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Feedback Stability of Negative Imaginary
Systems

Alexander Lanzon , Senior Member, IEEE, and Hsueh-Ju Chen

Abstract—This paper extends the robust feedback sta-
bility theorem of negative imaginary systems by removing
restrictive assumptions on the instantaneous gains of the
systems that were imposed in the earlier literature, and it
further generalizes this robust analysis result into the case
that allows negative imaginary systems to have poles at the
origin. In doing so, we extend the class of negative imagi-
nary systems for which this robust stability theorem is ap-
plicable. We also show that this new generalized necessary
and sufficient result specializes to the earlier theorems un-
der the same assumptions. We additionally prove that the
previously known dc gain condition is not only necessary
and sufficient for robust feedback stability under the ear-
lier specified instantaneous gain assumptions, but is also
necessary and sufficient for robust feedback stability under
new, different and equally simple assumptions. The general
robust feedback stability theorem for negative imaginary
systems with free body dynamics (i.e., poles at the origin)
derived in this paper also specializes to the case that is
only applicable for the negative imaginary system without
poles at the origin. Since the results for negative imaginary
systems with free body dynamics developed in this paper
depend on the existence of a matrix Ψ with certain prop-
erties, we also propose a systematic construction of this
matrix Ψ and show that construction of one such Ψ is suf-
ficient for determining the feedback stability of the closed-
loop system. Finally, examples are used to demonstrate the
applicability of the results.

Index Terms—Feedback stability, negative imaginary (NI)
systems, robust control.

I. INTRODUCTION

N EGATIVE imaginary (NI) systems theory was introduced
in [1]. In a single-input single-output (SISO) frequency

domain setting, the NI notion broadly means that the positive
frequency branch of the Nyquist plot has an imaginary part that
is negative. In a SISO time-domain setting, the NI notion broadly
means that the output of a system follows but lags behind any
sinusoidal input to the system by not more than 180◦. In contrast
to positive realness, the definitions of NI systems impose weaker
restrictions on the relative degree of the transfer function and
do not exclude all unstable zeros [2]. The original development
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Fig. 1. Positive feedback interconnection.

of NI theory was motivated by inertial systems, all of which can
be described by Newton’s second law of motion, whose actua-
tion is provided by a force or torque input and whose sensing is
obtained through a co-located position or angle output measure-
ment [1], [3]. NI systems theory was found to be suitable for a
wide variety of applications including nanopositioning control
due to piezoelectric transducers and capacitive sensors (e.g., [4]–
[6]) and in multi-agent networked systems (e.g., [7]–[9]). The
notion of NI systems also specializes to the subclass of lossless
systems [10].

In view of the prevalence of NI systems in different domains,
robust stability of the positive feedback interconnection of an
NI system M(s) and a strictly negative imaginary (SNI) system
N(s) was investigated in [1]. Under the assumptions that the
instantaneous gain of the SNI system N(s) is positive semidef-
inite, i.e., N(∞) ≥ 0, and the open-loop transfer function is
strictly proper, i.e., M(∞)N(∞) = 0, Lanzon and Petersen [1]
showed that the feedback interconnection in Fig. 1 denoted by
[M(s), N(s)] is internally stable if and only if the dc loop gain
condition λ̄[M(0)N(0)] < 1 is satisfied, where λ̄[·] denotes the
maximum eigenvalue for a matrix with only real eigenvalues.
Note that λ̄[·] < 1 is a one-sided restriction, as λ̄[·] can be either
positive or negative. This result was also found to hold true in
[11] when the definition of an NI system was extended to allow
for poles on the imaginary axis but not at the origin. Subsequent
modifications in [12] also allow for poles at the origin (under
some restrictive assumptions) but this relaxation makes the re-
sult significantly more complicated and hence less transparent.
These stability conditions are robust in the sense that the inter-
nal stability conclusion is invariant to NI perturbations provided
that the aforementioned dc and instantaneous gain conditions
are preserved (see [2, Th. 6] for NI perturbations that preserve
the class).

Despite many developments in NI systems theory including,
for example, extensions or connections to infinite-dimensional
systems [13], Hamiltonian systems [14], descriptor systems
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[15], non-rational systems [2], [16], discrete-time systems [17],
finite frequency NI systems [18], mixtures of small-gain and NI
properties [19], and NI control synthesis [20]–[22], the afore-
mentioned robust feedback stability theorem has remained un-
changed since [1] and that theorem underpins the motivation
and application of all the above research. When the assump-
tions of the feedback stability theorem in [1] and [11] do not
hold, such as N(∞) may be sign-indefinite, the dc loop gain
λ̄[M(0)N(0)] < 1 may not be an appropriate necessary and suf-
ficient test for internal stability of the feedback interconnection.
Very recently, Khong et al. [23] have attempted to relax these
assumptions for NI systems without poles at the origin by invok-
ing integral quadratic constraint (IQC) theory. A pair of com-
plementary IQCs was introduced at dc and infinite frequency to
attempt to relax the aforementioned assumptions. However, the
methods of Khong et al. [23] only yield a conservative sufficient
condition as will be illustrated in Section VI. Unlike the suffi-
cient conditions of [23], this paper directly derives necessary
and sufficient conditions by building on the work of [1] and [11]
and we handle the complete class of NI systems with or without
poles at the origin and on the imaginary axis. In doing so, we
demonstrate that the mechanism to remove these assumptions
is not the IQC theory. As indicated above, the conditions in [12]
are derived for NI systems that allow for poles on the imaginary
axis and at the origin. However, the conditions obtained in [12]
are highly technical, require computation of several matrix fac-
torizations that make the results less intuitive than earlier work
and impose a number of additional assumptions for the results
to hold amongst which is the restriction that the NI system has
to be strictly proper. This paper also generalizes the work in
[12] by relaxing the aforementioned assumptions and provides
simple necessary and sufficient conditions that invoke directly
the steady-state and instantaneous gains of the systems, thereby
avoiding cumbersome matrix factorizations and hence making
the results significantly more intuitive.

The main contributions of this paper are as follows:
1) removal of the restrictive assumptions in the ro-

bust analysis theorem that underpins all NI systems
theory;

2) derivation of new necessary and sufficient conditions
that reduce to the earlier necessary and sufficient condi-
tions under the same assumptions imposed in the litera-
ture;

3) derivation of a new set of simple and easy-to-check
assumptions under which the intuitive dc gain condition
is both necessary and sufficient;

4) specialization of the results in a SISO setting that il-
lustrates a number of tests not easily explained in a
multiple-input multiple-output (MIMO) setting;

5) demonstration that in certain scenarios a mixture of dc
and infinite frequency gains are essential to character-
ize the necessary and sufficient conditions for robust
feedback stability (this is counter intuitive);

6) derivation of generalized necessary and sufficient robust
feedback stability conditions that can be applied to NI
systems having poles at the origin;

7) demonstration that the matrix Ψ, satisfying certain prop-
erties, used in the two main stability theorems always
exists and we provide a systematic construction for this
matrix Ψ;

8) demonstration that the conditions that involve the matrix
Ψ are either satisfied for the entire set of matrices Ψ that
fulfil certain properties or violated for the entire same set
of matrices Ψ. This means one only needs to check the
conditions on one Ψ to determine the conclusion (i.e.,
there is no need for searching across the set of possible
matrices Ψ);

9) unification of all robust feedback stability results that
appeared in all earlier literature to date into one general
theory; and

10) illustration via two numerical examples of either the
inapplicability or conservativeness of earlier results and
correspondingly the usefulness of the derived general
theory.

Notation: RH∞ denotes the set of real, rational, stable trans-
fer function matrices. Rm×n and Cm×n denote real and complex
matrices that have n columns and m rows, respectively. λi(A)
denotes the ith eigenvalue of a square complex matrix A. λ̄(A)
and λ(A) denote the largest and smallest eigenvalue of a square
complex matrix A that has only real eigenvalues. A∗ and AT

denote the complex conjugate transpose and transpose of a com-
plex matrix A, respectively. A−∗ and G∼(s) are shorthand for
(A−1)∗ and G(−s)T , respectively. R(a) denotes the real part
of a complex number a. Let ker(A) denote the kernel of matrix
A. A square transfer function matrix G(s) is said to have full
normal rank if ∃s ∈ C : det(G(s)) 	= 0.

