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Abstract— This paper presents a new path planning al- the RPP, the poor quality of the resultant paths. However, th
gorithm that uses adaptive random walks to incrementally final path can be smoothed on a post-processing phase [9].
construct a roadmap in the robot’s free configuration space. The simplicity and good performance of ARW [10] to-

This algorithm, named Incremental Adaptive Random Walks . g
(IARW), uses a modified version of the ARW algorithm pro- gether with its probabilistic completeness [1] have atgdc

posed by Carpin and Pillonetto [1] for exploring the config- our attention, although this algorithm has been disreghrde
uration space and storing the discovered path in a roadmap. by the path planning community. This motivated the inves-

Thus, the main idea is to use bidirectional adaptive random tlgat|ons and developments presented |n th|s Work

walks to explore the configuration space but also to use and o . tributi the d | tand |
expand the roadmap whenever possible. With this approach is ur main contribution concerns the developmentand eval-

possible to construct a roadmap that captures the connectiy ~ uation of a hybrid algorithm capable of representing incre-
of the free configuration space without a preprocessing phas mentally the connectivity of free configuration space witho
A comparison of our approach with other state of the art a preprocessing phase. Furthermore, we have proposed a
path planners illustrates the good performance of the propeed simple measure for explorability, better suited for small
method. dimensional configuration spaces, enabling us to replaze th
| INTRODUCTION original distribution of ARW by a_biased one, improving the
overall performance of the algorithm.

The path planning problem consists in finding a sequence The paper is organised as follows: the standard ARW is
of movements for enabling a robot to leave a start configiyyiefly described in the next section, Section Il reviews
ration qs¢ar @nd arrive at the goad,o.; without collision  previous attempts to improve the original algorithm and
with the obstacles in the workspadd’. To tackle this proposes a simple method to augment the explorability
problem, several feasible algorithms have been proposed dgpabilities of the planner. Section IV presents a new al-
the last years. For instance, some of them are: Probabilisforithm that incrementally uses adaptive random walks and
Roadmaps (PRM) [2], Rapidly-Exploring Random Treesgadmaps to explore and capture the connectivity of the
(RRT)[3], Expansive Space Trees (EST) [4], Randomizeglee configuration space. Comparisons between this novel

Potential Field Planner (RPP) [5] and a less known buipnroach and state of the art algorithms are made in Section
nonetheless important, Adaptive Random Walks (ARW) [1lv. Finally Section VI presents the conclusions.

More general surveys on path planning algorithms can be

found in [6], [7], [8]. The main idea of PRM, RRT and EST Il. DESCRIPTION OF ARW PLANNER

algorithms is to build a roadmap in the free configuration

spaceCy,.. in order to capture its connectivity, although In the Adaptive Random Walk path planner [1], given a
PRM is a multiple query algorithm and RRT and EST areonfigurationq;,, a neighbor configuratioq, | is generated
primarily designed as single query algorithms. Furtheenoraccordingly to a normal distributiony,1 ~ N(qg, k).

RPP uses the classical approach of defining an attractiféie sample is accepted if it is generated dp,... and
potential to the goal configuration and a repulsive poténtiatherwise is rejected. In the case of an accepted sample, it
for the obstacles. However, RPP employs random walks i9 appended to the chain of intermediate configuration and
escape local minima. Indeed, even in PRM, random walks new samplay,.,» is generated using as referengg, ;.

can be used for expanding the roadmap [2]. The formeThe process is repeated until the last accepted sample can be
algorithm, ARW, is made entirely of random walks but itsconnected to the goal configuration by the local path planner
main strength relies on the fact that the random walks adaptThe key point here is the calculation of the covariance
themselves accordingly to the configuration space, refiningatrix 3, as

the sampling and thus accelerating the convergence of the

process. The main drawback of these algorithms is, exagptin 3 = max (Pr, Xpnin) (1)
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Algorithm 1: Unidirectional ARW

Input W, dstart, Agoal
Output: List containing the path connectingstart t0 qgoa;

1 k < 0; qx < qstart;
2 3o — Zmin,

3 while not | ocal _pl anner (qx,qg04:) dO .y
Sample a new configuration;, from N (0, Xy); e
S <= Qg TV,

4

5

6 if I ocal _pl anner ( qg,s) then () 30 ellipsis of adaptive Gaussian  (b) Biased distribution.

