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Abstract— This paper presents a new path planning al-
gorithm that uses adaptive random walks to incrementally
construct a roadmap in the robot’s free configuration space.
This algorithm, named Incremental Adaptive Random Walks
(iARW), uses a modified version of the ARW algorithm pro-
posed by Carpin and Pillonetto [1] for exploring the config-
uration space and storing the discovered path in a roadmap.
Thus, the main idea is to use bidirectional adaptive random
walks to explore the configuration space but also to use and
expand the roadmap whenever possible. With this approach itis
possible to construct a roadmap that captures the connectivity
of the free configuration space without a preprocessing phase.
A comparison of our approach with other state of the art
path planners illustrates the good performance of the proposed
method.

I. INTRODUCTION

The path planning problem consists in finding a sequence
of movements for enabling a robot to leave a start configu-
ration qstart and arrive at the goalqgoal without collision
with the obstacles in the workspaceW . To tackle this
problem, several feasible algorithms have been proposed in
the last years. For instance, some of them are: Probabilistic
Roadmaps (PRM) [2], Rapidly-Exploring Random Trees
(RRT)[3], Expansive Space Trees (EST) [4], Randomized
Potential Field Planner (RPP) [5] and a less known but
nonetheless important, Adaptive Random Walks (ARW) [1].
More general surveys on path planning algorithms can be
found in [6], [7], [8]. The main idea of PRM, RRT and EST
algorithms is to build a roadmap in the free configuration
spaceCfree in order to capture its connectivity, although
PRM is a multiple query algorithm and RRT and EST are
primarily designed as single query algorithms. Furthermore,
RPP uses the classical approach of defining an attractive
potential to the goal configuration and a repulsive potential
for the obstacles. However, RPP employs random walks to
escape local minima. Indeed, even in PRM, random walks
can be used for expanding the roadmap [2]. The former
algorithm, ARW, is made entirely of random walks but its
main strength relies on the fact that the random walks adapt
themselves accordingly to the configuration space, refining
the sampling and thus accelerating the convergence of the
process. The main drawback of these algorithms is, excepting
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the RPP, the poor quality of the resultant paths. However, the
final path can be smoothed on a post-processing phase [9].

The simplicity and good performance of ARW [10] to-
gether with its probabilistic completeness [1] have attracted
our attention, although this algorithm has been disregarded
by the path planning community. This motivated the inves-
tigations and developments presented in this work.

Our main contribution concerns the development and eval-
uation of a hybrid algorithm capable of representing incre-
mentally the connectivity of free configuration space without
a preprocessing phase. Furthermore, we have proposed a
simple measure for explorability, better suited for small
dimensional configuration spaces, enabling us to replace the
original distribution of ARW by a biased one, improving the
overall performance of the algorithm.

The paper is organised as follows: the standard ARW is
briefly described in the next section, Section III reviews
previous attempts to improve the original algorithm and
proposes a simple method to augment the explorability
capabilities of the planner. Section IV presents a new al-
gorithm that incrementally uses adaptive random walks and
roadmaps to explore and capture the connectivity of the
free configuration space. Comparisons between this novel
approach and state of the art algorithms are made in Section
V. Finally Section VI presents the conclusions.

II. DESCRIPTION OF ARW PLANNER

In the Adaptive Random Walk path planner [1], given a
configurationqk, a neighbor configurationqk+1 is generated
accordingly to a normal distribution,qk+1 ∼ N(qk,Σk).
The sample is accepted if it is generated inCfree and
otherwise is rejected. In the case of an accepted sample, it
is appended to the chain of intermediate configuration and
a new sampleqk+2 is generated using as referenceqk+1.
The process is repeated until the last accepted sample can be
connected to the goal configuration by the local path planner.