II. PRELIMINARY LEMMAS

First, let us recall the definitions of NI systems in Definitions
1 and 2.

Definition 1 ([12]): Let R : C −→ Cm×m be a real, ratio-
nal, proper transfer function. Then, R(s) is said to be NI if

1) R(s) has no poles in R(s) > 0;
2) j[R(jω) − R(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the

values of ω where jω is a pole of R(s);
3) if jω0 with ω0 > 0 is a pole of R(s), then it is

at most a simple pole and the residue matrix K0 =
lims→jω0 (s − jω0)jR(s) is Hermitian and positive
semidefinite;

4) if s = 0 is a pole of R(s), then lims→0 skR(s) = 0 for
all integer k ≥ 3 and lims→0 s2R(s) is Hermitian and
positive semidefinite.

Definition 2 ([1]): Let R : C −→ Cm×m be a real, rational,
proper transfer function. Then, R(s) is said to be SNI if

1) R(s) has no poles in R(s) ≥ 0;
2) j[R(jω) − R(jω)∗] > 0 for all ω ∈ (0,∞).

For SISO systems, the NI property ensures that the positive
branch of the Nyquist plot lies below the real axis. The defini-
tions of NI systems in [1], [11], and [12] do not require the NI
system to be symmetric, i.e., G(s) = G(s)T . It is stated in [16]
that there are no examples in the literature that are NI but not
symmetric. Here, we give one such non-symmetric example.
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Example 1: Let

M(s) =

⎡
⎢⎢⎣

−s

s + 5
−5

s + 5
−(4s + 5)
s2 + 6s + 5

−s2 + s + 15
s2 + 6s + 5

⎤
⎥⎥⎦

and

[
A B
C D

]
be a minimal realization of M(s) where A =

[ 0
−5

1
−6

]
, B =

[−1
6

−2
−3

]
, C =

[ 1
−2

1
−1

]
, and D =

[−1
0

0
−1

]
. We

demonstrate that M(s) is an SNI system despite it not be-
ing symmetric. To do this, we use the NI lemma in [1] and
[11] and also check for transmission zeros on the imaginary
axis. M(s) is NI because there exists a real matrix Y =[ 3
−3

−3
4

]
> 0 such that AY + Y A∗ =

[−6
7

7
−18

] ≤ 0 and B =
−AY C∗. Furthermore, det(M(s) − M∼(s)) = 59s2

s4 −26s2 +25 	=
0 ∀s ∈ {s = jω : ω ∈ (0,∞)}. Hence, M(s) is NI and there
is no transmission zeros of M(s) − M∼(s) when s = jω ∀ω ∈
(0,∞), which implies that M(s) must be SNI.

We now give a few technical lemmas that will be used to prove
the main results. We start by giving alternative representations
for λi [(I − AB)−1(CD − I)].

Lemma 3: Suppose that A, B, C, and D are real symmetric
matrices and det(I − AB) 	= 0. Then,

λi [(I − AB)−1(CD − I)] = λi [(CD − I)(I − AB)−1 ]

= λi [(I − BA)−1(DC − I)]

= λi [(DC − I)(I − BA)−1 ].

Proof: The first equality is via a similarity transform with
(I − AB). The second equality is via λi(X) = λi(XT ). The
third equality is via a similarity transform with (I − BA). �

Next, we show that certain matrix structures have real eigen-
values.

Lemma 4: Suppose that A, B, and C are real symmetric
matrices satisfying C ≥ B and det(I − AB) 	= 0. Then,

λi [(I − AB)−1(AC − I)] ∈ R ∀i.

Proof: Trivial via rearrangement into a symmetric matrix.

λi [(I − AB)−1(AC − I)]

= λi [(I − AB)−1A(C − B)] − 1

= λi [(C − B)1/2(I − AB)−1A(C − B)1/2 ] − 1.

�
The next lemma manipulates scalar inequalities. This will be

useful in deriving the main results of Section IV.
Lemma 5: Given four scalars a, b, α, and β with α ≥ 0 and

β ≥ 0. If ab < 1 and (a + α)(b + β) < 1, then (a + α)b < 1.
Proof: If b ≤ 0, then (a + α)b = ab + αb ≤ ab < 1. If on

the other hand b > 0, then b + β > 0 and hence (a + α)b =
(a + α)(b + β) b

(b+β ) < 1. �
We now show that s = jω0 with ω0 ∈ (0,∞) is not a trans-

mission zero of I − M(s)N(s) when M(s) and N(s) are NI
systems and s = jω0 is a pole of M(s).

Lemma 6: Let M(s) be an NI system and N(s) be an SNI
system. Assume s = jω0 with ω0 ∈ (0,∞) is a simple pole

of M(s). Then, I − M(s)N(s) has no transmission zero at
s = jω0 .

Proof: Since s = jω0 with ω0 ∈ (0,∞) is a simple pole
of M(s), M(s) can be factored as M(s) = M1(s) + −jA

s−jω0
,

where A = A∗ ≥ 0 and M1(s) is analytic in the neighborhood
of s = jω0 .

Let 0 	= x ∈ ker(A) and choose a sufficiently small δ > 0.
Since M(s) is an NI system,

j[M(jω) − M(jω)∗] ≥ 0 ∀ω ∈ {0 < |ω − ω0 | < δ}
⇔ [jM(jω)] + [jM(jω)]∗≥0 ∀ω ∈ {0 < |ω − ω0 | < δ}
⇒ x∗[[jM(jω)] + [jM(jω)]∗]x ≥ 0 ∀ω ∈ {0 < |ω − ω0 |

< δ}
⇔ x∗[[jM1(jω)] + [jM1(jω)]∗]x≥0 ∀ω ∈ {0 < |ω−ω0 |

< δ}
⇒ x∗[[jM1(jω0)] + [jM1(jω0)]∗]x ≥ 0 (by continuity of

real rational functions and because M1(s) is analytic near
s = jω0).

Also, since N(s) is an SNI system,

j[N(jω) − N(jω)∗] > 0 ∀ω ∈ (0,∞)
⇔ [jN(jω)] + [jN(jω)]∗ > 0 ∀ω ∈ (0,∞)
⇔ [jN(jω)]−1 + [jN(jω)]−∗ > 0 ∀ω ∈ (0,∞)

(since N(jω) is nonsingular ∀ω ∈ (0,∞) via [1])
⇒ [jN(jω0)]−1 + [jN(jω0)]−∗ > 0
⇒ x∗[[jN(jω0)]−1 + [jN(jω0)]−∗]x > 0.

From the above two conditions, we now have

x∗[[jN(jω0)]−1 + [jM1(jω0)]]x

+ x∗[[jN(jω0)]−1 + [jM1(jω0)]]∗x > 0. (1)

However, we need to show that I − M(s)N(s) has no trans-
mission zero at s = jω0 , which is equivalent to [jN(s)]−1 +
[jM(s)] having no transmission zero at s = jω0 .

We show this via contradiction. Suppose s = jω0 with ω0 >
0 is a transmission zero of [jN(s)]−1 + [jM(s)]. Then, ∃y ∈
Cm with y 	= 0 such that [[jN(s)]−1 + [jM(s)]]y = 0 at s =
jω0 .

Expanding the above equation, we have that the given
y must satisfy [jN(s)]−1y + [jM1(s)]y = −Ay

s−jω0
. But in

the limit as s → jω0 , the left-hand side is finite and the
right-hand side is infinite when y /∈ ker(A). Hence, y ∈
ker(A). Then, [[jN(s)]−1 + [jM(s)]]y = 0 at s = jω0 implies
[jN(jω0)]−1y + [jM1(jω0)]y = 0 which in turn implies that
(1) cannot be fulfilled for the choice x = y as x was an
arbitrary non-zero vector in ker(A). Then, by contradiction,
I − M(s)N(s) has no transmission zero at s = jω0 . �

The following lemma provides some simple manipulations of
NI systems.

