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Abstract—This work aims to analyze the relation between
the movement of an anthropomorphic robotic manipulator with
the brain cortex response elicited in healthy subjects for three
experimental conditions. The experiment was divided in three
parts: in the first one, the subject only observes the movement of
the robotic manipulator; in the second part, the subject follows
the robot movement with his right arm; finally, in the third
part, the subject imagines the execution of the corresponding
movement synchronized with the movement of the robot. Event
related (de)synchronization in each of the recorded electroen-
cephalogram (EEG) channels was analyzed. Event related desyn-
chronization was present in alpha and beta bands in various
areas of the cortex, including occipital, parietal, central and
prefrontal areas. The results provided some physiological insights
into human-robot interaction for future developments in brain-
machine interfaces.

Index Terms—ERD/ERS, brain-machine interface, human-
robot interaction, assistive technologies, neurorobotics

I. INTRODUCTION

Brain-machine interfaces (BMIs) and computer-machine
interfaces (BCIs) are systems capable of extracting informa-
tion from brain signals, the most direct pathway to control
machines and computers, respectively [1]. BMIs (in this paper
we will only use the term BMI, even when some concepts are
applicable to BCIs, to avoid confusion) may become a way
to allow disabled individuals to interact in society with more
independence through the development of assistive technolo-
gies [2], and to improve their lifestyle through rehabilitation
solutions [3], [4].

Since the publication of one of the earliest works on BMIs
by Jacques Vidal in 1973 [5], extensive work on the field has
brought many practical applications and a variety of features
related to specific conditions have been recognized within the
brain. Interfaces based in steady-state visual evoked potentials
(SSVEP) [6], [7], motor imagery [6], [8], and P300 potentials
[9], [10] are the most widely used. Other features are currently
under research like the error related potentials (ErrRPs), which
are triggered, for example, when a BMI command is wrongly
recognized [10]. Hybrid BMIs that combine at least one brain
signal with other biological signals have also been developed
aiming to improve the performance of the system [6], [11],
[12].
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Generally, BMIs based in motor imagery use event re-
lated synchronization (ERS) and desynchronization (ERD) as
method to classify whether a movement intention is present
or not. ERS and ERD respectively reflect increases or diminu-
tions in the power of specific EEG bands, at different instants
during a movement execution or imagery. This features could
then be used to identify the intention of movement and
command a BMI by controlling the initiation of a task [13],
[14], [15].

The interaction between humans and robots is becoming
more feasible and natural thanks to the advances in robotics
which enable safe and accurate control [16]. This trend seems
to be growing and human-robot interaction tends to reach
deepest levels as more sophisticated technology becomes
available. However, the physiological basis of this interaction
has not been thoroughly studied, as no research in this matter
has been reported to the authors knowledge.

This work aims to analyze the effects of the interaction
between individuals and an anthropomorphic robotic manipu-
lator in three ways: the observation, execution (replication)
and imagination of a movement sequence triggered by the
manipulator, expecting to obtain similar responses for all the
conditions [17]. The movements executed in the experiment,
flexion and extension, were considered individually, and its
execution was separated with no movement time intervals. The
results of this work, that an ERD is present for movement
execution, imagery and even observation, will be important
in the design of efficient BMIs, since the user’s movement
intention will command the triggering of defined tasks ex-
ecuted by robotic manipulators, leading to intuitive human-
robot interaction for assistance of individuals who suffer from
motor disabilities.

II. MATERIALS AND METHODS

A. Experimental setup

Six neurologically and physically healthy male subjects
(S1 to S6) participated in the study, age ranging from 23 to
32. The participants were placed in an acoustically isolated
and illumination-controlled experiment room throughout the
recording sessions. The participants were comfortably seated
on an armchair to prevent any movement not related with the
study. The experiment took place at the Biomedical Engineer-
ing Laboratory and approved by the local Ethics Committee.
All participants read and signed and informed consent form.

An anthropomorphic robotic manipulator with five degrees
of freedom, AX18 Smart Robot Arm (CrustCrawler Robotics,
Arizona, USA), was placed within the experiment room in
front of the participants. The initial position of the robot (Fig.



1) was just below subject’s straight line of sight, at about
80 cm from away from them in a way that the manipulator
appeared to be a mirror of the subject’s right arm. Participants
remained at a safe distance outside the robot’s workspace,
throughout the experiment. The manipulator trajectory for the
movement sequence was generated using a Jacobian based
position control algorithm and dual quaternion algebra [18].

