Three hours

A formula sheet is provided at the end of the examination

THE UNIVERSITY OF MANCHESTER

CONTINUUM MECHANICS

21 January 2020 09:45-12:45

Answer ALL SIX questions.

University approved calculators may be used.
(C) The University of Manchester, 2020

Page 1 of 9

1. Show that the derivative

$$
\stackrel{\circ}{\boldsymbol{A}}=\frac{\partial \boldsymbol{A}}{\partial t}-\mathrm{W} \boldsymbol{A}
$$

of a vector \boldsymbol{A} is objective, where W is the spin tensor. You may use the fact that $\dot{\mathrm{F}}=\mathrm{LF}$ without proof, where F is the deformation gradient tensor and L is the Eulerian velocity gradient tensor. Both L and F are defined on the formula sheet at the end of the examination.
2. A mixture of two chemicals is transported within a continuum. The concentrations (masses per unit deformed volume) of the two chemicals a and b are given by $A(\boldsymbol{R}, t)$ and $B(\boldsymbol{R}, t)$, respectively. The chemicals react in such a way that a mass of a is produced at a rate R_{A} per unit deformed volume and a mass of b is produced at a rate R_{B} per unit deformed volume.
(i) By starting from conservation of mass equations within a material volume, find two partial differential equations that describe the conservation of mass of each chemical.
[5 marks]
(ii) Assuming that there are no other sources or sinks of mass and that the total mass of both chemicals is conserved, find a relationship between R_{A} and R_{B}.
[3 marks]
(iii) Assume further that B evaporates from the surface of the continuum with constant mass-loss rate E per unit deformed area and that R_{B} is also a constant. Find the relationship between R_{B} and E which ensures that the mass of A does not change.
3. A solid material is reinforced by a family of fibres, whose initial direction is described by the vector field $\boldsymbol{a}(\boldsymbol{r})$, where $|\boldsymbol{a}|=1$.
(i) Show that fibres in a deformed configuration, described by a position vector \boldsymbol{R}, are given by $\boldsymbol{A}=\mathrm{Fa}$, where $\mathrm{F}=\nabla_{\boldsymbol{r}} \boldsymbol{R}$ is the deformation gradient tensor.
[2 marks]
(ii) The strain energy of the material is given by $\mathcal{W}(c, \boldsymbol{a} \otimes \boldsymbol{a})$ and must remain unchanged if the material and the fibres are simultaneously rotated about any axis in the undeformed configuration. Explain why this leads to the restriction

$$
\begin{equation*}
\mathcal{W}(\mathrm{c}, \boldsymbol{a} \otimes \boldsymbol{a})=\mathcal{W}\left(\mathrm{Qc}^{T}, \mathrm{Q} \boldsymbol{a} \otimes \boldsymbol{a} \mathbf{Q}^{T}\right) \tag{1}
\end{equation*}
$$

for any proper orthogonal tensor Q. Here $c=F^{T} F$ is the Cauchy-Green deformation tensor.
(iii) If the strain energy is written as a function of the five invariants

$$
I_{1}=\operatorname{trace}(\mathrm{c}), \quad I_{2}=\frac{1}{2}\left\{[\operatorname{trace}(\mathrm{c})]^{2}-\operatorname{trace}\left(\mathrm{c}^{2}\right)\right\}, \quad I_{3}=\operatorname{det}(\mathrm{c}), \quad I_{4}=\boldsymbol{a} \cdot \mathrm{c} \boldsymbol{a}, \quad I_{5}=\boldsymbol{a} \cdot \mathrm{c}^{2} \boldsymbol{a}
$$

show that the constraint (1) would be satisfied.
4. An incompressible, hyperelastic solid sphere has undeformed radius 1 . The sphere undergoes a deformation such that it remains spherical with a twist (rotation about an axis passing through its centre) that varies with distance from the centre of the sphere. The strain energy function of the solid material is given by

$$
\mathcal{W}=\left(I_{1}-3\right)+\left(I_{2}-3\right)
$$

where I_{1} and I_{2} are the first and second strain invariants.
(i) Explain why the radius of the sphere cannot change under the imposed deformation.
(ii) Write down the deformed position in components in a global Cartesian coordinate system as a function of the undeformed position described using spherical polar coordinates ($\xi^{1}=r, \xi^{2}=$ $\left.\theta, \xi^{3}=\phi\right)$. The global coordinate system is chosen so that the axis of rotation is the z axis. You may assume that the twist is given by a function of the form $\Phi=\phi+f(r)$, where Φ is the aziumthal angle in the deformed configuration.
(iii) Hence, compute the three strain invariants corresponding to this deformation.
(iv) Compute the component of the stress tensor T^{13} and find a condition on f which ensures that $T^{13}=0$. Give a description of the deformation in this case.

