
Chapter 4

Physical Conservation and Balance Laws

& Thermodynamics

The laws of classical physics are, for the most part, expressions of conservation or balances of certain
quantities: e.g. mass, momentum, angular momentum, energy. These are fundamental postulates
or axioms that follow from experimental work. In this chapter we shall develop these balance laws
in forms that can be applied to continua in both the Eulerian and Lagrangian viewpoints. We have
already seen the expressions for balance of momenta (both linear and angular) in chapter 3 and
how they can be used to derive governing equations of equilibrium in the Eulerian viewpoint and
to demonstrate that the Cauchy stress tensor is symmetric.

4.1 Conservation of mass

The axiom of conservation of mass states that the total mass of a material region remains constant
under any motion, provided that there are no sources or sinks of mass. Thus, assuming an initial
mass density ρ0(r) in the undeformed region,

∫

Ω0

ρ0(r)dV0 =

∫

Ωt

ρ(R, t)dVt, (4.1)

where ρ is the mass density in the deformed region, as defined in equation (3.5). We saw in chapter
2, that the relationship between material volume elements is given by equation (2.41a),

dVt =
√
G/g dV0 = J dV0.

Thus, ∫

Ω0

ρ0 dV0 =

∫

Ω0

ρ
√
G/g dV0 ⇒

∫

Ω0

(ρ0 − ρJ) dV0 = 0,

and because this relationship must be true for all volumes, we have that

ρ0(r) = ρ(R(r, t), t)J, (4.2)

which is the Lagrangian expression of conservation of mass.
Alternatively, we can express the relationship in Eulerian form by insisting that the material

derivative of the total mass is zero,

D

Dt

∫

Ω0

ρ0(r)dV0 =
D

Dt

∫

Ωt

ρ(R, t)dVt = 0,
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from equation (4.1). Using the Reynolds transport theorem we can write

D

Dt

∫

Ωt

ρ dVt =

∫

Ωt

[
∂ρ

∂t
+∇

R
·(ρV )

]
dVt = 0.

The equation must be satisfied for all possible volumes, which means that the integrand is zero and
we have the Eulerian expression for conservation of mass, also known as the continuity equation

∂ρ

∂t
+∇

R
·(ρV ) = 0. (4.3)

Expanding out the second term gives the alternative expression

∂ρ

∂t
+ V ·∇

R
ρ+ ρ∇

R
·V =

Dρ

Dt
+ ρ∇

R
·V = 0, (4.4)

which is the Eulerian form of the conservation of mass equation.
If the material is incompressible then its volume cannot change

√
G/g = J = I

1

2

3
= 1,

and so from equation (4.2) the density does not change ρ(R(r), t) = ρ0(r) provided that mass is
conserved (which is obvious from basic physical reasoning). Thus, Dρ/Dt = 0 and the continuity
equation becomes

ρ∇
R
·V = 0 ⇒ ∇

R
·V = D : I = 0.

From equation (2.55), it follows that the incompressibility constraint obtained in this way is con-
sistent with the condition that the dilation (relative volume change) is zero, as one might hope.

4.2 Balance of linear momentum

In chapter 3, we derived the governing equations of equilibrium

∇
R
·T+ ρF = 0,

in the Eulerian viewpoint, from the conservation of linear momentum in the absence of acceleration
terms. In order to include the effects of acceleration we must return to the integral form of the
balance law law (3.6)

DP

Dt
=

D

Dt

∫

Ωt

ρV dVt =

∫

∂Ωt

T dSt +

∫

Ωt

ρF dVt. (4.5)

Using equation (3.16) in place of the force integrals we have that

D

Dt

∫

Ωt

ρV dVt =

∫

Ωt

1√
G

∂T i

∂χi
+ ρF dVt = 0.