Figure 1. Experimental setup for the study

EEG was used to register the participant’s brain activity.
The EEG was recorded using a 36-channel BrainNet BNT-36
(EMSA, Rio de Janeiro, Brazil) biological amplifier, band-
pass filtered (0.1-100 Hz) at a 600 Hz sampling frequency.
EEG was registered from seventeen scalp electrodes using an
EEG cap, placed according to the International 10-20 System
(F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1 and O2) with reference at earlobes (A1 and A2).
Electro-oculogram (EOG) was recorded along with EEG (1
cm diameter Ag/AgCl electrodes).

Three conditions were explored during the experiment, all
of them involving the robot movement sequence shown in
Fig. 2: (1) stare at the moving robot (ST), (2) follow the
robot movement with the right arm (MV), and (3) imagine
that movement pattern (IM). Movement of the robot and
participant’s arm were recorded using a LilyPad ADXL335
accelerometer board. The movement sequence was split into
two, flexion (UP) and extension (DW) movements, to look for
differences in the brain responses among those conditions. All
study conditions are summarized in Table I.

In order to characterize the participant’s arm movement,
the accelerometer was placed at the distal end of the radius,
close to the wrist, and movement was performed starting in a
semipronate position, with the elbow flexed at 90º.

Participants were asked to perform only an elbow flexion
and extension, even when the robot performed a corresponding
shoulder movement (Fig. 2), given that structural limitations
prevented the robot to perform the desired elbow movements.
Also, participants were asked to blink only in the interval
between the movements.

Five sessions lasting 15 minutes each were performed for
the study, with three minutes resting intervals between the
sessions. The sequence in Fig. 2 was repeated over the session

8 - 12s 8 - 12s2.5s 2.5s

Time
marks 0UP 0DW

Figure 2. AX18 robotic manipulator movement sequence. 0UP and 0DW are
the starting times for the movement conditions

Table I
SUMMARY OF STUDY CONDITIONS

Abbreviation Condition
ST Stare at the movement of the robot
MV Follow the movement of the robot with the right arm

IM Imagine the corresponding right arm movement
while the robot moves

Type of movement
UP Flexion
DW Extension

span. The first session (ST) consisted of passively staring at
the robot motion. The subjects observed the robot’s movement
without performing any movement or imagination. The second
and third sessions (MV) consisted in following the movement
of the robot. Subjects were asked to perform a corresponding
elbow flexion and extension of their right arm, following the
robot’s movement in extent and duration. Finally, the fourth
and fifth sessions (IM) consisted in movement imagination.
Subjects were asked to only imagine the movement the same
way they executed it in the two preceding sessions, without
actually performing it.

The order of the sessions was maintained fixed in a training
fashion, that is, the movement is first executed and then
imagined, given that a future goal is to command the robotic
manipulator with thought. The movement observation was
used as a base activity measure for comparison purposes.

B. Data preprocessing

ERD and ERS were analyzed in this work. Matlab® soft-
ware was used for the digital data processing. EEG data
from all the recorded sessions were high-pass filtered at a
cutoff frequency of 5 Hz, using a fourth-order (zero phase)
Butterworth filter.

Data were then split into single trials. UP and DW move-
ments were analyzed separately. For the ST and IM conditions,
the 0UP and 0DW trigger points (Fig. 2) were considered as
reference. For the MV condition, the trial reference time was
the beginning of the subject’s movement UP or DW, registered
using the accelerometer. Every trial considered the 6 seconds
after and the 3.5 seconds before movement reference. Artifact
rejection was applied to every trial.

We used a wavelet analysis to find the ERD/ERS bands for
our analysis, based on the spectral power and time course in
alpha and beta (8-30 Hz). A wavelet packet spectral analysis
using a Daubechies6 wavelet at decomposition level of 6 was
used because its smooth profile and its ability to represent
polynomial functions up to order 6. The decomposition level of
6 provided a good compromise between spectral and temporal



resolution. A mean spectrum was computed across trials for
the different subjects and conditions. ERD/ERS alpha and beta
bands were heuristically selected as being from 8 to 12 and 14
to 22 Hz, respectively. Frequencies over 22 Hz did not show
neither a defined pattern nor an important spectral power.

C. ERD/ERS estimation

For the ERD/ERS estimation in the alpha (8 to 12 Hz) and
beta (14 to 22 Hz) bands, the whole data record for every
condition and every subject was band-pass filtered using a
fourth order (zero phase) Butterworth filter in the respective
band, and only the trials with no artifacts were used.