You may use the fact that in spherical polar coordinates the position is given by

$$
\boldsymbol{r}=r \sin \theta \cos \phi \boldsymbol{e}_{x}+r \sin \theta \sin \phi \boldsymbol{e}_{y}+r \cos \theta \boldsymbol{e}_{z},
$$

and the only non-zero Christoffel symbols are

$$
\begin{array}{ll}
\Gamma_{12}^{2}=\Gamma_{21}^{2}=\Gamma_{13}^{3}=\Gamma_{31}^{3}=\frac{1}{r}, & \Gamma_{23}^{3}=\Gamma_{32}^{3}=\frac{\cos \theta}{\sin \theta}, \\
\Gamma_{22}^{1}=-r, & \Gamma_{33}^{1}=-r \sin ^{2} \theta, \\
\Gamma_{33}^{2}=-\cos \theta \sin \theta
\end{array}
$$

5. A one-dimensional bar of thermoelastic material, initially of unit density, is stretched from its undeformed length of 1 to a length λ. The unidirectional Cauchy stress is given by a scalar quantity P. The fact that the problem is entirely one-dimensional reduces all tensors to scalar quantities. The Helmholtz free energy takes the form $\Psi(\lambda, \Theta)$.
(i) Explain why the second Piola-Kirchhoff stress tensor is given by $S=\lambda P$ and find an expression for the Green-Lagrange strain, E.
(ii) Use the Clausius-Duhem inequality to show that

$$
P=\rho \frac{\partial \Psi}{\partial \lambda}, \quad \eta=-\frac{\partial \Psi}{\partial \Theta}
$$

(iii) Hence show that

$$
\left.\frac{\partial(P / \rho)}{\partial \Theta}\right|_{\lambda}=\left.\frac{\partial S}{\partial \Theta}\right|_{\lambda}=-\left.\frac{\partial \eta}{\partial \lambda}\right|_{\Theta}
$$

(iv) Show that for an isentropic material (total entropy is fixed)

$$
\mathrm{d} S=\left[\frac{\partial S}{\partial E}+\frac{1}{\lambda} \frac{\left(\frac{\partial S}{\partial \Theta}\right)^{2}}{\frac{\partial \eta}{\partial \Theta}}\right] \mathrm{d} E
$$

and interpret the result in terms of the elastic and thermal components.

Recall that the differential (infinitesimal change) of a function of two variables $A(x, y)$ is such that

$$
\mathrm{d} A=\frac{\partial A}{\partial x} \mathrm{~d} x+\frac{\partial A}{\partial y} \mathrm{~d} y .
$$

6. An incompressible, generalised Oldroyd B fluid has the constitutive relationship

$$
\mathrm{T}=-P \mathrm{I}+2 \mu \mathrm{D}+G \mathrm{~A},
$$

where the tensor A satisfies

$$
\mathrm{A}^{\nabla}=-\frac{1}{\tau}(\mathrm{~A}-\mathrm{I}) ;
$$

here, P is the fluid pressure and μ, G and τ are constants. The upper-convected derivative is defined by

$$
\mathrm{A}^{\nabla}=\frac{D \mathrm{~A}}{D t}-\mathrm{LA}-\mathrm{AL}^{T}
$$

where L is the Eulerian velocity gradient tensor and D is the symmetric part of L.
(i) Confirm that the constitutive relationships are objective.

You may assume that the Cauchy stress T is objective; that the deformation gradient tensor, F , transforms as $\mathrm{F}^{*}=\mathrm{QF}$ and $\dot{\mathrm{F}}=\mathrm{LF}$, where Q is an orthogonal matrix that expresses the relative rotation between observers.