Applying the Reynolds transport theorem to the momentum integral1

1You should be slightly concerned here because we only derived the Reynolds transport theorem for the transport
of a scalar, φ. Fortunately, the argument easily generalises to vectors (and tensors) because the product rule always
applies and the product of a scalar and tensor remains a tensor of the same type

d

dt

∫

Ωt

V dVt =

∫

Ω0

d

dt

(
V
√
G/g

)
dV0 =

∫

Ω0

DV

Dt

√
G/g + V

D
√
G/g

Dt
dV0

=

∫

Ω0

[
DV

Dt
+ V ∇

R
·V

]√
G/g dV0 =

∫

Ωt

DV

Dt
+ V ∇

R
·V dVt.



gives
D

Dt

∫

Ωt

ρV dVt =

∫

Ωt

[
D(ρV )

Dt
+ ρV ∇

R
·V

]
dVt,

=

∫

Ωt

[
Dρ

Dt
V + ρ

DV

Dt
+ ρV ∇

R
·V

]
dVt =

∫

Ωt

[
ρ
DV

Dt
+ V

(
Dρ

Dt
+ ρ∇

R
·V

)]
dVt.

The expression in round brackets is zero by conservation of mass (4.4), and so the expression for
balance of linear momentum (4.5) becomes

∫

Ωt

[
ρ
DV

Dt
− 1√

G

∂T i

∂χi
− ρF

]
dVt = 0. (4.6)

The integral must be zero for all possible volumes, which means that the integrand is zero and so

ρ
DV

Dt
=

1√
G

∂T i

∂χi
+ ρF , (4.7)

which can be written as

ρ
DV

Dt
= ∇

R
·T+ ρF ,

or in component form in the basis Gi

ρ

[
∂V i

∂t
+ V jV i||j

]
= T j i||j + ρF i. (4.8)

Irrespective of how we write them, these are Cauchy’s equations of motion for a continuum in the
Eulerian representation.

The expression for balance of momentum in the Lagrangian formulation follows by transforming
the integrals in equation (4.5) to be over the undeformed, rather than the deformed domain

D

Dt

∫

Ω0

ρv JdV0 =

∫

∂Ω0

t dS0 +

∫

Ω0

ρF J dV0, (4.9)

where t is the traction measured using the area of the undeformed surface. From the definition of
the first Piola–Kirchhoff stress tensor we have that

t = pj knkGj ,

and so we can define a stress vector per unit undeformed area which transforms contravariantly
tk =

√
gpj kGj. Thus, the equation (4.9) becomes

D

Dt

∫

Ω0

ρ0v dV0 =

∫

∂Ω0

nk√
g
tk dS0 +

∫

Ω0

ρ0F dV0,

after using the Lagrangian expression for conservation of mass (4.2) in the volume integrals. We
can now use the divergence theorem on the surface integral and bring the material derivative inside
the fixed integral over the reference domain to obtain

∫

Ω0

[
ρ0
∂v

∂t
− 1√

g

∂ti

∂ξi
− ρ0F

]
dV0 = 0.



Once again, the integrand must vanish so

ρ0
∂v

∂t
− 1√

g

∂ti

∂ξi
− ρ0F = 0.

The expression for the derivative of the stress vector is actually rather messy when expressed in terms
of the first Piola–Kirchhoff stress tensor because we must evaluate ∂Gj/∂ξ

i. A compact expression
can be obtained if we introduce a new representation of the stress tensor that decomposes the vector
into components in the undeformed basis tk =

√
g tjkgj . The governing equation is then

ρ0
∂vj

∂t
= tij|i + ρ0f

j,

where F = f jgj, v = vjgj and the line | represents covariant differentiation with respect to the
Lagrangian coordinates in the undeformed configuration.

In fact, in Cartesian coordinates the two tensors pj k and tjk coincide, which follows from

tjkgj = pj kGj ⇒ tjk
∂r

∂ξj
= pj k

∂R

∂χj
⇒ tjk

∂xI
∂ξj

= pj k
∂XI

∂χj
.

The choice of Cartesian coordinates corresponds to choosing ξj = xj and χ
j = Xj, so we have

tjkδIj = pj kδIj ⇒ tIk = pIk.

