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The majority of students attempted all questions in Section A, and questions B5, B6 and B8. It is
clear that this was a difficult exam and people were under time pressure. Overall, section A was well
answered, but peopled struggle with the section B questions. The main problems seemed to be lack of
confidence with tensors and the severe time pressure for section B. Roughly speaking, people knew what
to do, but were necessarily as quick, or accurate, as they needed to be. That said, some people did
extremely well.

A1 This question revealed a lack of confidence with coordinate transforms, but most people correctly
deduced that e(i, j) is a not a tensor because it does not obey the appropriate transformation rule.
This could be shown explicitly or argued as follows: the transformation the Cartesian base vectors
to the covariant base vectors gi is given by(
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The transformation matrix is orthogonal, but has a determinant of −1, so it represents a reflection
(and a rotation), which means that the components of e(i, j) must be different in the two coordinate
systems if it is to be a tensor. (In fact, e(i, j) is a pseudotensor, because it remains invariant if we
restrict the transformations to those that preserve the handedness of the coordinate system.)

A2 Almost everybody knew what to do with this question, but the algebra go a little bit involved if
you weren’t careful. (In hindsight, I could have made that a bit easier, so sorry.) The quickest
way through was to realise that because x2 remains unchanged, you don’t need to invert a 3 × 3
matrix, but only the 2 × 2 sub-block corresponding to the x1 and x3 coordinates. A few people
hadn’t learned (and couldn’t derive from first principles) the definition of the material derivative,
which is inexcusable.

A3 Generally well answered and a small variation on the argument that the stress tensor is symmetric
in the absence of surface couples. The most efficient method was to use Cartesian coordinates, but
well done to those that used general coordinate systems. The argument is to use the divergence
theorem to convert the surface integral into a volume integral, use Cauchy’s equation to eliminate
as many terms as possible and then convert the resulting integral into a PDE by arguing that it
must be valid for any material region.

A4 This was essentially a bookwork question and was well answered by nearly everybody. Once again,
the divergence theorem is used to convert the surface integral into a volume integral, Cauchy’s
equation is used to eliminate a number of terms and the remaining term gives the result. In the
lecture notes, the argument was made in general coordinates, but you can also use Cartesians and
many people did.

B5 A lot of people got tied up in the tensor calculations here. A problem is that a mistake in the
metric tensors at the beginning means that the rest of the question becomes very difficult. For this
reason, many of the marks awarded were method marks. I realise that you did also have to know
the definition of spherical coordinates, which caused (unintended) problems for some people.

(a) There was some confusion about the definition of the position vector in spherical coordinates.
In standard spherical polars, the components in the global Cartesian coordinate system are given
by

r =

 r sin θ sinφ
r sin θ cosφ
r cos θ

 .

A mistake that occurred a few times was to assume that

r =

 r
θ
φ

 ,

which is essentially a relabelling of the Cartesian coordinates.
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The deformed position is given by

R =

 R sin Θ sin Φ
R sin Θ cos Φ
R cos Θ

 ,

and because R(r), but Θ = π − θ and Φ = φ, we have

R =

 R(r) sin θ sinφ
R(r) sin θ cosφ
−R(r) cos θ

 .

Given the undeformed and deformed position vectors, calculation of the metric tensors and strain
invariants is straightforward. After the appropriate calculations, we find

I3 = (R′R2/r2)2,

so if the material is incompressible then

I3 = 1 = (R′R2/r2)2 ⇒ R′R2 = ±r2 ⇒ R3
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and so
R =
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,

where the negative sign is chosen because R and r must be in opposite directions after eversion of
the sphere.

(b) Again, assuming that you have the correct metric tensors, the stress tensor follows by straight-
forward calculation. The most difficult quantity to compute is Bij , and the second term girgjsGrs
is most easily computed by the matrix computation g−1Gg−T , where g and G are the undeformed
and deformed covariant metric tensors, which means that g−1 is the contravariant metric tensor.

The only non-zero components of the tensor are T 11, T 22 and T 33, which many people correctly
deduced and the deduction about the pressure follows directly from Cauchy’s equations.

B6 (a) Most people correctly deduced that you only need to show that D is objective in order to show
objectivity of the constitutive law. We showed that D is objective in the lecture notes and the
majority correctly reproduced the argument. Note that L is not objective, but the symmetric part,
D = (L + LT )/2 is.

(b) Nearly everybody correctly found that the only non-zero term in L is L
3
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that
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Sometimes factors of 1/2 went missing and a couple of people forgot that D is supposed to be
symmetric. The correct form for the mixed stress tensor is given by

T
i

j =

 −π + α2(W ′)2/4 0 α1W
′/2

0 −π 0
α1W

′/2 0 −π + α2(W ′)2/4

 ,

and most people were close... It’s then a simple transform to get to the contravariant form.

(c) Many had lost heart by this point, but once you have the stress tensor, then forming the
equations follows from plugging in values and solving the resulting simplified PDEs by separation
of variables.

B7 Very few people attempted this question, perhaps because it looked unfamiliar, but it was very
close to an example sheet question.

(a) The way into the question is to assume that if the undeformed rope is given by (x1, x2, x3), the
deformed position is (λ1x1, λ2x2, λ2x3), where the main extension is along the x1 axis. The load
on the rope is then given by T11 = T , T22 = T33 = 0. These give enough conditions to work out λ2
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and T , assuming that λ1 = 2. The solution in the linear case is T = 3λ+2µ
λ+µ µ and in the nonlinear

case, T = 5 1
4µ.

(b) Taking the limit λ → ∞ in the linear case gives T → 3µ, so the linear theory underpredicts
the load by about 43%. Most that got this far correctly deduced that the linear theory is an
underprediction.

B8 (a) This section was bookwork from the lecture notes and was correctly answered by the majority.
A few people had the arguments in the wrong order, so the chain of inference fell apart.

(b) Again, generally well answered by the majority. Applying the conditions for objectivity, using
the fact that Θ is a scalar and standard transformation rules for the derivatives, it follows that
KIJ(θ) must be invariant under all rotations, which means that it can only be a multiple of the
identity.

(c) Nobody got to the end of this question, which may well have been due to the time pressure.
Most people correctly argued that

DE

Dt
=
∫

Ωt

ρV̇ ·V + ρΦ̇ dVt.

The procedure is then to use Cauchy’s equation to replace V̇ and the energy equation to replace
Φ̇. It’s easiest to work in Cartesian components when doing this. After a little rearrangement, it
follows that

DE

Dt
=
∫

Ωt

[−PVI + λVJ,JVI + µ(VJ,JVI + VJ,IVJ)−QI ],I dVt,

and using the divergence theorem gives

DE

Dt
=
∫
∂Ωt

[−PVI + λVJ,JVI + µ(VJ,JVI + VJ,IVJ)−QI ]NI dSt.

Hence, if VI = 0 and QINI = 0 on the boundary, then the energy is conserved, as required.