7 k—k+1; distribution.

8 ai < s;

9 Update the covariance matri,, using (1); Fig. 1. Biasing the sampling towards less explored regions.
0

=

Put q; in the list of intermediate configurations;

configuration is higher than the probability of accepting a
farther one. Furthermore, they evaluated the biasing of the
random walks towards each other and toward their goals.

chain, given by

1 k—1
QH:E Z q;- 3

P When comparing with a standard bidirectional ARW, the

. . ) . results in [11] show that the only method that seems to
Equation (1) indicates that the covariance matrix is comgut improve the performance of the resultant algorithm is the
using only the lasti configurations stored in the chain. 5qition of a constant bias between the two random walks.
If the last If sam_ple_s are far from each other, prOb"“bh,/b\dding an attractor or using backtracking presented no im-
the ra_lndom Walk IS In & open region and the trace of t_h ortant change in results and an arbitrary combinationef th
covariance matrix will be larger. Thus, the next sample Wil sihods can significantly degrade the overall performance,

have a higher probability of being generated farther frofjagiqes the additional complexity of the final algorithm.
the reference configuration, enabling the planner to egplor

Cjree Using larger steps. Conversely, if the l&samples are  Once we understand that the effect of bias in [11] is to
closer to each other, it indicates that the random walk is in @odify the sampling distribution of the random walks, one
narrow space and the trace of the covariance matrix will bguestion naturally arises: is the Gaussian distributioa th
smaller. In this manner, smaller steps will be taken betwediest one? Carpin and Pillonetto [1] show that the Gaussian
two configurations, leading to a more refined sampling.  distribution leads to a planner that is probabilistic coete!
Algorithm 1 summarizes the evolution of the random walkFurthermore, it is cheap to generate samples from a normal
previously described. In general the path planning is sblvedistribution. But all this does not imply that the Gaussian
using two ARW. One leaves the start configuration and th@istribution is the best one. However, it seems that thetgrea
other one leaves the goal configuration. If a random walk cdflea behind ARW is its adaptivity, and maybe a simpler
be connected to the other or if one them can be connectéigtribution can work as well, like the uniform distributio
to its target configuration, the query is solved. Moreover, by taking into account the results in [11], it sgem
Unlike PRM that uses a graph to represent the roadm#&good idea to bias the distribution towards less explored
or RRT and EST that use a tree to represent the connectivayeas 0fCy ..

of the free configuration space, the main idea of ARW is Fig. 1 shows an example on the effect of biasing towards

to generate a chaln of intermediate conﬂguraﬂor_w@,utge. less explored regions. Although the adaptivity of the Gaus-
This leads to a simpler data structure representation, thece sian distribution improves the sampling .., it is stil

relevqnt portion 0C,cc with resp.ect to the current query difficult to sample the narrow corridor, as it can be seen in
can simply be represented as a list. Fig. 1(a). A biased distribution, as shown in Fig. 1(b) can
1. IMPROVEMENTS ON ARW PLANNER improve the convergence rate of the algorithm due to a higher

The first attempt to improve the performance of the ARV\?XpIorab”'ty'
algorithm was made by its original developers in [11]. One practical way of biasing the distribution is to gen-
They investigated three extensions: biasing the generafio erate multiples candidates and choose the one from the
samples; using an attractor for the samples generatorj@nd tess explored region. A rough method that should work
possibility to backtrack when the planner gets stuck. Thefpr small degrees of freedom is to impose a grid on the
use backtracking as a solution to free the random walk wheronfiguration space and associate for each cell the number of
it gets stuck in dead ends. For instance, if the Fishotions configurations in its interior. This can be made incremétal
couldn’t be bigger tham0% of the tried distance, the random for each new configuration appended to the chain. A region
walk is considered stucked and a random configuration gith small number of generated configurations is considered
chosen uniformly from the chain and then the random walless explored. Thus, for each candidate generate@ip.
is restarted from there. The attractor was defined so thate can associate it with a region and, as a consequence, we
the probability of accepting a sample close to the goalan choose the one from the region with the smallest counter.