Note that we do not have to choose Cartesian coordinates for the decomposition of the normal
vector for the stress tensors to coincide, but we do need the decomposition of the stress vector to
be in Cartesian coordinates. Thus, the expression found in many books for the governing equation
in the Lagrangian viewpoint is

ρ0
∂v

∂t
= ∇

r
·p+ ρ0f ,

where f (r, t) = F (R, t) is the body force represented in Lagrangian coordinates and p is the
first Piola–Kirchhoff stress tensor. This view is somewhat simplistic however and only applies in
Cartesian formulations. Moreover, the expression does not indicate how to take the divergence of a
tensor.

4.3 Balance of angular momentum

In chapter 3, we showed that if there is no net torque acting on a body then the Cauchy stress
tensor is symmetric. In fact, the Cauchy stress tensor is symmetric even if the the body is subject
to a net angular acceleration. Once again, we return to the integral form of the balance law (3.7)

DHZ

Dt
=

D

Dt

∫

Ωt

(R−Z)× ρV dVt = LZ =

∫

∂Ωt

(R−Z)× TdSt +

∫

Ωt

ρ(R−Z)× F dVt.

The vector Z is a constant so it can be taken outside all integrals to yield

D

Dt

∫

Ωt

R× ρV dVt −
∫

∂Ωt

R× TdSt −
∫

Ωt

ρR× F dVt =

Z ×
[
D

Dt

∫

Ωt

ρV dVt −
∫

∂Ωt

T dSt −
∫

Ωt

ρF dVt

]
.



The term in square brackets is zero from the linear momentum balance in integral form (4.5) and
therefore

D

Dt

∫

Ωt

R× ρV dVt −
∫

∂Ωt

R× TdSt −
∫

Ωt

ρR× F dVt = 0.

Introducing the stress vector and using the divergence theorem as in chapter 3, see equation (3.18),
we have

D

Dt

∫

Ωt

ρR× V dVt =

∫

Ωt

[
1√
G

∂

∂χi

(
R× T i

)
+ ρR× F

]
dVt. (4.10)

We now use the Reynolds transport theorem to write

D

Dt

∫

Ωt

ρR× V dVt =

∫

Ωt

[
D

Dt
(ρR× V ) + ρR× V ∇

R
·V

]
dVt.

=

∫

Ωt

[
ρ
D

Dt
(R× V ) + (R× V )

(
Dρ

Dt
+ ρ∇

R
·V

)]
dVt.

The second term in the integrand vanishes through conservation of mass (4.4), so that

D

Dt

∫

Ωt

ρR× V dVt =

∫

Ωt

ρ
D

Dt
(R× V ) dVt =

∫

Ωt

ρ

(
DR

Dt
× V +R× DV

Dt

)
dVt;

but, by definition, DR/Dt = V and V × V = 0 from the definition of the cross product, so

D

Dt

∫

Ωt

ρR× V dVt =

∫

Ωt

ρR× DV

Dt
dVt.

Thus, equation (4.10) becomes

∫

Ωt

[
ρR× DV

Dt
− 1√

G

∂

∂χi

(
R× T i

)
− ρR× F

]
dVt = 0;

and using the product rule to expand the derivative of the cross product yields

∫

Ωt

R×
[
ρ
DV

Dt
− 1√

G

∂T i

∂χi
− ρF

]
dVt =

∫

Ωt

1√
G
Gi × T i dVt.

The left-hand side vanishes by the linear momentum balance in its local (differential equation) form,
equation (4.7), so ∫

Ωt

1√
G
Gi × T i dVt = 0,

which is the same as the condition (3.19) obtained from the equilibrium equations in chapter 3.
Hence the conclusion is the same, namely that the Cauchy stress tensor is symmetric.

For the Lagrangian viewpoint, we can transform the equation into the reference configuration
∫

Ω0

1√
G
Gi × T i J dV0 = 0,

and since the equation must be true for any volume we have that

1√
G
Gi × T i J = Gi × T i j JGj = 0.



Transforming to the Lagrangian coordinates gives

∂ξk

∂χi
Gk × T i j J

∂ξl

∂χj
Gl = Gk ×Gl

∂ξk

∂χi
T i j J

∂ξl

∂χj
= Gk ×Gls

kl = 0,

where skl are the components of the second Piola–Kirchhoff stress tensor. It follows that

1

2

[
Gk ×Gls

kl +Gl ×Gks
lk
]
= 0,

and by the antisymmetry of the cross product (or Levi-Civita symbol if we write the cross products
in index notation)

1

2
Gk ×Gl

[
skl − slk

]
= 0,

from which we deduce that the second Piola–Kirchhoff stress tensor is symmetric skl = slk.