Lemma 7: Let M(s) be a square, real, rational and proper
transfer function matrix. Then,

1) M(s) is NI if and only if M(s) − M(∞) is NI and
M(∞) = M(∞)T ;

2) M(s) − M(∞) is NI if and only if s[M(s) − M(∞)] is
positive real.
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Proof: 1) Trivial. 2) See [24, Lemma 2]. �
The next lemma extends [1, Lemma 2] to NI systems that can

possibly have poles on the jω-axis excluding the origin.
Lemma 8: Let M(s) be an NI system without poles at

the origin. Then, M(0) = M(0)T , M(∞) = M(∞)T , and
M(0) ≥ M(∞).

Proof: The results are trivial when M(s) is static. When

M(s) is dynamic, let it have a minimal realization

[
A B
C D

]
. Us-

ing [11, Lemma 7], we get D = DT and M(0) − M(∞) =
−CA−1B = CA−1AY C∗ = CY C∗ ≥ 0. The results then
follow. �

III. MAIN RESULTS: PART 1—NO POLES AT THE ORIGIN

A necessary and sufficient condition has been derived in [1]
and [11] for internal stability of the positive feedback intercon-
nection of an NI system without poles at the origin and an SNI
system as shown in Fig. 1 under two assumptions at infinite
frequency. Here, we consider the same feedback structure but
remove these two assumptions imposed in [1] and [11], hence
obtaining a generalized stability condition. While the condition
in [1] and [11] for determining internal stability of the closed-
loop system requires a test only on the dc loop gain, in our gen-
eralized setting, the internal stability conditions in Theorems 9
and 14 depend on both the frequencies 0 and ∞. Although the
resulting stability conditions involving a mixture of frequencies
are surprising, this is indeed correct and will be explained in
detail in Section IV when the results will be specialized to the
SISO setting and given a Nyquist interpretation.

The matrix I − N(0)M(∞) is invertible in the third condi-
tion of Theorem 9 because the second condition (in conjunction
with the first condition) in Theorem 9 guarantees its invertibil-
ity. Also, the matrices [I − M(∞)N(∞)]−1(M(∞)N(0) − I)
and [I − N(0)M(∞)]−1(N(0)M(0) − I) in the conditions of
Theorem 9 have only real eigenvalues via Lemmas 4 and 8.

Theorem 9: Let M(s) be an NI system without poles at the
origin and N(s) be an SNI system. Then, [M(s), N(s)] is in-
ternally stable if and only if

I − M(∞)N(∞) is nonsingular,

λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] < 0, and

λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] < 0.

Proof: This proof closely follows the proof of the corre-
sponding result given in [1] with appropriate modifications in
pertinent statements to allow relaxation of the restrictive as-
sumptions at ∞ frequency.

Let N(s) =

[
Ā B̄

C̄ D̄

]
be a minimal realization. Then, by the

assumptions of this theorem and using [11, Lemma 8], Ā is
Hurwitz, D̄ = D̄∗, and there exists a real matrix Ȳ = Ȳ ∗ > 0
such that

ĀȲ + Ȳ Ā∗ ≤ 0 and B̄ = −ĀȲ C̄∗.

The proof is brief when M(s) is a static matrix K,
i.e., M(s) = K, as the first condition in the theorem
statement is equivalent to well-posedness, the third condi-

tion is trivially fulfilled and the second condition is equiv-
alent to (I − KN(s))−1 ∈ RH∞ via the following argu-
ment: (I − KN(s))−1 ∈ RH∞ is equivalent to Â = Ā +
B̄(I − KD̄)−1KC̄ = PQ is Hurwitz, where P = ĀȲ and
Q = Ȳ −1 − C̄∗(I − KD̄)−1KC̄. Then, Â is Hurwitz if and
only if Q > 0, which is equivalent to the second con-
dition. This concludes the proof when M(s) is a static
matrix.

Next, consider the case when M(s) has dynamics. Let

M(s) =
[

A B
C D

]
be a minimal realization. Then, by the assump-

tions of this theorem and using [11, Lemma 7], det(A) 	= 0,
D = D∗, and there exists a real matrix Y = Y ∗ > 0 such
that

AY + Y A∗ ≤ 0 and B = −AY C∗.

Define U = I − DD̄, V = I − D̄D, Φ =
[

AY
0

0
Ā Ȳ

]
and

T =
[

Y −1 − C∗D̄U−1C −C∗V −1C̄
−C̄∗U−1C Ȳ −1 − C̄∗U−1DC̄

]
. Then,

[M(s), N(s)] is internally stable
⇔ I − M(∞)N(∞) is nonsingular and

[I − M(s)N(s)]−1

=

⎡
⎢⎣

(
A BC̄
0 Ā

)
+

(
BD̄
B̄

)
U−1

(
C DC̄

) BD̄U−1

B̄U−1

U−1C U−1DC̄ U−1

⎤
⎥⎦

∈ RH∞

(this equivalence is via [25, Th. 5.7] due to the facts that
N(s) and M(s) have no poles in the open right-half plane
and at the origin, and N(s) having no poles nor zeros on
jR/{0}. Thus, M(s)N(s) has no pole-zero cancellation in
the closed right-half plane)

⇔ I − M(∞)N(∞) is nonsingular and
A = ΦT is Hurwitz (as the previous realization is stabiliz-
able and detectable)

⇔ I − M(∞)N(∞) is nonsingular and
T > 0 [necessity and sufficiency are proved as in the proof
of [1, Th. 5] and the proof of [11, Th. 1] except that Lemma
6 must be used instead of det(I − M(jω)N(jω)) 	=
0 ∀ω ∈ (0,∞) to obtain that I − M(jω)N(jω) has no
transmission zeros ∀ω ∈ (0,∞)]

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
(Y −1 − C∗D̄U−1C) − C∗V −1C̄(Ȳ −1 −
C̄∗U−1DC̄)−1C̄∗U−1C > 0

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗D̄U−1C − C∗V −1(I −
C̄Ȳ C̄∗U−1D)−1C̄Ȳ C̄∗U−1C > 0

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗D̄U−1C − C∗V −1(I − (N(0) −
D̄)U−1D)−1(N(0) − D̄)U−1C > 0
(since C̄Ȳ C̄∗ = N(0) − D̄ via [1, Lemma 2])

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
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Y −1 − C∗D̄U−1C − C∗V −1 [[V − (N(0) −
D̄)D]V −1 ]−1(N(0) − D̄)U−1C > 0

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗D̄U−1C − C∗(I − N(0)D)−1(N(0) −
D̄)U−1C > 0

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗(I − N(0)D)−1 [(I − N(0)D)D̄ +
(N(0)−D̄)]U−1C > 0

⇔ I − M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗(I − N(0)D)−1N(0)C > 0

⇔ I − M(∞)N(∞) is nonsingular,
λ̄[Ȳ 1/2C̄∗U−1DC̄Ȳ 1/2 ] < 1, and
λ̄[Y 1/2C∗(I − N(0)D)−1N(0)CY 1/2 ] < 1

⇔ I − M(∞)N(∞) is nonsingular,
λ̄[U−1DC̄Ȳ C̄∗] < 1, and
λ̄[(I − N(0)D)−1N(0)CY C∗] < 1

⇔ I − M(∞)N(∞) is nonsingular,
λ̄[U−1D(N(0) − D̄) − I] < 0, and
λ̄[(I − N(0)D)−1N(0)(M(0) − D) − I] < 0
(since C̄Ȳ C̄∗ = N(0) − D̄ and CY C∗ = M(0) − D via
[1, Lemma 2] and Lemma 8)

⇔ I − M(∞)N(∞) is nonsingular,
λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] < 0, and
λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] < 0.

�
Remark 10: The feedback stability conditions in Theorem 9

involve a mixture of two frequencies, i.e., 0 and∞. This appears,
on the surface, to be counter intuitive as if one considers the
Nyquist stability criterion, one might reasonably ponder why a
mixture of two frequencies is needed given that the Nyquist plot
is a pointwise-in-frequency plot of M(jω)N(jω). However,
note that the feedback stability condition in the Nyquist stability
criterion is a winding number condition (or equivalently, an
encirclements condition), which is certainly not a pointwise-
in-frequency condition. The fact that for certain system classes
this encirclements condition can be equivalently rewritten as
simpler conditions that do not require full knowledge of the
transfer functions is not trivial. It is hence legitimate that the
feedback stability conditions in Theorem 9 invoke more than
a single frequency. Note that in the sequel, we shall also show
how these conditions specialize to a single-frequency condition
under some additional assumptions.