IV. INCREMENTAL ADAPTIVE RANDOM WALKS Algorithm 2 iARW

_Input : Start and goal configurations and the roadrgap
Probably the greatest advantage of roadmap methods iSOutput: Configurations of the resultant path.

to capture the global connectivity 6f,.. whatever may be 1 for at mostk configurationsdo
the dimension of configuration space. Indeed, all infororati 2 if ”Bftge_ARV\(tﬁRW_dsyAfW_g) t:]hen
about the dimension of can be embedded in the nodes, f|_— Z ore(path) an rf::Wpa G )

: : i nd_new_conponent _s,G,components_start) ;
without changing trle graph t(_)po,!ogy. Thus, the graph ca@ find_new component ( ARW g.G components_end)
be regarded as a “compression” of the search space. FOr| if exi st_cormon(components_start,components_end)
that reason, the query phase is generally much faster than| then
the construction phase in roadmap methods. On the othér | L retrm path

T ; ; i else

hand, it is usually computatlonally expensive to build t_heg gener at e_new confi gurat i on( ARW.S)
roadmap. Therefore single query algorithms can achieyg gener at e_new_conf i gurati on( ARW _g) :
better performance if it is not necessary to capture the -
connectivity of wholeC,.. to solve a specified query [4],

3], [12].
[ ] [ ] . . Algorithm 3: Find a new component in the roadmap.
Single query algorithms, however, do not keep any in . . : —
. . . . Input : Configurationq;, ¢, roadmapg and a list containing the
formation of the conflguratl(_)n space fqr subsequent queries connected components to the random walk associated to
Hence, for the same queries they will have to repeat the Qlasi-

search in the configuration space. Some extensions have beefutput: 1 if it has found a new component and 0 otherwise
made to RRT [13], [14], [15] and to PRM [16] aiming to 1 find — 0;

2 forall nodesq; on G do

solve this problem. ) ) 3 if not same componerand | ocal _pl anner ( q;44¢,9:) then
Here we present an incremental algorithm that explores if not find then _
Csree Using adaptive random walks. For each query, thé L grrl‘gy;pfl"_”ts‘—swfe—pa”' al _path();

relevant pieces of the generated path are stored in a roadmap
in a way that it can be used in subsequent queries. The
main goal is to explor&€,.. and also to expand and use _
the roadmap whenever possible. 9 retum find

IARW is shown in Algorithm 2. The inputs are the start
and goal configurations and the roadmap, if any is available
for the query. As in the default bidirectional ARW, thethe random walk has just been stored. We keep track of
planner merges the two random walks or connects them the entry points in an individual query for two reasons: the
the target points. If any of these can be done, the query fisst one is to know which are the relevant parts that will be
answered and the path is stored in the roadmap. Otherwis¢ored (generally are the configurations between the last en
each random walk tries to connect itself with new compopoint and the current entry point); the second reason is to
nents of the roadmap. If there is some common componekrow which pieces of the random walk have to be taken into
attached to both chains, the planner has found the solutiaconsideration when the iIARW finds a common component.
It is the concatenation between the first random walk (just The overall process described by Algorithms 2 and 3
from qs.q¢ UP to the configuration that is connected to thecan be illustrated by Fig. 2. Fig. 2(a) starts ilustrating tw
common component), the path found in the roadmap armbmponents previously stored in the roadmap, indicating
the second random walk (again, only the part that goes frothat this is not the first query, once in the first one iIARW
the configuration connected to the common component wets exactly like a standard ARW. In Fig. 2(b) two random
t0 qgoq). If there is no common component, new samplesvalks start on the opposite sides of the scene. They are not
are generated for each chain and the process continues ungétessarilly symmetric, because their evolutions areestibj
a path is found or a maximum number of nodes is generatedllocal characteristics of the environment. Fig. 2(d) dadés
on Cyree. that the relevant part of the chain is smoothed before it is

Algorithm 3 presents the process of searching new constored in the roadmap. For this smoothing we decided to
ponents and expanding the roadmap. Given the last configse the standard divide and conquer algorithm [1]. Finally,
uration q;s; Of the chain generated by a random walk, théig. 2(f) shows the final path given by the hatched part. In
roadmap and the list of components to which the randomrder to avoid too much redundance, the pieces past the entry
walk is connected, it tries to connegt,.; to all configura- point are not stored in the graph.
tions of the roadmap that belong to a component different
of the ones to which the random walk has already been V. RESULTS
previously connected, which are in the component list. When iARW performance has been evaluated and compared
the first new component is found, the relevant part of thwith both single and multiple query algorithms. We first
random walk is stored in the graph and if there is anotheompare several variants of ARW with the original one, as
component to whichy;,s; can be connected its just a matterwell as with EST and RRT. We used the test environments
of adding a edge in the graph, once the relevant part shown in Fig. 3. From these environments, LIRMM 1 and

updat e_| i st (components_list) ;
add_edge( entry_points,q;) ;




YOO ES
M=

(a) Previously stored roadmap. (b) Two random walks started on the right (c) Visibility of each last node.