4.4 Conservation of energy

Developing a theory for the conservation of energy in continua is more complicated than for con-
servation of mass and momenta. The problem is that molecular fluctuations are not present in
continuum theory, but these fluctuations may involve a significant amount energy. In order to in-
clude such effects we require a continuum theory of thermodynamics, which introduces the concepts
of temperature and heat and their relation to the energy. The temperature can be thought of as a
measure of the fluctuations of molecules within the body and heat is an energy associated with the
temperature.

We also need to introduce the concepts of mechanical work done by external forces. The work
done by a force in displacing a single particle is the total force exerted on the particle in moving it
along a particular path, L, i.e. the line integral of the force acting tangentially to the path

Ŵ =

∫

L

F ·dR =

∫

L

F ·Ṙ dt.

The rate of work, or power, is the time (material) derivative of the work, so

P̂ =
dŴ

dt
=

˙̂
W = F ·Ṙ = F · V .

From Newton’s second law applied to a particle

˙̂
W = F · V = ma · V = mV̇ ·V ,

and integrating in time, we find that the work done is equal to the kinetic energy of the particle

Ŵ =
1

2
mV · V =

1

2
m|V |2.

Thus, the classical Newtonian mechanics approach to obtain an energy equation is to take the dot
product of Newton’s second law with V and integrate.

If you take a piece of rubber and stretch and compress it repeatedly it will get hot. It’s more
fun to do this experiment by smashing a squash ball against the wall several times. Alternatively,
if you heat the rubber it will deform mechanically (the lazy squash player puts the ball on the



radiator before playing). The fact the mechanical work can be converted into heat and vice versa
is the essence of classical thermodynamics. Before we get into the thermodynamics, however, we
must consider the mechanical work done by external forces on a continuum, rather than a single
particle. An important point is that unlike a particle, a continuum can store energy internally by
reconfiguration of the internal structure, which typically induces internal stresses. Internal energy
may be also stored via chemical and electromagnetic effects.

4.4.1 The rate of work and work conjugacy

In a continuum body, the net rate of work, or net power, is the total power exerted by external
forces that is not used to produce motion. If the body cannot store energy internally and none
of the work is converted into heat, then the net rate of work must be zero because all the work
is converted into motion. The net rate of work is therefore the sum of rate of work of the surface
forces and the rate of work of the net body forces (the actual body forces minus the force required
to produce the acceleration):

DW

Dt
= Ẇ =

∫

∂Ωt

T · V dSt +

∫

Ωt

(
ρF − ρV̇

)
·V dVt. (4.11)

Using the decomposition of the traction vector T = NiT
i/
√
G then the surface integral in

equation (4.11) becomes ∫

∂Ωt

T · V dSt =

∫

∂Ωt

T i
·V

Ni√
G

dSt

and using the divergence theorem in general coordinates gives

Ẇ =

∫

Ωt

1√
G

∂

∂χi

(
T i

·V
)
+
(
ρF − ρV̇

)
·V dVt,

=

∫

Ωt

1√
G
T i

·
∂V

∂χi
+

[
1√
G

∂T i

∂χi
+ ρF − ρV̇

]
·V dVt,

The term in square brackets is zero because it is the simply governing differential equation for the
linear momentum balance (4.7), so

Ẇ =

∫

Ωt

1√
G
T i

·
∂V

∂χi
dVt =

∫
T i jGj·

∂V

∂χi
dVt.

Expressing the derivative of the velocity in terms of the contravariant base vectors associated with
the Eulerian coordinates gives

Ẇ =

∫

Ωt

T i jGj·Vk||iGk dVt =

∫

Ωt

T i jVj ||i dVt.