A steady two-dimensional shear flow in Cartesian coordinates is given by $\boldsymbol{V}=(\epsilon Y, 0)$, where ϵ is the constant shear rate and X and Y are the Cartesian coordinates.
(ii) Find the Cauchy stress components $T_{X X}, T_{Y Y}, T_{X Y}$ of an Oldroyd B fluid subject to this flow and find a condition on the fluid pressure which ensures that Cauchy's equation is satisfied.
(iii) Calculate the normal stress difference $T_{X X}-T_{Y Y}$ for the flow and hence determine whether the fluid is Newtonian.

FORMULA SHEET

- For a general (Lagrangian) coordinate system ξ^{i} :

$$
\begin{gathered}
\boldsymbol{g}_{i}=\frac{\partial \boldsymbol{r}}{\partial \xi^{i}}, \quad \boldsymbol{g}_{i} \cdot \boldsymbol{g}^{j}=\delta_{i}^{j}, \quad g_{i j}=\boldsymbol{g}_{i} \cdot \boldsymbol{g}_{j}, \quad g=\operatorname{det}\left(g_{i j}\right) . \\
\boldsymbol{G}_{i}=\frac{\partial \boldsymbol{R}}{\partial \xi^{i}}, \quad \boldsymbol{G}_{i} \cdot \boldsymbol{G}^{j}=\delta_{i}^{j}, \quad G_{i j}=\boldsymbol{G}_{i} \cdot \boldsymbol{G}_{j}, \quad G=\operatorname{det}\left(G_{i j}\right) .
\end{gathered}
$$

- For a scalar field $f(\boldsymbol{x})$ and vector field $\boldsymbol{u}(\boldsymbol{x})$

$$
\boldsymbol{\nabla} f=\boldsymbol{g}^{i} \frac{\partial f}{\partial \xi^{i}}, \quad \operatorname{div} \boldsymbol{u}=\frac{1}{\sqrt{g}} \frac{\partial\left(u^{i} \sqrt{g}\right)}{\partial \xi^{i}}, \quad \operatorname{curl} \boldsymbol{u}=\left.\epsilon^{i j k} u_{j}\right|_{i} \boldsymbol{g}_{k} .
$$

- The material derivative in general coordinates is

$$
\frac{D U^{i}}{D t}=\frac{\partial U^{i}}{\partial t}+V^{j} U^{i} \|_{j}
$$

where \boldsymbol{V} is the velocity of the continuum and

$$
U^{i} \|_{j}=U^{i, j}+\Gamma_{j k}^{i} U^{k}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols for the chosen coordinate system in the deformed configuration.

- The deformation gradient tensor $\mathrm{F}=\boldsymbol{\nabla}_{\boldsymbol{r}} \boldsymbol{R}$ has components Cartesian coordinates given by

$$
F_{I J}=\frac{\partial X_{I}}{\partial x_{j}}
$$

The determinant of F is denoted by J.

- The Eulerian velocity gradient tensor, L, has components in Cartesian coordinates given by

$$
L_{I J}=\frac{\partial V_{I}}{\partial X_{J}} .
$$

- The deformation rate tensor, D and spin tensor, W are defined by

$$
\mathrm{D}=\frac{1}{2}\left(\mathrm{~L}+\mathrm{L}^{T}\right), \quad \mathrm{W}=\frac{1}{2}\left(\mathrm{~L}-\mathrm{L}^{T}\right)
$$

- Cauchy's equation in the usual notation in components in general coordinates ξ^{i} is

$$
T^{j i} \|_{j}+\rho F^{i}=\rho \ddot{U}^{i}=\rho \frac{D V^{i}}{D t}, \quad \text { where } \quad T^{j i} \|_{j}=T_{, j}^{j i}+\Gamma_{j r}^{j} T^{r i}+\Gamma_{j r}^{i} T^{j r} .
$$

- The material derivative of the determinant of the deformation gradient tensor is

$$
\frac{D J}{D t}=J \nabla_{R} \cdot \boldsymbol{V}
$$

- The Reynolds Transport theorem states that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega_{t}} \phi \mathrm{~d} \mathcal{V}_{t}=\int_{\Omega_{t}}\left(\frac{D \phi}{D t}+\phi \boldsymbol{\nabla}_{\boldsymbol{R}} \cdot \boldsymbol{V}\right) \mathrm{d} \mathcal{V}_{t}
$$

where Ω_{t} is a material volume, ϕ is a scalar field and \boldsymbol{V} is the velocity of the continuum.