) ()
~

(d) The random walks are connected to (e) The search occurs until both random (f) The final path is given by the hatched
roadmap components that were in their vis- walks can be connected to the same compo- piece. Only the relevant paths are stored in
ibility regions. Unnecessary nodes are re- nent in the roadmap. the roadmap.

moved by a divide and conquer algorithm.

/2

Fig. 2. IARW evolution showing how adaptive random walks temefit from a previously stored roadmap.

LIRMM 2 are occupancy grids obtained from real datghe overall performance of ARW. On the contrary, in most
gathered in experiments with the Omni robot [17]. The othescenes the average performance has been degraded. However,
tests environments are simulated. This figure also shows ttiee biasing mechanism using selection of candidates has
reference paths used in the first evaluation. The squaré robbawered significantly the average time to solve the queries.
used for the tests could only translate on the plane, thlisdeed, with exception of the maze, in all environments a
having two degrees of freedom. For tunning the ARW, ESTarger number of candidates implied in less time to find
and RRT parameters, tests were previously conducted in ttie reference path. In general, we have seen that about five
three environments shown in Fig. 3(a)—(c). It has led teandidates are enough to improve the performance of the
the following parameter values (considering the side of thalgorithm. However, when the number of candidates turn out
square robot equals to 10 units): to be bigger than ten, perfomance starts to degrade. This can
« ARW: H = 50 be explained by two reasons: the first one is regarding to
« EST: Mass function for neighbor choosingq) = the oyerhead of generating more samples and.thelr C.0||ISI.OI’1
with 7, the number of neighbors of the con-checking; the second one is that more candidates implies

1
(not 1) more bias and the random walk can gets temporally stuck

figurationg, and the size of the interval for the uniform i '
distribution equals to 70 units: in the local minima generated by the rough metric for the

« RRT: Stepse = 40 units and merging made by RRT— explorability criteria presented in Section Il

connect. When compared with both EST and RRT, the biased
In the second evaluation we compare the performance ARW seems to be very competitive. Indeed, in four of the
IARW (using a biased ARW) with a standard PRM andkix test environments, the biased ARW presented the best
the Gaussian one [18] in the same environments of the firskrformance, regardless of the number of candidates used.
evaluation. A special attention should be given to the results in LIRMM
It is important to point out that although we don’t use thel. This environment is very cluttered and confined, and
original implementation of the reference algorithms (wedis one can expect that all the algorithms would be penalized
our own implementations), all planners use the same locdlie to very narrow free spaces. Indeed, given a occupancy
path planner, the same collision detection and graph searghd representing LIRMM 1, it was transformed in a bitmap
algorithms (when applicable). representation using a very conservative threshold. Tihas,
Fig. 4 shows the results for the first comparison. Theiven cell had an occupancy probability greater than zeeo, w
time indicated in the ordinate axis is the total time used tbave considered it as occupied. In the end, it leads to a still
find and smooth the reference paths and it is in logarithmimore confined scene than the original one shown in Fig. 3(e).
scale. The simpler uniform distribution did not improveln this scene, both EST and RRT were more penalized
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Fig. 4. Comparison between the single query algorithms. rEkalts are
the average time between 100 executions.

necessary to capture the connectivity of a scene is not known
a priori when working with PRM, we proceeded as follows:

(€) LIRMML. (f) LARA. for each map, at firshg = 100 nodes were generated.
_ _ If all four reference routes could be found, this execution
Fig. 3. Test environments. was considered successful and other iterations could be

made with the same number of nodes. Otherwise, if any
of them could not be found, the execution was restarted

than all other kinds of ARW, biased or not. As explainedVith nx = 2n,_1. Thus, the number of generated nodes
before, the parameters of all algorithms were tunned bas¥é®s doubled until all four paths were found. The execution
on previous test conducted using the first three scenes e considered for performance evaluation was the average
Fig. 3. When confronted with a new environment, all flavor®f 100 successful iterations.