The key point here is the calculation of the covariance
matrix Σk as

Σk = max (Pk,Σmin) (1)

where the matrix metric is its trace, and

Pk =

(

1

H

k−1
∑

i=k−H

qi · q
T
i

)

− q̄H · q̄T
H , (2)

with q̄H , the average of the lastH configurations in the



Algorithm 1 : Unidirectional ARW

Input : W , qstart, qgoal

Output : List containing the path connectingqstart to qgoal

k ← 0; qk ← qstart;1
Σ0 ← Σmin;2
while not local_planner(qk,qgoal) do3

Sample a new configurationvk from N(0, Σk);4
s ← qk +vk ;5
if local_planner(qk,s) then6

k ← k +1;7
qk ← s;8
Update the covariance matrixΣk using (1);9
Put qk in the list of intermediate configurations;10

chain, given by

q̄H =
1

H

k−1
∑

i=k−H

qi. (3)

Equation (1) indicates that the covariance matrix is computed
using only the lastH configurations stored in the chain.
If the last H samples are far from each other, probably
the random walk is in a open region and the trace of the
covariance matrix will be larger. Thus, the next sample will
have a higher probability of being generated farther from
the reference configuration, enabling the planner to explore
Cfree using larger steps. Conversely, if the lastH samples are
closer to each other, it indicates that the random walk is in a
narrow space and the trace of the covariance matrix will be
smaller. In this manner, smaller steps will be taken between
two configurations, leading to a more refined sampling.

Algorithm 1 summarizes the evolution of the random walk
previously described. In general the path planning is solved
using two ARW. One leaves the start configuration and the
other one leaves the goal configuration. If a random walk can
be connected to the other or if one them can be connected
to its target configuration, the query is solved.

Unlike PRM that uses a graph to represent the roadmap
or RRT and EST that use a tree to represent the connectivity
of the free configuration space, the main idea of ARW is
to generate a chain of intermediate configurations inCfree.
This leads to a simpler data structure representation, oncethe
relevant portion ofCfree with respect to the current query
can simply be represented as a list.

III. IMPROVEMENTS ON ARW PLANNER

The first attempt to improve the performance of the ARW
algorithm was made by its original developers in [11].
They investigated three extensions: biasing the generation of
samples; using an attractor for the samples generator; and the
possibility to backtrack when the planner gets stuck. They
use backtracking as a solution to free the random walk when
it gets stuck in dead ends. For instance, if the lastH motions
couldn’t be bigger than10% of the tried distance, the random
walk is considered stucked and a random configuration is
chosen uniformly from the chain and then the random walk
is restarted from there. The attractor was defined so that
the probability of accepting a sample close to the goal

(a) 3σ ellipsis of adaptive Gaussian
distribution.

(b) Biased distribution.

Fig. 1. Biasing the sampling towards less explored regions.

configuration is higher than the probability of accepting a
farther one. Furthermore, they evaluated the biasing of the
random walks towards each other and toward their goals.

When comparing with a standard bidirectional ARW, the
results in [11] show that the only method that seems to
improve the performance of the resultant algorithm is the
addition of a constant bias between the two random walks.
Adding an attractor or using backtracking presented no im-
portant change in results and an arbitrary combination of the
methods can significantly degrade the overall performance,
besides the additional complexity of the final algorithm.

Once we understand that the effect of bias in [11] is to
modify the sampling distribution of the random walks, one
question naturally arises: is the Gaussian distribution the
best one? Carpin and Pillonetto [1] show that the Gaussian
distribution leads to a planner that is probabilistic complete.
Furthermore, it is cheap to generate samples from a normal
distribution. But all this does not imply that the Gaussian
distribution is the best one. However, it seems that the great
idea behind ARW is its adaptivity, and maybe a simpler
distribution can work as well, like the uniform distribution.
Moreover, by taking into account the results in [11], it seems
a good idea to bias the distribution towards less explored
areas ofCfree.

Fig. 1 shows an example on the effect of biasing towards
less explored regions. Although the adaptivity of the Gaus-
sian distribution improves the sampling inCfree, it is still
difficult to sample the narrow corridor, as it can be seen in
Fig. 1(a). A biased distribution, as shown in Fig. 1(b) can
improve the convergence rate of the algorithm due to a higher
explorability.

One practical way of biasing the distribution is to gen-
erate multiples candidates and choose the one from the
less explored region. A rough method that should work
for small degrees of freedom is to impose a grid on the
configuration space and associate for each cell the number of
configurations in its interior. This can be made incrementally
for each new configuration appended to the chain. A region
with small number of generated configurations is considered
less explored. Thus, for each candidate generated inCfree

we can associate it with a region and, as a consequence, we
can choose the one from the region with the smallest counter.