The next lemma states that the eigenvalues of the product of
certain matrices are always real.

Lemma 11: Let A and B be real symmetric matrices such
that either A or B is sign semidefinite (i.e., ≥ 0 or ≤ 0). Then,
λi(AB) ∈ R ∀i.

Proof: Trivial. �
If we now impose the same two restrictive assumptions

M(∞)N(∞) = 0 and N(∞) ≥ 0 as in [1] and [11], the in-
ternal stability conditions in Theorem 9 reduce to the condition
in [1] and [11].

Corollary 12: Let M(s) be an NI system without poles at
the origin and N(s) be an SNI system. Let M(∞)N(∞) = 0
and N(∞) ≥ 0. Then,

[M(s), N(s)] is internally stable ⇔ λ̄[M(0)N(0)] < 1.
Proof: This is a direct consequence of Theorem 9 because
1) M(∞)N(∞) = 0 ⇒ I − M(∞)N(∞) is nonsingular;
2) λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] < 0

⇔ λ̄[M(∞)N(0)] < 1
⇔ N(0)1/2M(∞)N(0)1/2 < I

(since N(0) > N(∞) ≥ 0 via [1, Lemma 2])
⇔ M(∞) < N(0)−1 ;

3) λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] < 0
⇔ λ̄[[N(0)−1 − M(∞)]−1(M(0) − N(0)−1)] < 0

(since N(0) > N(∞) ≥ 0 via [1, Lemma 2])
⇔ [N(0)−1 −M(∞)]−1/2(M(0) − N(0)−1)[N(0)−1

−M(∞)]−1/2 < 0
(since N(0)−1 > M(∞) via above)

⇔ M(0) − N(0)−1 < 0
⇔ λ̄[M(0)N(0)] < 1.

But λ̄[M(0)N(0)] < 1 ⇔ M(0) < N(0)−1 ⇒ M(∞) <
N(0)−1 (since M(∞) ≤ M(0) via Lemma 8).

This concludes the proof. �
Another way of simplifying the stability conditions given in

Theorem 9 is to assume that M(s) is a strictly proper transfer
function, and under this assumption the internal stability condi-
tion obtained here is the same as the one in the previous corollary.
Note that the statement in Corollary 13 was not known in the
previous literature. In other words, it was not known that the dc
loop gain is a necessary and sufficient condition for internal sta-
bility also under a simple assumption of a strictly proper M(s).
Unlike [12, Remark 1], which requires N(0) to be either a posi-
tive or a negative definite matrix, Corollary 13 has no restriction
of the sign of N(0), i.e., N(0) can be either sign-indefinite or
singular.

Corollary 13: Let M(s) be an NI system without poles
at the origin satisfying M(∞) = 0 and N(s) be an SNI
system. Then,

[M(s), N(s)] is internally stable ⇔ λ̄[M(0)N(0)] < 1.
Proof: This is a direct consequence of Theorem 9 because:
1) M(∞) = 0 ⇒ I − M(∞)N(∞) is nonsingular;
2) λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] = −1, which

means λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] < 0 is triv-
ially fulfilled;

3) λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] < 0 if and only
if λ̄[M(0)N(0)] < 1. �

If in the proof of Theorem 9, we take the Schur comple-
ment around the other block of T > 0, different necessary and
sufficient conditions for the internal stability of a positive feed-
back interconnection of NI systems without poles at the ori-
gin can be derived as shown in Theorem 14. The matrices
(M(0)N(∞) − I)[I − M(∞)N(∞)]−1 and (N(0)M(0) −
I)[I − N(∞)M(0)]−1 in the conditions of Theorem 14 have
only real eigenvalues due to Lemmas 3, 4, and 8.

Theorem 14: Let M(s) be an NI system without poles at
the origin and N(s) be an SNI system. Then, [M(s), N(s)] is
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internally stable if and only if

I − M(∞)N(∞) is nonsingular,

λ̄[(M(0)N(∞) − I)[I − M(∞)N(∞)]−1 ] < 0, and

λ̄[(N(0)M(0) − I)[I − N(∞)M(0)]−1 ] < 0.

Proof: The proof is identical to that in Theorem 9 until T >
0. Then, it proceeds in a similar way to the proof in Theorem 9
after T > 0 by taking Schur complements about the (1, 1) el-
ement of T > 0 instead of the (2, 2) element of T > 0. Note
that the conditions in Theorem 14 cannot be obtained di-
rectly via trivial algebraic manipulations of the conditions in
Theorem 9 as shown in Lemma 3. �

Example 2 demonstrates that if the closed-loop system is
well-posed (i.e., I − M(∞)N(∞) is nonsingular), each of the
remaining conditions in Theorem 14 is not simply implied by
either one of the remaining conditions in Theorem 9 indepen-
dently.

Example 2: Choose

M(s) =

⎡
⎢⎢⎣

−s

s + 5
−5

s + 5
−(4s + 5)
s2 + 6s + 5

−s2 + s + 15
s2 + 6s + 5

⎤
⎥⎥⎦

and

N(s) =

⎡
⎢⎢⎣

5
s + 5

−(2s + 15)
s + 5

−(2s2 + 16s + 15)
s2 + 6s + 5

−s2 + s + 15
s2 + 6s + 5

⎤
⎥⎥⎦ .

Both M(s) and N(s) are SNI systems since M(s) is an SNI
system from Example 1 and N(s) = M(s) +

[ 1
−2

−2
0

]
.

Also, the closed-loop system is well-posed, since
I − M(∞)N(∞) =

[ 1
−2

−2
0

]
is nonsingular. In this case,

λ̄[[I −M(∞)N(∞)]−1(M(∞)N(0) − I)]=−0.1340< 0 and
λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] = 8 ≮ 0, whereas
λ̄[(M(0)N(∞) − I)[I − M(∞)N(∞)]−1 ] = 3.3028 ≮ 0 and
λ̄[(N(0)M(0) − I)[I − N(∞)M(0)]−1 ] = 1.5447 ≮ 0.

A different set of assumptions at 0 and∞ frequencies can also
be imposed to specialize the conditions of Theorem 14, thereby
obtaining another intuitive result that is different from Corol-
laries 12 and 13. Again note that the statement in Corollary 15
is also new and was not known in the previous literature. In
other words, it was not known that the dc loop gain condition
is a necessary and sufficient condition for internal stability also
under the simple assumption of M(0) > 0 but no restriction of
the sign of N(∞).

Corollary 15: Let M(s) be an NI system without poles at the
origin and N(s) be an SNI system. Suppose M(∞)N(∞) = 0
and M(0) > 0. Then,

[M(s), N(s)] is internally stable ⇔ λ̄[M(0)N(0)] < 1.
Proof: This is a direct consequence of Theorem 14 because:
1) M(∞)N(∞) = 0 implies I − M(∞)N(∞) is nonsin-

gular;
2) λ̄[(M(0)N(∞) − I)[I − M(∞)N(∞)]−1 ] < 0

⇔ λ̄[M(0)N(∞)] < 1

⇔ M(0)1/2N(∞)M(0)1/2 < I
⇔ N(∞) < M(0)−1 ;

3) λ̄[(N(0)M(0) − I)[I − N(∞)M(0)]−1 ] < 0
⇔ λ̄[(N(0) − M(0)−1)[M(0)−1 − N(∞)]−1 ] < 0
⇔ λ̄[[M(0)−1 −N(∞)]−1/2(N(0)−M(0)−1)[M(0)−1

−N(∞)]−1/2 ] < 0
(since M(0)−1 > N(∞) via above)

⇔ N(0) − M(0)−1 < 0
⇔ λ̄[M(0)N(0)] < 1.

