a rigid motion given by

half of the translation and half of the rotation of
xr. More specifically, for xr = rr + ε (1/2) trrr,
with rr = cos (φr/2) + nr sin (φr/2), the relative
pose is given by (Adorno et al., 2010)

x{1/2}
r , r{1/2}

r + 1
4εtrr{1/2}

r , (7)

where r
{1/2}
r , cos (φr/4) + nr sin (φr/4).

The main advantages of using the CDTS
is that the coordination between two kinematic
chains working cooperatively can be completely
described using only two variables. Moreover, the
cooperative variables explicitly take into account
the kinematic constraints of the system, which are
imposed by the task.

Deriving (5) and using the vec8 operator, de-
fined in (3), we obtain

vec8 ẋr = Jr q̇, (8)

where q=
[
qT

1 qT
2

]T corresponds to the joints val-
ues of the first and second kinematics chains,
and Jr=

[ −
H (x2) C8J1

+
H (x∗

1) J2

]
is the Jaco-

bian matrix for the relative variable, with J1 and
J2 being the Jacobian matrix of the first and sec-
ond kinematic chains, respectively, and C8 is the
conjugating matrix (Adorno et al., 2010).

Likewise, deriving (6) and using the vec8 op-
erator, we obtain

vec8 ẋa = Jaq̇,

with Ja=
[

−
H

(
x

{1/2}
r

)
J1 08×n2

]
+

+
H (x1) Jr/2

being the Jacobian matrix for the absolute vari-
able, n2 is the dimension of vector q2, and Jr/2 sat-
isfies the relation d

(
x

{1/2}
r

)
/dt = Jr/2q̇ (Adorno

et al., 2010).
In the next section, the CDTS will be used to

model a biped robot.

4 Modeling

This section describes the kinematic modeling of
a humanoid robot, using the dual quaternion the-
ory and the CDTS. The modeling is decoupled in
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Figure 2: Cooperative variables of the robot’s legs.

two parts: a) geometrical relationship between the
robot’s feet and b) influence of the joints velocities
in the robot’s CoM linear velocity.

4.1 Feet coordination

Consider the coordinate systems related to each
foot, represented by the dual quaternions x1 and
x2, as shown in Fig. 2.

Because the forces and torques actuating on
the system are not considered by the kinematic
model, the choice of the reference frame may
have influence on the control output, since a poor
choice may yield movements that violate the kine-
matic constraints of balance, i.e. which consists
of keeping the supporting-foot (SF) fixed on the
ground and the CoM projection onto the ground
into the robot’s support polygon. Therefore, to
ensure that this constraints will be respected, the
reference frame must be attached to the SF, in the
single-support cases, and in any of the feet, in the
double-support cases.

The robot’s body orientation may be captured
by the absolute variable of the robot’s legs refer-
enced in a frame attached to its upper-body, re-
presented in Fig. 2 as Fb. Since the poses of the
robot’s feet are known in Fb (i.e. xb

1 and xb
2), and

that the reference frame is attached to the right
leg, xb

a is given by

xb
a = xb

1x1
a, (9)

where x1
a is given by (6).

The primary part of xb
a captures the body ori-

entation, and xr—which is given by (5)—captures
the position and orientation of the swing foot re-
garding the SF. It will be used later in the control
strategy.

4.2 Center of Mass

Consider a humanoid robot with n limbs, each one
with k(i) links. The method adopted to model the
influence of the joints velocities in the CoM linear
velocity is similar to the proposed by Choi et al.
(2007). It consists of obtaining equivalent kine-
matic models for the CoM of each link. Assuming
that the links’ CoM are known in the reference
frame, there is a FKM for each link CoM such

that cλ = fc(qλ), where qλ represents the angles
of the joints that have influence on link λ.

The global robot’s CoM c is computed accord-
ing to

c = 1
M

n∑

i=1

k(i)∑

j=1
mijcij , (10)

where M represents the robot’s total mass, mij is
the mass of link j in limb i, and cij is the CoM of
this same link. The DFKM of the global CoM is
given by

vec4 ċ = Jcomq̇wb, (11)

with qwb=
[
qT

1 qT
2 qT

3 qT
4

]T , where q1, q2, q3
and q4 represent the joints angles of the right and
left arm and the right and left leg, respectively,
and

Jcom = 1
M

n∑

i=1

k(i)∑

j=1
mijJij ,

where Jij is the Jacobian matrix relating the
whole-body joints velocities and the CoM lin-
ear velocity of link j in the limb i. It is pos-
sible to decouple the matrix Jcom in two parts,
i.e. Jcom=

[
JcomUB

JcomLB

]
, where JcomUB

is
related to the arms’ joints and JcomLB

to the legs’
joints.

5 Control Strategy

There are two stability conditions that must be
satisfied to guarantee the robot’s balance: 1) the
CoM projection must be kept within the support
polygon—i.e., the convex hull of the feet’s contact-
points with the ground—, and 2) the SF must
remain stationary on the ground. Furthermore,
to avoid fluctuations of the angular momentum
about the CoM, which may drive the CoM to un-
stable regions, the upper-body must be kept ver-
tically oriented during the motion.

The CoM and feet reference trajectories are
defined a priori to satisfy the first condition. In
order to fulfill the second condition, the reference
frame is attached to the SF, as mentioned in Sec-
tion 4. Thus, the control strategy must satisfy, si-
multaneously, three objectives: a) CoM tracking,
b) swing-foot pose tracking and c) upper-body ori-
entation regulation.