IV. INCREMENTAL ADAPTIVE RANDOM WALKS

Probably the greatest advantage of roadmap methods is
to capture the global connectivity ofCfree whatever may be
the dimension of configuration space. Indeed, all information
about the dimension ofC can be embedded in the nodes,
without changing the graph topology. Thus, the graph can
be regarded as a “compression” of the search space. For
that reason, the query phase is generally much faster than
the construction phase in roadmap methods. On the other
hand, it is usually computationally expensive to build the
roadmap. Therefore single query algorithms can achieve
better performance if it is not necessary to capture the
connectivity of wholeCfree to solve a specified query [4],
[3], [12].

Single query algorithms, however, do not keep any in-
formation of the configuration space for subsequent queries.
Hence, for the same queries they will have to repeat the
search in the configuration space. Some extensions have been
made to RRT [13], [14], [15] and to PRM [16] aiming to
solve this problem.

Here we present an incremental algorithm that explores
Cfree using adaptive random walks. For each query, the
relevant pieces of the generated path are stored in a roadmap
in a way that it can be used in subsequent queries. The
main goal is to exploreCfree and also to expand and use
the roadmap whenever possible.

iARW is shown in Algorithm 2. The inputs are the start
and goal configurations and the roadmap, if any is available
for the query. As in the default bidirectional ARW, the
planner merges the two random walks or connects them to
the target points. If any of these can be done, the query is
answered and the path is stored in the roadmap. Otherwise,
each random walk tries to connect itself with new compo-
nents of the roadmap. If there is some common component
attached to both chains, the planner has found the solution.
It is the concatenation between the first random walk (just
from qstart up to the configuration that is connected to the
common component), the path found in the roadmap and
the second random walk (again, only the part that goes from
the configuration connected to the common component up
to qgoal). If there is no common component, new samples
are generated for each chain and the process continues until
a path is found or a maximum number of nodes is generated
on Cfree.

Algorithm 3 presents the process of searching new com-
ponents and expanding the roadmap. Given the last config-
urationqlast of the chain generated by a random walk, the
roadmap and the list of components to which the random
walk is connected, it tries to connectqlast to all configura-
tions of the roadmap that belong to a component different
of the ones to which the random walk has already been
previously connected, which are in the component list. When
the first new component is found, the relevant part of the
random walk is stored in the graph and if there is another
component to whichqlast can be connected its just a matter
of adding a edge in the graph, once the relevant part of

Algorithm 2 : iARW

Input : Start and goal configurations and the roadmapG.
Output : Configurations of the resultant path.

for at mostk configurationsdo1
if merge_ARW(ARW_s,ARW_g) then2

store(path) and return path3

find_new_component(ARW_s,G,components_start);4
find_new_component(ARW_g,G,components_end);5
if exist_common(components_start,components_end)6
then

return path7

else8
generate_new_configuration(ARW_s);9
generate_new_configuration(ARW_g);10

Algorithm 3 : Find a new component in the roadmap.

Input : Configurationqlast, roadmapG and a list containing the
connected components to the random walk associated to
qlast.

Output : 1 if it has found a new component and 0 otherwise

find ← 0;1
forall nodesqi on G do2

if not same componentand local_planner(qlast,qi) then3
if not find then4

entry_points ← store_partial_path();5
find ← 1;6

update_list(components_list);7
add_edge(entry_points,qi);8

return find9

the random walk has just been stored. We keep track of
the entry points in an individual query for two reasons: the
first one is to know which are the relevant parts that will be
stored (generally are the configurations between the last entry
point and the current entry point); the second reason is to
know which pieces of the random walk have to be taken into
consideration when the iARW finds a common component.

The overall process described by Algorithms 2 and 3
can be illustrated by Fig. 2. Fig. 2(a) starts ilustrating two
components previously stored in the roadmap, indicating
that this is not the first query, once in the first one iARW
acts exactly like a standard ARW. In Fig. 2(b) two random
walks start on the opposite sides of the scene. They are not
necessarilly symmetric, because their evolutions are subject
to local characteristics of the environment. Fig. 2(d) indicates
that the relevant part of the chain is smoothed before it is
stored in the roadmap. For this smoothing we decided to
use the standard divide and conquer algorithm [1]. Finally,
Fig. 2(f) shows the final path given by the hatched part. In
order to avoid too much redundance, the pieces past the entry
point are not stored in the graph.