But λ̄[M(0)N(0)] < 1 ⇔ N(0) < M(0)−1 ⇒ N(∞) <
M(0)−1 (since N(∞) < N(0) via [1, Lemma 2]).
This concludes the proof. �

IV. SISO SPECIALIZATION

In Theorems 9 and 14, two different internal stability condi-
tions are given. For the SISO case, these two stability conditions
can be further reduced as shown in Lemma 16.

Lemma 16: Let M(s) be a scalar NI system without poles at
the origin and N(s) be a scalar SNI system. Then, the following
three statements are equivalent:

1) [M(s), N(s)] is internally stable;
2) either condition a) or condition b) holds:

a) M(0)N(0) < 1, M(∞)N(∞) < 1 and
M(∞)N(0) < 1;

b) M(0)N(0) > 1, M(∞)N(∞) > 1 and
M(∞)N(0) > 1;

3) either condition a) or condition b) holds:
a) M(0)N(0) < 1, M(∞)N(∞) < 1 and

M(0)N(∞) < 1;
b) M(0)N(0) > 1, M(∞)N(∞) > 1 and

M(0)N(∞) > 1.
Proof: Via Theorem 9, [M(s), N(s)] is internally sta-

ble if and only if M(∞)N(∞) 	= 1, 1−M (∞)N (0)
M (∞)N (∞)−1 < 0,

and M (0)N (0)−1
1−M (∞)N (0) < 0. These three conditions yield condition

2a) or condition 2b). Theorem 14 gives condition 3a) or
condition 3b). �

The internal stability conditions in Lemma 16 can be further
simplified as shown in Theorem 17.

Theorem 17: Let M(s) be a scalar NI system without
poles at the origin and N(s) be a scalar SNI system. Then,
[M(s), N(s)] is internally stable if and only if either one of the
following three conditions holds:

i) M(0)N(0) < 1 and M(∞)N(∞) < 1;
ii) N(∞) > 0 and M(∞)N(∞) > 1;

iii) N(0) < 0 and M(0)N(0) > 1.
Proof: Both conditions 2a) and 3a) in Lemma 16 reduce to

condition i) in this theorem statement via Lemma 5. This then
implies that conditions 2b) and 3b) in Lemma 16 are equivalent.

Next recall that N(0) > N(∞) via [1, Lemma 2] and
M(0) ≥ M(∞) via Lemma 8. Condition ii) and these two NI
properties imply N(0) > N(∞) > 0 and M(0) ≥ M(∞) > 0.
Then, M(0)N(0) > M(0)N(∞), M(0)N(0) ≥ M(∞)N(0),
M(∞)N(0) > M(∞)N(∞) > 1, and M(0)N(∞) ≥
M(∞)N(∞) > 1. These inequalities then imply conditions
2b) and 3b) in Lemma 16. Similarly, condition iii) and
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the same two NI properties imply 0 > N(0) > N(∞) and
0 > M(0) ≥ M(∞). Then, 1 < M(0)N(0) < M(0)N(∞),
1 < M(0)N(0) ≤ M(∞)N(0), M(∞)N(0) < M(∞)N(∞)
and M(0)N(∞) ≤ M(∞)N(∞). These inequalities then
imply conditions 2b) and 3b) in Lemma 16.

To show the converse, consider the following five com-
plimentary cases: 0 < N(∞) < N(0), 0 = N(∞) < N(0),
N(∞) < 0 < N(0), N(∞) < N(0) = 0, and N(∞) <
N(0) < 0. The three middle cases violate conditions 2b)
and 3b) in Lemma 16. Hence, only two valid complimentary
cases are permitted by conditions 2b) and 3b) in Lemma 16:
0 < N(∞) and N(0) < 0. Hence, condition 2b) [respectively,
condition 3b)] in Lemma 16 implies either condition ii) or
condition iii) of this theorem statement. �

For the internal stability of the closed-loop system to be guar-
anteed via condition i) in Theorem 17, it is necessary and suf-
ficient that the Nyquist plot of M(s)N(s) starts and ends on
the left-hand side of 1. Recall that the Nyquist point is +1 + j0
since we are considering a positive feedback interconnection.
Similarly, for the internal stability to be guaranteed by either
conditions ii) or iii) in Theorem 17, it is necessary and suffi-
cient that the Nyquist plot of M(s)N(s) begins and ends on
the right-hand side of 1, and also that M(0), M(∞), N(0), and
N(∞) have the same sign [positive in condition ii) and negative
in condition iii)].

The following example demonstrates use of Lemma 16 and
Theorem 17.

Example 3: Choose M(s) = 3−s
s+1 and N(s) = 1−2s

s+1 . Both
M(s) and N(s) are SNI systems. Hence, they fulfill the
assumptions of Lemma 16 and Theorem 17. In this case,
M(0)N(0) = (3)(1) > 1 and M(∞)N(∞) = (−1)(−2) > 1,
but M(∞)N(0) = (−1)(1) ≯ 1, M(0)N(∞) = (3)(−2) ≯ 1,
N(∞)=−2 ≯ 0 and N(0)=1 ≮ 0. Lemma 16 and Theorem 17
correctly infer that [M(s), N(s)] is not internally stable since

[I − M(s)N(s)]−1 = (s+1)2

−2+9s−s2 = −(s+1)2

s2 −9s+2 /∈ RH∞.
Example 3 illustrates that although the positive frequency

branch of the Nyquist plot of M(s)N(s) begins and ends on the
right-hand side of the Nyquist point +1 + j0, [M(s), N(s)] is
unstable since M(0), M(∞), N(0), and N(∞) have different
signs. Indeed, M(s)N(s) has no open-loop poles in the closed
right-half plane but the Nyquist plot of M(s)N(s) encircles the
Nyquist point +1 + j0 twice. Hence, there will be two unstable
closed-loop poles that results in the instability of the closed-loop
system according to the Nyquist stability criterion.

V. MAIN RESULTS: PART 2—ALLOWING POLES AT THE

ORIGIN

In the previous sections, we have discussed necessary and
sufficient conditions for internal stability of the positive feed-
back interconnection shown in Fig. 1 involving an SNI system
and an NI system without poles at the origin. Here, we derive
more general results by allowing the NI system to have poles
at the origin. To do this, we need to build on the results of the
previous sections.

In the following sections, we first provide several technical
lemmas that underpin the subsequent theorems and results.

Then, the general feedback stability results are derived. We
also show how these general results specialize to the results
in the earlier sections through simple algebraic manipulation
and reduce to the results of [12] under the same assumptions
as imposed in [12]. Finally, we demonstrate that a matrix Ψ
with specific properties needed in the results always exists and
propose a systematic way to construct a matrix Ψ. We also
show that one such Ψ is sufficient to conclude closed-loop
stability, thereby we avoid having to search over the set of
matrices Ψ with certain properties.

A. Technical Lemmas

We introduce the following three technical lemmas as a basis
for deriving the internal stability conditions in Section V-B. We
first show that an original feedback system and a transformed
system via a linear shift transformation have the same stability
properties. Note that the loop transformation technique also
holds even for the nonlinear systems [14], [26].

Lemma 18: Let M(s) be an NI system and N(s) be an SNI
system. Let Ψ < 0 be such that I − M(∞)Ψ is nonsingular. De-
fine M1(s) = [I − M(s)Ψ]−1M(s) and N1(s) = N(s) − Ψ.
Then,

1) I − M(∞)N(∞) is nonsingular if and only if I −
M1(∞)N1(∞) is nonsingular;

2) [M(s), N(s)] is internally stable if and only if
[M1(s), N1(s)] is internally stable.

Proof:
1) I − M(∞)N(∞) is nonsingular

⇔ I − M1(∞)N1(∞)
= I − [I − M(∞)Ψ]−1M(∞)(N(∞)−Ψ)
= [I −M(∞)Ψ]−1 [I−M(∞)N(∞)]
is nonsingular.

