FORMULA SHEET

- For a general (Lagrangian) coordinate system ξ^{i} :

$$
\begin{gathered}
\boldsymbol{g}_{i}=\frac{\partial \boldsymbol{r}}{\partial \xi^{i}}, \quad \boldsymbol{g}_{i} \cdot \boldsymbol{g}^{j}=\delta_{i}^{j}, \quad g_{i j}=\boldsymbol{g}_{i} \cdot \boldsymbol{g}_{j}, \quad g=\operatorname{det}\left(g_{i j}\right) . \\
\boldsymbol{G}_{i}=\frac{\partial \boldsymbol{R}}{\partial \xi^{i}}, \quad \boldsymbol{G}_{i} \cdot \boldsymbol{G}^{j}=\delta_{i}^{j}, \quad G_{i j}=\boldsymbol{G}_{i} \cdot \boldsymbol{G}_{j}, \quad G=\operatorname{det}\left(G_{i j}\right) .
\end{gathered}
$$

- For a scalar field $f(\boldsymbol{x})$ and vector field $\boldsymbol{u}(\boldsymbol{x})$

$$
\boldsymbol{\nabla} f=\boldsymbol{g}^{i} \frac{\partial f}{\partial \xi^{i}}, \quad \operatorname{div} \boldsymbol{u}=\frac{1}{\sqrt{g}} \frac{\partial\left(u^{i} \sqrt{g}\right)}{\partial \xi^{i}}, \quad \operatorname{curl} \boldsymbol{u}=\left.\epsilon^{i j k} u_{j}\right|_{i} \boldsymbol{g}_{k} .
$$

- The material derivative in general coordinates is

$$
\frac{D U^{i}}{D t}=\frac{\partial U^{i}}{\partial t}+V^{j} U^{i} \|_{j}
$$

where \boldsymbol{V} is the velocity of the continuum and

$$
U^{i} \|_{j}=U^{i, j}+\Gamma_{j k}^{i} U^{k}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols for the chosen coordinate system in the deformed configuration.

- The deformation gradient tensor $\mathrm{F}=\boldsymbol{\nabla}_{\boldsymbol{r}} \boldsymbol{R}$ has components Cartesian coordinates given by

$$
F_{I J}=\frac{\partial X_{I}}{\partial x_{j}}
$$

The determinant of F is denoted by J.

- The Eulerian velocity gradient tensor, L, has components in Cartesian coordinates given by

$$
L_{I J}=\frac{\partial V_{I}}{\partial X_{J}} .
$$

- The deformation rate tensor, D and spin tensor, W are defined by

$$
\mathrm{D}=\frac{1}{2}\left(\mathrm{~L}+\mathrm{L}^{T}\right), \quad \mathrm{W}=\frac{1}{2}\left(\mathrm{~L}-\mathrm{L}^{T}\right)
$$

- Cauchy's equation in the usual notation in components in general coordinates ξ^{i} is

$$
T^{j i} \|_{j}+\rho F^{i}=\rho \ddot{U}^{i}=\rho \frac{D V^{i}}{D t}, \quad \text { where } \quad T^{j i} \|_{j}=T_{, j}^{j i}+\Gamma_{j r}^{j} T^{r i}+\Gamma_{j r}^{i} T^{j r} .
$$

- The material derivative of the determinant of the deformation gradient tensor is

$$
\frac{D J}{D t}=J \nabla_{R} \cdot \boldsymbol{V}
$$

- The Reynolds Transport theorem states that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega_{t}} \phi \mathrm{~d} \mathcal{V}_{t}=\int_{\Omega_{t}}\left(\frac{D \phi}{D t}+\phi \boldsymbol{\nabla}_{\boldsymbol{R}} \cdot \boldsymbol{V}\right) \mathrm{d} \mathcal{V}_{t}
$$

where Ω_{t} is a material volume, ϕ is a scalar field and \boldsymbol{V} is the velocity of the continuum.

- For a Cartesian line element $\mathrm{d} X_{I}$ in the deformed configuration

$$
\frac{D \mathrm{~d} X_{I}}{D t}=V_{I, K} \mathrm{~d} X_{K},
$$

where V_{I} is the I-th Cartesian component of the velocity.