V. RESULTS

iARW performance has been evaluated and compared
with both single and multiple query algorithms. We first
compare several variants of ARW with the original one, as
well as with EST and RRT. We used the test environments
shown in Fig. 3. From these environments, LIRMM 1 and



(a) Previously stored roadmap. (b) Two random walks started on the right
and left.

(c) Visibility of each last node.

(d) The random walks are connected to
roadmap components that were in their vis-
ibility regions. Unnecessary nodes are re-
moved by a divide and conquer algorithm.

(e) The search occurs until both random
walks can be connected to the same compo-
nent in the roadmap.

(f) The final path is given by the hatched
piece. Only the relevant paths are stored in
the roadmap.

Fig. 2. iARW evolution showing how adaptive random walks canbenefit from a previously stored roadmap.

LIRMM 2 are occupancy grids obtained from real data
gathered in experiments with the Omni robot [17]. The other
tests environments are simulated. This figure also shows the
reference paths used in the first evaluation. The square robot
used for the tests could only translate on the plane, thus
having two degrees of freedom. For tunning the ARW, EST
and RRT parameters, tests were previously conducted in the
three environments shown in Fig. 3(a)–(c). It has led to
the following parameter values (considering the side of the
square robot equals to 10 units):

• ARW: H = 50;
• EST: Mass function for neighbor choosingπ(q) =

1
(nv+1)3 , with nv the number of neighbors of the con-
figurationq, and the size of the interval for the uniform
distribution equals to 70 units;

• RRT: Stepsǫ = 40 units and merging made by RRT–
connect.

In the second evaluation we compare the performance of
iARW (using a biased ARW) with a standard PRM and
the Gaussian one [18] in the same environments of the first
evaluation.

It is important to point out that although we don’t use the
original implementation of the reference algorithms (we used
our own implementations), all planners use the same local
path planner, the same collision detection and graph search
algorithms (when applicable).

Fig. 4 shows the results for the first comparison. The
time indicated in the ordinate axis is the total time used to
find and smooth the reference paths and it is in logarithmic
scale. The simpler uniform distribution did not improve

the overall performance of ARW. On the contrary, in most
scenes the average performance has been degraded. However,
the biasing mechanism using selection of candidates has
lowered significantly the average time to solve the queries.
Indeed, with exception of the maze, in all environments a
larger number of candidates implied in less time to find
the reference path. In general, we have seen that about five
candidates are enough to improve the performance of the
algorithm. However, when the number of candidates turn out
to be bigger than ten, perfomance starts to degrade. This can
be explained by two reasons: the first one is regarding to
the overhead of generating more samples and their collision
checking; the second one is that more candidates implies
more bias and the random walk can gets temporally stuck
in the local minima generated by the rough metric for the
explorability criteria presented in Section III.

When compared with both EST and RRT, the biased
ARW seems to be very competitive. Indeed, in four of the
six test environments, the biased ARW presented the best
performance, regardless of the number of candidates used.
A special attention should be given to the results in LIRMM
1. This environment is very cluttered and confined, and
one can expect that all the algorithms would be penalized
due to very narrow free spaces. Indeed, given a occupancy
grid representing LIRMM 1, it was transformed in a bitmap
representation using a very conservative threshold. Thus,if a
given cell had an occupancy probability greater than zero, we
have considered it as occupied. In the end, it leads to a still
more confined scene than the original one shown in Fig. 3(e).
In this scene, both EST and RRT were more penalized



(a) Trivial scene. (b) Corridor. (c) Maze.

(d) LIRMM2.

(e) LIRMM1. (f) LARA.