- For a Cartesian line element $\mathrm{d} X_{I}$ in the deformed configuration

$$
\frac{D \mathrm{~d} X_{I}}{D t}=V_{I, K} \mathrm{~d} X_{K},
$$

where V_{I} is the I-th Cartesian component of the velocity.

- Nanson's relation states that

$$
\mathrm{d} A_{\bar{i}}=J \frac{\partial \xi^{j}}{\partial \chi^{\bar{i}}} \mathrm{~d} a_{j},
$$

where ξ^{j} are the Lagrangian coordinates, $\chi^{\bar{i}}$ are the Eulerian coordinates, J is the determinant of the deformation gradient tensor, $\mathrm{d} \boldsymbol{A}$ is an area element in the deformed configuration and $\mathrm{d} \boldsymbol{a}$ is an area element in the undeformed configuration.

- The Green-Lagrange strain tensor is defined by

$$
\gamma_{i j}=\frac{1}{2}\left(G_{i j}-g_{i j}\right) .
$$

- The strain invariants are defined by

$$
I_{1}=g^{i j} G_{j i}, \quad I_{2}=\frac{1}{2}\left(I_{1}^{2}-g^{i r} g^{j s} G_{i j} G_{r s}\right), \quad I_{3}=G / g
$$

where $g=\operatorname{det}\left(g_{i j}\right)$ and $G=\operatorname{det}\left(G_{i j}\right)$

- A hyperelastic material is described by a strain energy function $\mathcal{W}\left(I_{1}, I_{2}, I_{3}\right)$ such that

$$
T^{i j}=P G^{i j}+A g^{i j}+B B^{i j},
$$

where

$$
\begin{gathered}
A=\frac{2}{\sqrt{I_{3}}} \frac{\partial \mathcal{W}}{\partial I_{1}}, \quad B=\frac{2}{\sqrt{I_{3}}} \frac{\partial \mathcal{W}}{\partial I_{2}}, \quad P=2 \sqrt{I_{3}} \frac{\partial \mathcal{W}}{\partial I_{3}} \\
\text { and } \quad B^{i j}=\left[I_{1} g^{i j}-g^{i r} g^{j s} G_{r s}\right] .
\end{gathered}
$$

- The physical components of the stress tensor are given by $\sigma_{(i j)}=T^{i j} \sqrt{G_{j j} / G^{i i}}$ (no summation).
- The body stress tensor $T^{i j}$ and second Piola-Kirchhoff stress tensor $s^{i j}$ are related by the expression $J T^{i j}=s^{i j}$.
- The first law of thermodynamics can be written as

$$
\rho \frac{D \Phi}{D t}=\mathrm{T}: \mathrm{D}+\rho B-\boldsymbol{\nabla}_{\boldsymbol{R}} \cdot \boldsymbol{Q}+\mathcal{W}_{e}
$$

where \mathcal{W}_{e} is any additional non-thermomechanical rates of work.

- The second law of thermodynamics for continuum mechanics can be written as

$$
\rho \dot{\eta} \geq-\nabla_{R} \cdot\left(\frac{\boldsymbol{Q}}{\Theta}\right)+\rho \frac{B}{\Theta} .
$$

- The Clausius-Duhem inequality is

$$
-\rho \dot{\Psi}-\rho \eta \dot{\Theta}-\frac{1}{\Theta} \boldsymbol{Q} \cdot \boldsymbol{\nabla}_{\boldsymbol{R}} \Theta+\mathrm{T}: \mathrm{D} \geq 0
$$

where $\Psi=\Phi-\eta \Theta$; or (in the Lagrangian viewpoint)

$$
-\rho_{0} \dot{\psi}-\rho_{0} \eta_{0} \dot{\theta}-\frac{1}{\theta} \boldsymbol{q} \cdot \nabla_{r} \theta+s^{i j}: \dot{\gamma}_{i j} \geq 0
$$

where $\psi=\Psi$.

- The most general transformation of position and time between observers in Euclidean space is

$$
\boldsymbol{R}^{*}\left(t^{*}\right)=\mathrm{Q}(t) \boldsymbol{R}(t)+\boldsymbol{C}(t), \quad t^{*}=t-a,
$$

where Q is an orthogonal matrix, \boldsymbol{C} is a translation vector and a is a constant time shift.