2) [M(s), N(s)] is internally stable
⇔ I − M(∞)N(∞) is nonsingular (due to well-

posedness condition) and M(s)[I − N(s)
M(s)]−1 ∈ RH∞ (since N(s) ∈ RH∞, see
[25, Corollary 5.4])

⇔ I − M1(∞)N1(∞) is nonsingular via 1)
and M1(s)[I − N1(s)M1(s)]−1 = M(s)[I −
ΨM(s)]−1 [I − (N(s)−Ψ)M(s)[I −ΨM(s)]−1 ]−1

= M(s)[I − N(s)M(s)]−1 ∈ RH∞
⇔ [M1(s), N1(s)] is internally stable.

�
In the next lemma, we show that under a full normal rank

assumption, a condition for an NI system to have no transmission
zeros in the open right-half plane and at the origin is to choose the
system gain at the infinity frequency to be positive semidefinite.

Lemma 19: Let M(s) be an NI system with M(∞) ≥ 0.
Suppose M(s) has full normal rank. Then, M(s) has no trans-
mission zeros in R(s) > 0 and at the origin.

Proof: In this proof, we use the notion of positive real
systems as given by [2, Definition 1] and [2, Lemma 1].
We define the transfer function M̂(s) = M(s) − M(∞) and
F (s) = sM̂(s). Then, M(s) is NI if and only if M̂(s) is NI and
M(∞) = M(∞)T via 1) in Lemma 7, and furthermore M̂(s) is
NI if and only if F (s) is positive real via 2) in Lemma 7. Then,
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M(∞) ≥ 0
⇒ F1(s) = F (s) + sM(∞) is positive real (since both F (s)

and sM(∞) are positive real and hence their addition
must be positive real [27])

⇔ F1(s) = sM(s) is positive real
⇒ F1(s)−1 = 1

s M(s)−1 is positive real (since F1(s) is
positive real and ∃s ∈ C : det[F1(s)] 	= 0, see [27, Th.
5–8]. So, F1(s)−1 has no poles in R(s) > 0 and possibly
has a simple pole at the origin)

⇒ M(s)−1 = sF1(s)−1 has no poles in R(s) > 0 and at the
origin, since either F1(s)−1 has no pole at the origin or if
F1(s)−1 has a simple pole at the origin then sF1(s)−1 has
a pole-zero cancellation at the origin

⇔ M(s) has no transmission zeros in R(s) > 0 and at the
origin since ∃s ∈ C : det[M(s)] 	= 0.

�

The following technical lemma provides a condition for two
transfer matrices to be marginally stable and have no poles at
the origin.

Lemma 20: Let M(s) be an NI system. Let Ψ < 0 be such
that λ̄[M(∞)Ψ] < 1. Then,

1) [I − ΨM(s)]−1 has no poles in R(s) > 0 and at the ori-
gin;

2) M1(s) = M(s)[I − ΨM(s)]−1 is an NI system without
poles at the origin.

Proof:

λ̄[M(∞)Ψ] < 1
⇔ λ̄[(−Ψ)1/2(−M(∞))(−Ψ)1/2 ] < 1
⇔ M(∞) − Ψ−1 > 0
⇒ det[M(∞) − Ψ−1 ] 	= 0 and M(s) − Ψ−1 has no trans-

mission zeros in R(s) > 0 and at s = 0 via Lemma 19
since M(s) − Ψ−1 is NI with M(∞) − Ψ−1 > 0 and
M(s) − Ψ−1 has full normal rank

⇔ [I − ΨM(s)]−1 has no poles in R(s) > 0 and at s = 0 and
det [I − ΨM(∞)] 	= 0

⇔ −I + [I − ΨM(s)]−1 has no poles in R(s) > 0 and at
s = 0 and det [I − ΨM(∞)] 	= 0

⇔ ΨM(s)[I − ΨM(s)]−1 has no poles in R(s) > 0 and at
s = 0 and det [I − ΨM(∞)] 	= 0

⇔ M1(s) = M(s)[I − ΨM(s)]−1 has no poles in R(s) > 0
and at s = 0 and det[I − ΨM(∞)] 	= 0

⇒ M1(s) = M(s)[I − ΨM(s)]−1 is an NI system without
poles at the origin via [2, Th. 6] and since M1(s) has no
poles at the origin. Note that the internal stability assump-
tion in [2, Th. 6] can be relaxed to analyticity in R(s) > 0
in the non-strict NI setting.

�
The next lemma provides an equivalent condition for the

maximum eigenvalue of the product of two symmetric matrices
being less than unity.

Lemma 21: Let A = A∗ ∈ Rm×m , B = B∗ ∈ Rm×m , and
C = C∗ ∈ Rm×m with C < 0 and A − B ≥ 0. Then, λ̄[BC] <
1 if and only if A − C−1 > 0 and I − (A − B)1/2(A −
C−1)−1(A − B)1/2 > 0.

Proof:

λ̄[BC] < 1
⇔ λ̄[(−C)1/2(−B)(−C)1/2 ] < 1 (via C < 0)
⇔ −C−1 + B > 0
⇔ (A − C−1) − (A − B) > 0

⇔
[

A − C−1 (A − B)1/2

(A − B)1/2 I

]
> 0 (via A − B ≥ 0)

⇔ A − C−1 > 0 and
I − (A − B)1/2(A − C−1)−1(A − B)1/2 > 0.

�

The next two highly technical lemmas below are used to
underpin the results in Section V-D. We provide a rewritten ex-
pression for λi [(−I + AC)(I − BC)] in the following lemma.

Lemma 22: Let A, B, and C be real symmetric matri-
ces with C ≥ 0. Then, λi [(−I + AC)(I − BC)] = λi [(−I +
C1/2AC1/2)(I − C1/2BC1/2)] for all i.

Proof:

λi [(−I + AC)(I − BC)]

= λi [C1/2(A + B − ACB)C1/2 ] − 1 (via C ≥ 0)

= λi [(−I + C1/2AC1/2)(I − C1/2BC1/2)].

�

The positiveness and positive semidefiniteness of the trans-
fer matrices are shown in the following lemma via algebraic
manipulation with specific choices of the Ψ.

Lemma 23: Let M(s) be an NI system. Let
Ψ < 0 be such that λ̄[M(∞)Ψ] < 1. Define Q =
[M(∞) − Ψ−1 ]1/2(I − [M(∞) − Ψ−1 ]1/2 lims→0 [M(s) −
Ψ−1 ]−1 [M(∞) − Ψ−1 ]1/2)[M(∞) − Ψ−1 ]1/2 . Then,

1) M(∞) − Ψ−1 > 0;
2) lims→0 [M(s) − Ψ−1 ]−1 ≥ 0;
3) Q ≥ 0;
4) I − Q1/2 [M(∞) − Ψ−1 ]−1Q1/2 ≥ 0.

Furthermore, let Ψ1 < 0 be such that λ̄[M(∞)Ψ1] < 1 and
define M1(s) = M(s)[I − ΨM(s)]−1 . Then,

5) lims→0 [[M(s) − Ψ−1 ][M(s) − Ψ1
−1 ]−1 ] is nonsingu-

lar;
6) I − [M1(0)−M1(∞)]1/2 [I + (Ψ−Ψ1)M1(0)]−1(Ψ −

Ψ1)[M1(0) − M1(∞)]1/2 > 0.
Proof:
1) λ̄[M(∞)Ψ] < 1

⇔ λ̄[(−Ψ)1/2 [−M(∞)](−Ψ)1/2 ] < 1
⇔ M(∞) − Ψ−1 > 0.

2) lims→0 [M(s) − Ψ−1 ]−1

= lims→0 [[M(s) − M(∞)] + [M(∞) − Ψ−1 ]]−1

= lims→0 s[s[M(s)−M(∞)]+s[M(∞)−Ψ−1 ]]−1≥0
(since both s[M(s) − M(∞)] and s[M(∞) − Ψ−1 ]
are positive real via Lemma 7 and 1), hence their
addition must be positive real [27] and since
s[M(s) − M(∞)] + s[M(∞) − Ψ−1 ] is positive
real, its inverse is also positive real [27, Th. 5–8]. If
[s[M(s) − M(∞)] + s[M(∞) − Ψ−1 ]]−1 has a sim-
ple pole at the origin, then its residue is Hermitian and
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positive semidefinite. Otherwise, lims→0 s[s[M(s) −
M(∞)] + s[M(∞) − Ψ−1 ]]−1 = 0).