- Nanson's relation states that

$$
\mathrm{d} A_{\bar{i}}=J \frac{\partial \xi^{j}}{\partial \chi^{\bar{i}}} \mathrm{~d} a_{j},
$$

where ξ^{j} are the Lagrangian coordinates, $\chi^{\bar{i}}$ are the Eulerian coordinates, J is the determinant of the deformation gradient tensor, $\mathrm{d} \boldsymbol{A}$ is an area element in the deformed configuration and $\mathrm{d} \boldsymbol{a}$ is an area element in the undeformed configuration.

- The Green-Lagrange strain tensor is defined by

$$
\gamma_{i j}=\frac{1}{2}\left(G_{i j}-g_{i j}\right) .
$$

- The strain invariants are defined by

$$
I_{1}=g^{i j} G_{j i}, \quad I_{2}=\frac{1}{2}\left(I_{1}^{2}-g^{i r} g^{j s} G_{i j} G_{r s}\right), \quad I_{3}=G / g
$$

where $g=\operatorname{det}\left(g_{i j}\right)$ and $G=\operatorname{det}\left(G_{i j}\right)$

- A hyperelastic material is described by a strain energy function $\mathcal{W}\left(I_{1}, I_{2}, I_{3}\right)$ such that

$$
T^{i j}=P G^{i j}+A g^{i j}+B B^{i j},
$$

where

$$
\begin{gathered}
A=\frac{2}{\sqrt{I_{3}}} \frac{\partial \mathcal{W}}{\partial I_{1}}, \quad B=\frac{2}{\sqrt{I_{3}}} \frac{\partial \mathcal{W}}{\partial I_{2}}, \quad P=2 \sqrt{I_{3}} \frac{\partial \mathcal{W}}{\partial I_{3}} \\
\text { and } \quad B^{i j}=\left[I_{1} g^{i j}-g^{i r} g^{j s} G_{r s}\right] .
\end{gathered}
$$

- The physical components of the stress tensor are given by $\sigma_{(i j)}=T^{i j} \sqrt{G_{j j} / G^{i i}}$ (no summation).
- The body stress tensor $T^{i j}$ and second Piola-Kirchhoff stress tensor $s^{i j}$ are related by the expression $J T^{i j}=s^{i j}$.
- The first law of thermodynamics can be written as

$$
\rho \frac{D \Phi}{D t}=\mathrm{T}: \mathrm{D}+\rho B-\nabla_{R} \cdot \boldsymbol{Q}+\mathcal{W}_{e}
$$

where \mathcal{W}_{e} is any additional non-thermomechanical rates of work.

- The second law of thermodynamics for continuum mechanics can be written as

$$
\rho \dot{\eta} \geq-\nabla_{R} \cdot\left(\frac{\boldsymbol{Q}}{\Theta}\right)+\rho \frac{B}{\Theta} .
$$

- The Clausius-Duhem inequality is

$$
-\rho \dot{\Psi}-\rho \eta \dot{\Theta}-\frac{1}{\Theta} \boldsymbol{Q} \cdot \boldsymbol{\nabla}_{\boldsymbol{R}} \Theta+\mathrm{T}: \mathrm{D} \geq 0
$$

where $\Psi=\Phi-\eta \Theta$; or (in the Lagrangian viewpoint)

$$
-\rho_{0} \dot{\psi}-\rho_{0} \eta_{0} \dot{\theta}-\frac{1}{\theta} \boldsymbol{q} \cdot \nabla_{r} \theta+s^{i j}: \dot{\gamma}_{i j} \geq 0
$$

where $\psi=\Psi$.

- The most general transformation of position and time between observers in Euclidean space is

$$
\boldsymbol{R}^{*}\left(t^{*}\right)=\mathrm{Q}(t) \boldsymbol{R}(t)+\boldsymbol{C}(t), \quad t^{*}=t-a,
$$

where Q is an orthogonal matrix, \boldsymbol{C} is a translation vector and a is a constant time shift.