Because the reference frame is attached to the
SF, the pose tracking of the swing-foot is equiv-
alent to the pose tracking of the relative variable
xr. Furthermore, the upper-body orientation reg-
ulation can be regarded as the regulation of the
absolute variable orientation P

(
xb

a

)
from (9).

The control strategy that considers only ac-
tuation on the legs joints is given by

q̇l = J+Ke, (12)

where ql=
[
qT

3 qT
4

]T , K is a positive definite gain
matrix, e is the error between the reference and
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current values, i.e.,

e =




vec8
(
xrREF

− xrCURR

)

vec4
(
P

(
xb

aREF

)
− P

(
xb

aCURR

))

vec4 (cref − ccurr)


 , (13)

and J+ is the right pseudoinverse of J =[
JT

r JT
Pa JT

comLB

]T , in which JPa represents
the four upper rows of Ja.

6 Results

The system was simulated using the softwares
Matlab and V-Rep (Rohmer et al. (2013)) with
the humanoid robot ASTI, which has 18 joints.
The simulations were executed under the follow-
ing specifications: processor Intel Core I3 CPU
M380 @ 2.53GHz and 4,00GB Memory RAM, op-
erating system Windows 7 64-bit, Matlab version
R2012a 64-bit and V-Rep version PRO EDU 3.1.3
32-bit.

To verify the influence of the cooperative vari-
ables in the robot balance control, both xr and
P

(
xb

a

)
were removed from the control strategy.

This simulation is labeled as “Pure CoM Control”,
while the simulation using the complete control
strategy (12)–(13) is labeled as "CoM and Feet
Control."

In all simulations, the feet are kept station-
ary, and some trajectories for the CoM were de-
fined within the support polygon—which is known
a priori, because the feet poses do not change—
to validate the robot’s model and to evaluate the
control strategy. Eight different trajectories were
tested to observe the robot’s stability close to the
support-polygon edges, as well as to check the oc-
currence of self collisions during the motion. Fig. 3
shows the results obtained for two trajectories.
The evolution of the coefficients of xr and P

(
xb

a

)
,

for a circular trajectory, are shown in Fig. 4.
The robot’s actual CoM trajectory does not

follow the given reference in the “Pure CoM Con-
trol.” This behavior is expected since the stabil-
ity constraints were not taken into consideration
in this control strategy. On the other hand, in
the “CoM and Feet Control," the CoM tracking is
sucessfully performed, as well as the regulation of
the body orientation and feet poses.

A tree-dimensional CoM tracking was also
tested. The system’s performance is depicted in
Fig. 5.

Fig. 5b shows that the actual CoM trajectory
follows the reference with an error in the order of
millimeters, and a phase delay between the ref-
erence and the actual trajectory can be noticed.
The delay is an expected behavior, because the
control strategy designed does not have a feed-
forward component to nullify it. In spite of these
deviations in the controlled motion, the system
keeps its balance and the control objectives are
accomplished.

x axis (m)

y
ax

is
(m

)

-0.81 -0.78 -0.75 -0.72 -0.69
-0.08

-0.06

-0.04

-0.02

0

Reference
Pure COM Control
COM and Feet Control

(a) Sinusoidal trajectory.
x axis (m)

-0.86 -0.78 -0.66
-0.18

-0.14

-0.1

-0.06

-0.02

-0.72

(b) Circular trajectory.

(c) Screen captures of the robot during the circular trajec-
tory.

Figure 3: The charts at the top show a compar-
ative result, where the dashed line represents the
reference CoM trajectory, the thick black line re-
presents the actual CoM trajectory for the "Pure
CoM Control" and the thin blue line represents the
actual CoM trajectory for the "CoM and Feet Con-
trol." The figure at the bottom shows four screen
captures of the robot’s motion during the execu-
tion of the circular trajectory in the "CoM and
Feet Control."

Fig. 4 shows that the constraints are respected
during the entire motion for the "CoM and Feet
Control," which is also confirmed by the screen
captures in Fig 3c and 5c , where the upper-body
is vertically oriented and the feet are stationary.

7 Conclusion

In this paper, a modeling method for humanoid
robots using dual quaternion algebra was pre-
sented, and a balance control strategy based on
the CDTS together with the CoM position con-
trol was shown and validated in simulation us-
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.
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(b) Coefficients of xr.

Figure 4: The figure on the left shows the evolu-
tion of the primary part coefficients of the abso-
lute variable, and the figure on the right shows the
evolution of the relative variable coefficients. The
dashed line represents the reference, and the thin
blue line represents the actual CoM trajectory for
the "CoM and Feet Control."
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(a) 3D sine trajectory.

x
(m

)

-0.86

-0.65

y
(m

)
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Time
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0.46

0.6

-0.01

(b) Trajectory in time for
each axis.

(c) Screen captures of the robot during the 3d sine trajec-
tory.

Figure 5: CoM trajectory for a sinusoidal refer-
ence in xz-plane (top left) using the complete con-
trol strategy, where the dashed curve represents
the reference and the solid curve represents the ac-
tual CoM; and the decomposed trajectory in each
axis (top right). The figure at the bottom shows
four screen captures of the robot’s motion in the
"CoM and Feet Control."

ing V-Rep and Matlab. The full control strategy
(i.e., which takes into account both CoM control
and balance constraints) was tested and compared
with the case when only the CoM position control
is active, without the balance control. The re-
sults show that the full controller keeps the robot
balanced in a standing configuration, while the
CoM position is successfully tracked. Without the
balance control, the CoM position tracking is not
achieved. Future works will focus on the applica-
tion of the modeling method and the control strat-
egy presented in this paper to control the locomo-
tion of a humanoid robot under disturbances.
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