3) M(s) is an NI system

⇒ M(s)[I − ΨM(s)]−1 is an NI system without poles
at the origin, via 2) in Lemma 20

⇒ lims→0 M(s)[I−ΨM(s)]−1−M(∞)[I−ΨM(∞)]−1

≥ 0 (via Lemma 8)
⇔ λ[− lims→0 [I − ΨM(s)]−1 + [I − ΨM(∞)]−1 ] ≥ 0
⇔I−[M(∞)−Ψ−1 ]1/2 lims→0 [M(s)−Ψ−1 ]−1 [M(∞)
− Ψ−1 ]1/2 ≥ 0 [since M(∞) − Ψ−1 > 0 via 1)]

⇔ Q ≥ 0.

4) lims→0 [M(s) − Ψ−1 ]−1 ≥ 0 [via 2)]

⇔ λ[lims→0 [M(s) − Ψ−1 ]−1 [M(∞) − Ψ−1 ]] ≥ 0
⇔ λ[I − [M(∞) − Ψ−1 ]−1Q] ≥ 0
⇔ I − Q1/2 [M(∞) − Ψ−1 ]−1Q1/2 ≥ 0 [since Q ≥ 0

via 3)].

5) For convenience, define Ψ2 < 0 such that Ψ2
−1 < Ψ−1

and Ψ2
−1 < Ψ1

−1 . Then,
lims→0 [[M(s) − Ψ−1 ][M(s) − Ψ1

−1 ]−1 ]
= lims→0 [[M(s) − Ψ−1 ][M(s) − Ψ2

−1 ]−1 [M(s) −
Ψ2

−1 ][M(s) − Ψ1
−1 ]−1 ]

= [(Ψ−1 − Ψ2
−1)−1 + lim

s→0
[M(s) − Ψ−1 ]−1 ]−1(Ψ−1 −

Ψ2
−1)−1(Ψ1

−1 − Ψ2
−1)[(Ψ1

−1 − Ψ2
−1)−1 +

lims→0 [M(s) − Ψ1
−1 ]−1 ] is nonsingular

[since Ψ−1 − Ψ2
−1 > 0, Ψ1

−1 − Ψ2
−1 > 0,

lims→0 [M(s) − Ψ−1 ]−1 ≥ 0, and lims→0 [M(s) −
Ψ1

−1 ]−1 ≥ 0 via 2)].

6) For convenience, define Q1 = [M(∞) −
Ψ1

−1 ]1/2(I − [M(∞) − Ψ1
−1 ]1/2 lims→0 [M(s) −

Ψ1
−1 ]−1 [M(∞) − Ψ1

−1 ]1/2)[M(∞) − Ψ1
−1 ]1/2 .

Then,
I − Q

1/2
1 [M(∞) − Ψ1

−1 ]−1Q
1/2
1 + Q

1/2
1 [M(∞) −

Ψ−1 ]−1Q
1/2
1 ≥ 0 [since [M(∞) − Ψ−1 ]−1 > 0 and

Q1 ≥ 0 via 1) and 3) and I − Q
1/2
1 [M(∞) −

Ψ1
−1 ]−1Q

1/2
1 ≥ 0 via 4)]

⇔ λ[lims→0 [I + [[M(∞) − Ψ−1 ]−1 −
[M(∞) − Ψ1

−1 ]−1 ][M(s) − M(∞)][I +
[M(∞) − Ψ1

−1 ]−1 [M(s) − M(∞)]]−1 ]] ≥ 0
⇔λ[lims→0 [[I + [M(∞)−Ψ−1 ]−1 [M(s)−M(∞)]][I +

[M(∞)−Ψ1
−1 ]−1 [M(s) − M(∞)]]−1 ]] ≥ 0

⇔ λ[lims→0 [[M(∞) − Ψ−1 ]−1 [M(s) − Ψ−1 ][M(s)−
Ψ1

−1 ]−1 [M(∞) − Ψ1
−1 ]]] > 0 [via 1) and 5)]

⇔ I − [M1(0) − M1(∞)]1/2 [I + (Ψ −
Ψ1)M1(0)]−1 (Ψ−Ψ1)[M1(0)−M1(∞)]1/2> 0.

�

B. Generalized Internal Stability Results for NI Systems
With Possible Poles at the Origin

In this section, necessary and sufficient conditions are derived
for internal stability of a positive feedback interconnection com-
posed of an NI system (which may or may not have poles at the
origin) and an SNI system. The limits in the stability conditions
will be shown to be all finite. We obtain the general result in

Theorem 24 by building on Theorem 9, which was only ap-
plicable for NI systems without poles at the origin, by using
an appropriate linear shift transformation to remove the unde-
sirable restriction of no poles at the origin. This then enables
Theorem 24 to be also applicable for NI systems which may or
may not have free body dynamics (i.e., poles at the origin).

Theorem 24: Let M(s) be an NI system and N(s) be an
SNI system. Let Ψ < 0 be such that λ̄[M(∞)Ψ] < 1. Then,
[M(s), N(s)] is internally stable if and only if

I − M(∞)N(∞) is nonsingular,
λ̄[[I − M(∞)N(∞)]−1 [M(∞)N(0) − I]] < 0, and
λ̄[lims→0 [[I − ΨM(∞)][I − N(s)M(∞)]−1 [N(s)M(s) −
I][I − ΨM(s)]−1 ]] < 0.

Proof: Define M1(s) = [I − M(s)Ψ]−1M(s) and N1(s) =
N(s) − Ψ. Then,

[M(s), N(s)] is internally stable
⇔ [M1(s), N1(s)] is internally stable (by Lemma 18)
⇔ I − M1(∞)N1(∞) is nonsingular,

λ̄[[I − M1(∞)N1(∞)]−1(M1(∞)N1(0) − I)] < 0, and
λ̄[[I − N1(0)M1(∞)]−1(N1(0)M1(0) − I)] < 0 (since
M1(s) is an NI system without poles at the origin via
Lemma 20 and N1(s) is an SNI system and then direct use
of Theorem 9)

⇔ I − M(∞)N(∞) is nonsingular (via Lemma 18),
λ̄[[I − [I − M(∞)Ψ]−1M(∞)(N(∞) − Ψ)]−1 [[I−
M(∞)Ψ]−1M(∞)(N(0) − Ψ) − I]] < 0, and
λ̄[lims→0 [[I − (N(s) − Ψ)[I − M(∞)Ψ]−1M(∞)]−1

[(N(s) − Ψ)[I − M(s)Ψ]−1M(s) − I]]] < 0
⇔ I − M(∞)N(∞) is nonsingular,

λ̄[[[I − M(∞)Ψ]−1 [I − M(∞)Ψ − M(∞)N(∞)+
M(∞)Ψ]]−1 [[I − M(∞)Ψ]−1 [M(∞)N(0)−
M(∞)Ψ − I + M(∞)Ψ]]] < 0, and
λ̄[lims→0 [[I − (N(s) − Ψ)M(∞)[I − ΨM(∞)]−1 ]−1

[(N(s) − Ψ)M(s)[I − ΨM(s)]−1 − I]]] < 0
⇔ I − M(∞)N(∞) is nonsingular,

λ̄[[I − M(∞)N(∞)]−1 [I − M(∞)Ψ][I − M(∞)Ψ]−1

[M(∞)N(0) − I]] < 0, and
λ̄[lims→0 [[[I − ΨM(∞) − N(s)M(∞) +
ΨM(∞)][I−ΨM(∞)]−1 ]−1 [[N(s)M(s) − ΨM(s) −
I + ΨM(s)][I − ΨM(s)]−1 ]]] < 0

⇔ I − M(∞)N(∞) is nonsingular,
λ̄[[I − M(∞)N(∞)]−1 [M(∞)N(0) − I]] < 0, and
λ̄[lims→0 [[I − ΨM(∞)][I − N(s)M(∞)]−1

[N(s)M(s) −I][I − ΨM(s)]−1 ]] < 0.