ERD/ERS was calculated using the intertrial variance
method [19]. Mean intertrial activity was computed and re-
moved from every trial and the variance obtained as:

Pj =
1

N − 1

N∑
i=1

(
si,j −msj

)2
, (1)

where, si,j is the i-th trial for channel j, N the number of
trials per channel and msj is the mean intertrial activity for
channel j, calculated as:

msj =
1

N

N∑
i=1

si,j . (2)

In order to reduce the variability of the ERD/ERS estima-
tive, non-overlapping windows with duration of half second
were chosen and the mean power was computed for each
window:

Psj,k =
1

M

M∑
i=1

Pj,w, (3)

where M is the window length in samples, the index k =
1, 2, ..., (N/M) indicates the window number and w = (k −
1)M+i indicates the sample of the power calculated in Eq. 1.
Finally, to express the power in percentages, the mean power
Pbj from time -3.5 to -1.5 seconds, where neither ERD nor
ERS were expected, was considered as a base measure and
the percentage estimative computed as:

%Pj,k =

(
Psj,k − Pbj

Pbj

)
100%. (4)

The procedure indicated above was applied to each of the
subject’s data separately in the alpha and beta bands, for each
of the study conditions (Table I). To smooth the estimative, a
second order moving average filter was applied.

III. RESULTS

The available number of trials, for each UP and DW
movements, were 35 for ST, and 70 for both MV and IM.
The artifact rejection applied of the trials was low (about
2% of the trials) given the 5 Hz high-pass filter applied that
discarded most of the blinking and body and eye movement
artifacts, which are the main cause of trial rejection. For the
ERD/ERS estimative, 30 randomly selected trials were used

for each condition (Table I) and the grand average (average
across subjects) was computed. We selected the same number
of trials for all the study conditions to maintain the signal to
noise ratio.

The grand average for the ERD/ERS in the alpha band
is presented in Fig. 3 for UP and Fig. 4 for DW. Similar
responses were obtained for both movements. For ST, ERD
was spread mainly over occipital (O1, O2) and parietal (P3,
Pz and P4) areas of the cortex, however, in the central (C3, Cz
and C4) areas the ERD is not well defined. On the other hand,
for MV and IM, ERD was present in the occipital, parietal
and also in the central areas. For movement and imagery
conditions, a more intense response was obtained in C3 than
in C4, indicating laterality in the motor cortex as could be
expected.

Responses in the beta band showed a similar profile to those
of alpha band. UP (Fig. 5) and DW (Fig. 6) also presented
similar responses. Furthermore, ST, MV and IM shared almost
the same profile in the beta band. ERD is widely spread over
many EEG channels, even in prefrontal and temporal areas,
unlike the alpha band where ERD is more focused in the
region comprising occipital, parietal and central areas. In both,
the alpha and beta bands ERD, the more intense response is
present in the parietal channels.

The widely spread ERD obtained may be the result of
the complexity of the study: it involves a visual (the robotic
manipulator movement), motor (the movement observation,
execution or imagination) and cognitive (movement initiation,
extent, duration and type) aspects. In all cases, the ERD had
the same duration of the movement, approximately 2.5 seconds
(Fig. 3 and Fig. 5).

Table II and Table III correspond to the correlation coef-
ficients between the conditions of study for every channel in
the alpha and beta bands, respectively. C3 and C4 presented a
lower correlation for UP, between the staring (ST) condition
and both, movement (MV) and imagination (IM). Furthermore,
the correlation between MV and IM is high, suggesting that
for ST, those motor areas are not responsive. For alpha and
beta bands, DW presents higher correlations among conditions,
probably because of a increased level of expectation from
the subject for DW than for UP movement. Clearness of the
response in the parietal area and high correlation especially
in the parietal area Pz were also present. The correlation was
significant (p<5%) in all cases.

IV. DISCUSSION

In this study, we observed that eye movements (EOG)
elicited by the observation of the robotic manipulator produced
an artifact, synchronized with the movement of the manipu-
lator, which masks the event related potential (ERP) in the
EEG signals, and for that reason analysis of the ERP was
not considered. Temporal subtraction, principal component
analysis (PCA) and independent component analysis (ICA)
were used in an attempt to extract the eye movement artifact
from the ERP, without reaching its characteristic shape [20]. It
is also not convenient to place the robotic manipulator far from
the participant, from a BMI implementation point of view,
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Figure 3. Grand average for ERD/ERS in the alpha band for the flexion (UP) movement. The shaded area in C3 indicates the duration of the robotic
manipulator movement
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Figure 4. Grand average for ERD/ERS in the alpha band for the extension (DW) movement

given that the user must be within the workspace of the robot
in order to accomplish an interactive task.

The parietal area seems to play an important role in the
responses obtained for the whole experiment. This is somehow
expected given that the parietal area is involved in the associ-
ation of visual with sensorimotor information, and in the level
of attention [21], [22]. Thus, the intense ERD present in this
area may be due to the linkage between the visual information
elicited by the robot observation and the motor aspects of its
movement and of the subject’s movement or imagination.

The results shown that in the case of movement execution
and imagination, the ERD in the contralateral motor area (C3)
is more intense than in the ipsilateral motor area (C4) as
expected. This feature could be used for left and right arm
movement discrimination, in the case of an implementation of
a BMI using two robotic manipulators.