Hence, by symmetry of the stress tensor,

Ẇ =

∫

Ωt

1

2

[
T i jVj||i + T j iVi||j

]
dVt =

∫

Ωt

T i j 1

2

[
Vi||j + Vj||i

]
dVt

=

∫

Ωt

T i jDi j dVt =

∫

Ωt

T : D dVt.



The net rate of work on the entire continuum is given by the integral of the contraction over both
indices of the Cauchy stress and Eulerian rate of deformation tensor. Hence, the quantities T

and D are said to be a work conjugate pair: the Cauchy stress is work conjugate to the Eulerian
deformation rate. The quantity T : D is called the stress power and represents the rate of work
done by internal stresses per unit deformed volume of the body.

If we had worked in the Lagrangian coordinates, but in the deformed configuration, then we
would have that

Ẇ =

∫

Ωt

T ij 1

2
[vi||j + vj||i] dVt =

∫

Ωt

T ijγ̇ij dVt,

by using equation (2.47). Transforming to the reference configuration gives

Ẇ =

∫

Ω0

T ij γ̇ijJ dV0 =

∫

Ω0

sij γ̇ij dV0, (4.12)

which shows that the second Piola–Kirchhoff stress tensor and the material derivative of the Green–
Lagrange strain tensor (the Green–Lagrange rate of strain tensor) are a work conjugate pair. In
this case s : ė is the work per unit undeformed volume of the body.

4.4.2 Temperature and heat

We assume that the temperature Θ(R, t) > 0 is a field defined throughout a continuum body. The
heat, or thermal energy, is the energy associated specifically with the temperature. A simple, but
helpful, viewpoint is that increasing the thermal energy, increases molecular fluctuations, which
increases temperature.

The thermal energy of a continuum can be increased or decreased by sources or sinks of heat
within the body2. In addition, heat can be transferred into or out of a body through conduction,
convection or radiation at the surface of the body.

We define a heat supply per unit mass B(R, t) which is the rate per unit time per unit mass at
which heat energy is supplied to the body. In addition, we assume that on the surface of the body,
the heat transfer per unit deformed area is given by H(R, t) so that the total rate of heating of the
body is

Q =

∫

∂Ωt

H dSt +

∫

Ωt

ρB dVt.

Assuming that the heat transfer depends only on the normal to the surface, a similar argument to
the one used to derive the stress tensor can be used to show that

H(R, t) = −Q(R, t) ·N(R, t),

where N is the outer unit normal to the surface and Q is the (Fourier–Stokes) heat flux vector.
The negative sign is chosen so that heat flows into the body, H > 0, when the flux vector Q is also
directed into the body. Hence the total rate of heating is

Q = −
∫

∂Ωt

Q · N dSt +

∫

Ωt

ρB dVt.

2For example, these could be wires embedded within the continuum that are heated externally or heated via the
passage of an electric current. Another possibility would be to embed chemical heat sources, a localised controlled
exothermic reaction.



4.4.3 The first law of thermodynamics

The first law of thermodynamics expresses the notion of conservation of energy and states that
doing work or heating increases the internal energy, U . The rate of change of internal energy, U̇ , is
then equal to the sum of the rate of heating, Q, and the net rate of work3

DU

Dt
= Q+ Ẇ . (4.13)

Thus, the effects of heat are entirely separated from mechanical work, but the two effects combine
through a simple sum to cause a change in internal energy. It is also possible to add additional
types of energy input (e.g. chemical, electrical) to the balance.

We can make a connection to the more familiar form conservation of energy in classical mechanics
by introducing the kinetic energy for a continuum

K =

∫

Ωt

ρ

2
V · V dVt; (4.14)

⇒ K̇ =
D

Dt

∫

Ωt

ρ

2
V · V dVt.

By applying the Reynolds transport theorem and using conservation of mass, as we have done
several times already,

K̇ =

∫

Ωt

ρ

2

D

Dt
(V · V ) dVt =

∫

Ωt

ρV̇ ·V dVt.

Hence, from equation (4.11) and equation (4.13) the statement of conservation of energy becomes

U̇ = Q +

∫

∂Ωt

T · V dSt +

∫

Ωt

ρF · V dVt − K̇. (4.15)

If the power of the external forces can be written as the derivative of a potential energy4 then
∫

∂Ωt

T · V dSt +

∫

Ωt

ρF · V dVt = −Ġ,

which means that
D

Dt
(U +K +G) = Q.