Fig. 3. Test environments.

than all other kinds of ARW, biased or not. As explained
before, the parameters of all algorithms were tunned based
on previous test conducted using the first three scenes of
Fig. 3. When confronted with a new environment, all flavors
of ARW maintained a good performance, while EST and
RRT did not. This highlights the strongest characteristic of
ARW: its adaptability to the environment, hence implying
good performance in very different workspaces. Furthermore,
the biasing scheme improves greatly the performance of the
algorithm when compared with the original ARW. However,
it is important to note that in Figure 4 we only show
the results of the biased ARW, not of the iARW, due to
the fact that we want to evaluate individual queries. If we
had conducted incremental queries in the experiment, iARW
would have greatly outperformed both ARW, RRT and EST
once these algorithms do not use previous informations for
new queries. Thus, it would be unfair to conduct such a
comparison.

The second evaluation concerns iARW (using biased
ARW with three candidates), standard PRM and gaussian
PRM. As roadmaps methods are more suited to multiple
queries, for each scene four non–trivial paths were chosen
as references. The Corridor is an exception: only the path
that passes through the corridor is non–trivial. Thus, for
this specific environment, one can expect that the planner
that first succeeds to connect both sides of the scene takes
less time to find all four routes, since the first one is the
bottleneck for this map. For each environment and for each
path planner, we performed 100 successful executions. We
considered an execution as successful when all four reference
routes could be found. Besides, as the number of nodes
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Fig. 4. Comparison between the single query algorithms. Theresults are
the average time between 100 executions.

necessary to capture the connectivity of a scene is not known
a priori when working with PRM, we proceeded as follows:
for each map, at firstn0 = 100 nodes were generated.
If all four reference routes could be found, this execution
was considered successful and other iterations could be
made with the same number of nodes. Otherwise, if any
of them could not be found, the execution was restarted
with nk = 2nk−1. Thus, the number of generated nodes
was doubled until all four paths were found. The execution
time considered for performance evaluation was the average
of 100 successful iterations.

Fig. 5 shows the results for time performance in the
comparison between iARW and the PRMs. As expected,
the Gaussian PRM was superior than uniform PRM in all
environments with narrow passages. In the trivial scene, that
only has open spaces, both PRMs achieved nearly the same
performance. On most scenes, iARW was much better than
both PRMs. However, in the Corridor both Gaussian PRM
and iARW required almost the same average time to find all
routes. This was also expected, once this is the kind of map
for which Gaussian PRM is tailored. Also, in the Maze both
iARW and Gaussian PRM had the same performance.

The other advantage of iARW is highlighted on Fig. 6.
The number of nodes necessary to capture the connectivity of
Cfree is smaller on iARW. This is due to the fact that iARW
only stores relevant portions ofCfree, whilst the standard
PRM samples the configuration space uniformly. The Gaus-
sian PRM also does a great selection when sampling, but not
as good as iARW. It occurs due to the fact that gaussian PRM
strongly samples narrow spaces, but also the boundary of
obstacles, which is not necessarilly a relevant part ofCfree.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a new path planner, iARW, that
uses biased adaptive random walks to solve a query and
simultaneously expand a roadmap inCfree. It uses the
biased bidirectional ARW to explore the configuration space
and, as the queries are solved, the relevant parts of the
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path are stored in the roadmap. However, when searching
the configuration space, each random walk tries to connect
itself to as many different components of the roadmap as
possible, augmenting the connectivity of the graph. Besides,
the roadmap is used whenever possible, improving the al-
gorithm’s perfomance. Furthermore, a simple approach to
bias the random walks is presented. The method consists
in taking a configuration, from a set of candidates, that
maximizes an explorability criteria. A first evaluation showed
that our biased ARW greatly outperforms both standard
Gaussian ARW and the uniform one. Nevertheless, we must
point out that the heuristic used in the explorability criteria
should work well only for a small and medium number
of dimensions. When compared with RRT and EST, the
biased ARW showed a very competitive performance, with
the additional advantage of using a simpler data structure.In
the second evaluation, we have compared iARW with both
the standard PRM and the Gaussian one. In general, iARW
has greatly outperformed both PRMs and in only one case the
Gaussian PRM had the same perfomance of iARW. In despite
of the good perfomance achieved by the proposed method,
we believe that further improvements could be achieved by

using other kinds of adaptive distributions. Finally, our next
step is to conduct comparisons between iARW and other
incremental algorithms such as Lazy PRM [16], LRF [15]
and Multipartite RRTs [14]. Also, an evaluation using high
dimensional configuration spaces should give more insights
on the overall performance of the proposed algorithm.
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