of ARW maintained a good performance, while EST and Fig. 5 shows the results for time performance in the
RRT did not. This highlights the strongest characterisfic ocomparison between iARW and the PRMs. As expected,
ARW: its adaptability to the environment, hence implyingthe Gaussian PRM was superior than uniform PRM in all
good performance in very different Workspaces_ FurtheanorenVironmentS with narrow passages. In the trivial scers, th
the biasing scheme improves greatly the performance of t&ly has open spaces, both PRMs achieved nearly the same
algorithm when compared with the original ARW. Howeverperformance. On most scenes, iARW was much better than
it is important to note that in Figure 4 we On|y Showboth PRMs. However, in the Corridor both Gaussian PRM
the results of the biased ARW, not of the iARW, due toand IARW required almost the same average time to find all
the fact that we want to evaluate individual queries. If wéoutes. This was also expected, once this is the kind of map
had conducted incremental queries in the experiment, iAR@r which Gaussian PRM is tailored. Also, in the Maze both
would have greatly outperformed both ARW, RRT and ESTARW and Gaussian PRM had the same performance.

once these algorithms do not use previous informations for The other advantage of iIARW is highlighted on Fig. 6.

new queries. Thus, it would be unfair to conduct such 4 he number of nodes necessary to capture the connectivity of
comparison. Ctree is smaller on iIARW. This is due to the fact that IARW

The second evaluation concerns IARW (using biaseﬁnly stores relevant p(_)rtions_ e, whils_t the standard
ARW with three candidates), standard PRM and gaussifrFM samples the configuration space uniformly. The Gaus-

PRM. As roadmaps methods are more suited to multiplﬂan PRM allso does a great selection when sampling, but not
queries, for each scene four non-trivial paths were chos&i good as iIARW. It occurs due to the fact that gaussian PRM
rongly samples narrow spaces, but also the boundary of

as references. The Corridor is an exception: only the paﬁfb I hich i o | @
that passes through the corridor is non—trivial. Thus, foPPStacles, which is not necessarilly a relevant pac of..

this specific environment, one can expect that the planner
that first succeeds to connect both sides of the scene takes
less time to find all four routes, since the first one is the This paper presents a new path planner, IARW, that
bottleneck for this map. For each environment and for eaalses biased adaptive random walks to solve a query and
path planner, we performed 100 successful executions. V¥emultaneously expand a roadmap @},... It uses the

considered an execution as successful when all four refererbiased bidirectional ARW to explore the configuration space
routes could be found. Besides, as the number of nodasd, as the queries are solved, the relevant parts of the

VI. CONCLUSIONS AND FUTURE WORKS
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path are stored in the roadmap. However, when searchi 9
the configuration space, each random walk tries to connect
itself to as many different components of the roadmap as
possible, augmenting the connectivity of the graph. Besidel'®
the roadmap is used whenever possible, improving the al-
gorithm’s perfomance. Furthermore, a simple approach &4l
bias the random walks is presented. The method Consi:ﬂg]
in taking a configuration, from a set of candidates, that
maximizes an explorability criteria. A first evaluation sfexl

that our biased ARW greatly outperforms both standarHG]
Gaussian ARW and the uniform one. Nevertheless, we must
point out that the heuristic used in the explorability aide
should work well only for a small and medium numbert’
of dimensions. When compared with RRT and EST, the
biased ARW showed a very competitive performance, with
the additional advantage of using a simpler data structare. 18]
the second evaluation, we have compared iARW with both
the standard PRM and the Gaussian one. In general, iIARW
has greatly outperformed both PRMs and in only one case the
Gaussian PRM had the same perfomance of iIARW. In despite
of the good perfomance achieved by the proposed method,
we believe that further improvements could be achieved by

using other kinds of adaptive distributions. Finally, owxh
step is to conduct comparisons between IARW and other
incremental algorithms such as Lazy PRM [16], LRF [15]
and Multipartite RRTs [14]. Also, an evaluation using high
dimensional configuration spaces should give more insights
on the overall performance of the proposed algorithm.
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