3In much of the literature the equation is not explicitly written as a rate equation so you will often see expressions
of the form

DU

Dt
= Q+W ,

where Q is called the net heating and W is the net working, which slightly obfuscates the fact that all terms are
actually rates.

4For example, a gravitational body force corresponds to F = g, where g is a constant vector, and so the external
power is ∫

Ωt

ρF · V dVt =

∫

Ωt

ρg·Ṙ dVt =
D

Dt

∫

Ωt

ρg · R dVt,

by using the Reynolds transport theorem and conservation of mass (in the reverse of our usual argument). Thus the
potential energy in this case is

G =

∫

Ωt

ρg · RdVt.



Note that the potential energy related to the external forces is not the same as the internal energy.
In the absence of any heating then the total energy, the sum of the internal, kinetic and potential
energies, is conserved.

In order to derive a partial differential equation that expresses conservation of energy we define
an internal energy density per unit mass, Φ(R, t), so that

U =

∫

Ωt

ρΦdVt.

The integral form of conservation of energy (4.13) is thus

D

Dt

∫

Ωt

ρΦdVt =

∫

Ωt

T : D dVt +

∫

Ωt

ρB dVt −
∫

∂Ωt

Q · N dSt. (4.16)

Using the Reynolds transport theorem combined with conservation of mass and the divergence
theorem, we obtain ∫

Ωt

[
ρ
DΦ

Dt
− T : D− ρB +∇

R
·Q

]
dVt = 0,

and because the integral must be zero for every volume, we obtain the required differential equation

ρ
DΦ

Dt
= T : D+ ρB −∇

R
·Q. (4.17)

In component form in the Eulerian coordinates the equation (4.17) becomes

ρ
DΦ

Dt
= T i jDi j + ρB −Qi||i. (4.18)

The equation (4.17) is a scalar equation that expresses the rate of change of internal energy in
Eulerian coordinates. For the Lagrangian viewpoint, we transform the integrals in equation (4.16)
from the deformed to the undeformed domain, so that

D

Dt

∫

Ω0

ρΦ J dV0 =

∫

Ω0

T : D J dV0 +

∫

Ω0

ρB dV0 −
∫

∂Ω0

J Q·F−Tn dS0, (4.19)

where we have used Nanson’s relation (2.42) to transform the surface integral. From conservation
of mass ρ0 = ρ J and because the undeformed domain is fixed the material derivative passes under
the integral sign. We also use equation (4.12) to express the net rate of work in terms of the second
Piola–Kirchhoff stress tensor so that equation (4.19) becomes

∫

Ω0

ρ0
∂φ

∂t
− sij γ̇ij − ρ0b dV0 = −

∫

∂Ω0

q · ndS0,

where φ(r, t) = Φ(R, t) is the internal energy in the Lagrangian representation; b(r, t) = B(R, t) is
the Lagrangian heat supply and q is the heat flux per unit area of undeformed surface, q = JQF−T

or qj = J ∂ξj

∂χi
Qi. Using the divergence theorem and making our usual argument about the integral

being zero for every volume gives the required equation in the Lagrangian representation

ρ0
∂φ

∂t
= sij γ̇ij + ρ0b− qi|i. (4.20)



4.4.4 The second law of thermodynamics

The essence of the second law of thermodynamics is that there is a physical limit to the rate at
which heat can be absorbed by a body, but no limit to the rate at which it can be released. In its
simplest form, the law states that

Q ≤ B, (4.21)

where B is the least upper bound for the net heating. From the first law (4.13) in the absence of
any net working,

DU

Dt
= Q ≤ B,

which gives another interpretation of the second law as stating that there is an upper bound to the
rate at which a body can store internal energy without doing mechanical work.