For subjects S3, S4 and S5 it was possible to perceive
the alpha rhythm ERD caused by movement execution or
imagination in some of the realizations of the ongoing EEG,

suggesting the viability of a single trial BMI implementation
[23].

In the responsive areas, the beta band presented a more
defined ERD in the time interval (2.5 seconds) that the move-
ment is being observed (ST), performed (MV) or imagined
(IM), when compared to the ERD in the alpha band. Thus,
this band could be used to detect the duration of an imagined
movement in a more reliable way than just using the alpha
band. Combining the advantages of the availability to detect
laterality information of the alpha band, with the more precise
movement duration profile found in the beta band, the control
of a BMI would be more accurate.

The experimental setup (human-robot interaction) of this
work allows to study the responses elicited by an arm move-
ment synchronized with a visuomotor stimulus instead of only
visual stimuli as light emitting diodes (LEDs) or computer
screens [20], [24]. An advantage of this kind of setup (for
BMIs oriented to manipulation) is that it is closer to real BMI
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Figure 5. Grand average for ERD/ERS in the beta band for the flexion (UP) movement. The shaded area in C3 indicates the duration of the robotic
manipulator movement
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Figure 6. Grand average for ERD/ERS in the beta band for the extension (DW) movement

environment, thus permitting a data processing and analysis
that may provide results that are similar to those elicited in a
working BMI system.

The ERD found for ST implies that the sole observation of
a movement elicits responses that are similar to those obtained
for the execution or imagination, possibly affecting the control
of a BMI given the close loop generated by the observation
of the movement. Further studies are required to analyze
these responses and the way they influence in a working BMI
environment.

A future implementation of a BMI will use the ERD
presence to identify the instant that a movement is being
prepared and then activate the execution of a predefined
robotic manipulator task. The widely spread ERD may aid
in the identification process and to improve the performance
of the BMI system.

V. CONCLUSION AND FUTURE WORK

This study analyzed the effects on the EEG response gen-
erated by the movement sequence of a robotic manipulator.
The analysis of movement responses in the brain cortex using
a visuomotor stimulus provided more spread responses when
compared to responses elicited by other kind of stimulus, like
purely visual [15], [24].

Studies conducted in an environment that is close to a real
BMI may help to unveil brain activity patterns in a more
practical way. This particular study provided results that show
intense activity spread over several areas of the brain cortex,
like visual, motor and association areas, suggesting a wide
cognitive activity unlike other motor response studies that
provide more focused results. Future works may involve the
study of how the responses vary according to movement type
and duration.

The next step is to test the results obtained in this study for
the control of a movement-intention based BMI. Provided the



Table II
CORRELATION COEFFICIENT FOR THE GRAND AVERAGE POWER IN THE

ALPHA BAND AMONG STUDY CONDITIONS

Conditions %
ST-MV ST-IM MV-IM

E
E

G
C

ha
nn

el
s

F3 UP 61 79 87
DW 92 90 81

Fz UP 73 77 83
DW 89 89 86

F4 UP 65 76 73
DW 84 84 87

C3 UP 57 52 88
DW 88 90 87

Cz UP 69 74 86
DW 88 96 88

C4 UP 17 -2 82
DW 72 76 75

P3 UP 80 72 94
DW 96 91 94

Pz UP 86 73 86
DW 96 94 93

P4 UP 79 60 89
DW 95 90 83

O1 UP 82 73 88
DW 95 85 93

O2 UP 83 66 92
DW 95 81 79

p<5% in all cases

Table III
CORRELATION COEFFICIENT FOR THE GRAND AVERAGE POWER IN THE

BETA BAND AMONG STUDY CONDITIONS

Conditions %
ST-MV ST-IM MV-IM

E
E

G
C

ha
nn

el
s

F3 UP 79 82 75
DW 92 65 56

Fz UP 75 69 81
DW 93 54 60

F4 UP 83 69 83
DW 92 10 32

C3 UP 67 77 97
DW 91 90 84

Cz UP 78 83 93
DW 95 89 90

C4 UP 83 91 92
DW 96 70 77

P3 UP 80 85 95
DW 90 91 93

Pz UP 84 97 86
DW 97 96 93

P4 UP 84 91 84
DW 98 95 91

O1 UP 67 60 50
DW 90 88 95

O2 UP 64 30 63
DW 93 90 84

p<5% in all cases

possibility of single trial detection and feature extraction with
low computational requirements, a high performance of the
system is expected. Our purpose is to achieve a task-oriented
BMI, with the user triggering the execution of a task and the
robot resolving lower level aspects of that task, for example,
reaching and grasping of an object. This approach would lead
to intuitive human-robot interaction for assistive technology
solutions through non invasive BMIs.
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