For a body at uniform temperature, Θ, we define a quantity called the entropy5, H, such that

DH
Dt

=
B
Θ
. (4.22)

The rate of change of entropy represents the ability of a particular material to absorb heat. Com-
bining the second law (4.21) with the definition of entropy (4.22) gives the classic Clausius–Planck
inequality

ΘḢ ≥ Q. (4.23)

Thus, if there is no heat input, then the total entropy of the body cannot decrease

Ḣ ≥ 0, when Q = 0,

which leads to the common statement of the second law that “entropy increases”.
More generally, we assume that there exists a specific entropy η such that for a continuum

H =

∫

Ωt

ρη dVt.

In addition, we assume that the rate of change in total entropy is greater than or equal to the net
heating per unit temperature

Ḣ ≥ −
∫

∂Ωt

Q · N

Θ(R, t)
dSt +

∫

Ωt

ρB

Θ(R, t)
dVt,

which is known as the Clausius–Duhem inequality. Note that this does not follow directly from
equation (4.23) unless the temperature is uniform.

Using the Reynolds transport theorem, conservation of mass and the divergence theorem, we
obtain ∫

Ωt

[
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R
·

(
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Θ

)
− ρ

B

Θ

]
dVt ≥ 0.

5The introduction of the entropy was originally motivated in equilibrium thermodynamics by the desire to write
the change in heat energy in the first law as an exact differential Qdt = ΘdH, so that dH = Qdt/Θ. The problem
is that this concept does not easily extend to nonequilibrium thermodynamics, because the value of a function at
a single point (the limit of an equilibrium) does not determine the function. The approach taken here (which is
standard) avoids this issue by treating the entropy as a fundamental property of matter.



If the integral must be non-negative for any volume, no matter how small, then the integrand must
be non-negative, so

ρη̇ ≥ −∇
R
·

(
Q

Θ

)
+ ρ

B

Θ
.

Expanding the divergence term and multiplying through by Θ, we obtain the equation

ρΘη̇ +∇
R
·Q− ρB − 1

Θ
Q·∇

R
Θ ≥ 0, (4.24)

or

D − 1

Θ
Q·∇

R
Θ ≥ 0, (4.25)

where
D = ρΘη̇ +∇

R
·Q− ρB. (4.26)

is called the internal dissipation per unit deformed volume. The internal dissipation is the increase
in specific entropy that is not due to net heating. It represents the losses in other parts of the
system. From the local form of the conservation of energy (4.17), we can write the dissipation as

D = ρΘη̇ − ρΦ̇ + T : D, (4.27)

which indicates that the dissipation is the difference between the rate of change of specific entropy
and the change in internal energy that is not due to mechanical work. In the absence of temperature
gradients, the dissipation must be non-negative

D ≥ 0,

which is sometimes called Planck’s inequality. Alternatively, if D = 0, then
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Θ
Q·∇

R
Θ ≥ 0,

which is the statement that heat flows from regions of high temperature to low temperature in the
absence of an internal energy supply6. We will find it convenient to introduce the Helmholtz free
energy per unit mass

Ψ(R, t) = Φ(R, t)− η(R, t)Θ(R, t), (4.28)

which from equation (4.27) is the energy available to do mechanical work in a non-dissipative
(reversible) system at constant temperature. Using the definition of the free energy (4.28) in
equations (4.25) and (4.26), we obtain another form of the entropy inequality

−ρΨ̇− ρηΘ̇− 1

Θ
Q·∇

R
Θ+ T : D ≥ 0. (4.29)

In Lagrangian form, by the usual methods, we obtain the inequality

ρ0η̇0 ≥ −∇
r
·

(q
θ

)
+ ρ0

b

θ
,

where in Lagrangian coordinates η0(r, t) = η(R, t) is the specific entropy and θ(r, t) = Θ(R, t).
Introducing the free energy field

ψ(r, t) = φ(r, t)− η0(r, t)θ(r, t),

we obtain the equivalent form of the inequality

−ρ0ψ̇ − ρ0η0θ̇ −
1

θ
q·∇

r
θ + s : ė ≥ 0.

6Truesdell notes that the form of equation (4.26) allows heat to flow from regions of low temperature to high
temperature if a sufficiently large internal energy is supplied near a cold spot, or if sinks of energy are present at hot
spots.