The above algebraic reformulations, together with Lemmas 4
and 8, also demonstrate why the eigenvalues of the matrices in
the conditions of the theorem statement are real. �

Remark 25: We need to show that lims→0 [[N(s)M(s)−
I][I − ΨM(s)]−1 ] =lims→0 N(s)M(s)[I−ΨM(s)]−1−
lims→0 [I − ΨM(s)]−1 is finite. Since both M(s)[I −
ΨM(s)]−1 and [I − ΨM(s)]−1 have no poles at the origin via
Lemma 20, lims→0 [[N(s)M(s) − I][I − ΨM(s)]−1 ] is finite.
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We now give a different internal stability necessary and suf-
ficient condition in Theorem 26 which is based on Theorem 14
instead of Theorem 9.

Theorem 26: Let M(s) be an NI system and N(s) be an
SNI system. Let Ψ < 0 be such that λ̄[M(∞)Ψ] < 1. Then,
[M(s), N(s)] is internally stable if and only if

I − M(∞)N(∞) is nonsingular,
λ̄[lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −
M(∞)N(∞)]−1 [I − M(∞)Ψ]]] < 0, and
λ̄[lims→0 [[N(s)M(s) − I][I − N(∞)M(s)]−1 ]] < 0.

Proof: The proof is similar to that of Theorem 24 except
Theorem 14 is used instead of Theorem 9. �

Remark 27: We need to show that lims→0 [[I −
M(s)Ψ]−1 [M(s)N(∞) − I][I −M(∞)N(∞)]−1 [I −M(∞)Ψ]]
is finite. Note that lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I]]
is finite by Lemma 20, (I − M(∞)N(∞))−1 is finite via the
first condition in Theorem 26, and I − M(∞)Ψ is obviously
finite.

The following technical lemma will be needed in Remark 29
to show that the limit in the third condition of Theorem 26 is
also finite.

Lemma 28: Let all the assumptions in Theorem 26 hold.
Furthermore, suppose that I − M(∞)N(∞) is nonsin-
gular and λ̄[lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −
M(∞)N(∞)]−1 [I − M(∞)Ψ]]]< 0. Then, lims→0 [[I −
ΨM(s)][I − N(∞)M(s)]−1 ] is finite and nonsingular.

Proof: First note that lims→0 [[N(∞)M(s) − I][I −
ΨM(s)]−1 ] is finite via Lemma 20. Next, note that
λ̄[lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −
M(∞)N(∞)]−1 [I − M(∞)Ψ]]] < 0
⇒ lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −

M(∞) N(∞)]−1 [I − M(∞)Ψ]] is nonsingular
⇒ lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I]] is nonsingular
⇒ lims→0

det(M (s)N (∞)−I )
det(I−M (s)Ψ) 	= 0

⇒ lims→0
det(N (∞)M (s)−I )

det(I−ΨM (s)) 	= 0
⇒ lims→0 [[N(∞)M(s) − I][I − ΨM(s)]−1 ] is nonsingular.
Then,

lims→0 [[N(∞)M(s) − I][I − ΨM(s)]−1 ] is finite and
nonsingular

⇔ lims→0 [[I − ΨM(s)][N(∞)M(s) − I]−1 ] is finite and
nonsingular

⇔ lims→0 [[I − ΨM(s)][I − N(∞)M(s)]−1 ] is finite and
nonsingular.

�
Remark 29: We need to show that lims→0 [[N(s)M(s) − I]

[I−N(∞)M(s)]−1 ]=lims→0 [[N(s)M(s)−I][I−ΨM(s)]−1

[I − ΨM(s)][I − N(∞)M(s)]−1 ] is finite. It is
clear that lims→0 [[N(s)M(s) − I][I − ΨM(s)]−1 ]
and lims→0 [[I − ΨM(s)][I − N(∞)M(s)]−1 ] are fi-
nite via Lemmas 20 and 28, respectively. Hence,
lims→0 [[N(s)M(s) − I][I−N(∞)M(s)]−1 ] is finite.

In contrast with the stability results in the literature [1], [11],
[12], [23], the conditions presented here are a generalization on
those results in at least three aspects:

1) the stability results allow for poles on the imaginary axis
and at the origin;

2) the stability results impose no restriction on the instanta-
neous gains of the systems; and

3) the conditions are significantly easier to check.
Note that several restrictive assumptions are imposed in [12]

including strict properness of the NI system. [12] also requires
multiple complex matrix factorizations. Furthermore, some of
the assumptions in [12] were imposed on the resulting fac-
torizations, thereby destroying intuition. The results in The-
orems 24 and 26 impose no such restrictions. Section V-D
discusses existence and construction of the matrix Ψ that is
needed in Theorems 24 and 26.

C. Specializations of the Generalized Internal Stability
Conditions

First, we give a corollary that does not depend on the matrix
Ψ. It is a SISO specialization of both Theorems 24 and 26 in
the special situation when the NI system necessarily has poles
at the origin.

Corollary 30: Let M(s) be a scalar, NI system and N(s)
be a scalar, SNI system. Let s = 0 be a (single or double) pole
of M(s). Then, [M(s), N(s)] is internally stable if and only if
either one of the following two conditions holds:

i) M(∞)N(∞) < 1 and N(0) < 0;
ii) M(∞)N(∞) > 1 and N(∞) > 0.
Proof: Writing M(s) as a Laurent series, the three conditions

in Theorem 26 simplify, in the scalar case, to M(∞)N(∞) 	= 1,
N (∞)

1−M (∞)N (∞) < 0 and N (0)
N (∞) > 0 after taking the limit as s → 0.

It is easy to see that these three conditions are equivalent to either
condition i) or condition ii) in this corollary statement using the
NI property N(0) > N(∞) via [1, Lemma 2].

Alternatively, Theorem 24 can be used instead of
Theorem 26 to give the same specializations. Writing M(s) as
a Laurent series, the three conditions in Theorem 24 simplify,
in the scalar case, to M(∞)N(∞) 	= 1, M (∞)N (0)−1

1−M (∞)N (∞) < 0, and
N (0)

1−N (0)M (∞) < 0 after taking the limit as s → 0. These three
conditions are equivalent to either one of the following two
statements:

1) M(∞)N(∞) < 1, M(∞)N(0) < 1 and N(0) < 0;
2) M(∞)N(∞) > 1, M(∞)N(0) > 1 and N(0) > 0.

Equivalence between condition 1) and condition i) in the
corollary statement can be seen on noting that M(∞)N(0) =
[M(∞)N(∞)]

[
N (0)
N (∞)

]
< 1 since N(∞) < N(0) < 0 via [1,

Lemma 2]. Equivalence between condition 2) and condi-
tion ii) in the corollary statement can be seen on noting

that M(∞)N(0) = [M(∞)N(∞)]
[

N (0)
N (∞)

]
> 1 since 0 <

N(∞) < N(0) via [1, Lemma 2]. �
Next, we specialize Theorems 24 and 26 to a MIMO case that

is in fact still a generalization of the results in [12]. If we consider
the situation that M(s) is a strictly proper transfer function with
NI properties, then Theorems 24 and 26 can be specialized to
the results in 2) and 3) in Corollary 31, respectively.
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Corollary 31: Let M(s) be a strictly proper, NI system and
N(s) be an SNI system. Let Ψ < 0. Then, the following three
conditions are equivalent:

1) [M(s), N(s)] is internally stable;
2) λ̄[lims→0 [[N(s)M(s) − I][I − ΨM(s)]−1 ]] < 0;
3) λ̄[lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I]]] < 0 and

λ̄[lims→0 [[N(s)M(s) − I][I − N(∞)M(s)]−1 ]] < 0.
Proof: The equivalence between 1) and 2) is omitted since

it is the direct consequence of Theorem 24 and the assumption
of strictly properness of M(s). The equivalence between 1) and
3) is omitted since it is a direct consequence of Theorem 26 and
the assumption of strict properness of M(s). �

Note that the limit in 2) of Corollary 31 is finite via
Lemma 20 and the limits in 3) of Corollary 31 are finite via
Lemmas 20 and 28. Under the same assumption of strictly
proper M(s), Mabrok et al. [12] proposed necessary and suf-
ficient conditions for internal stability of positive feedback in-
terconnections of NI systems. However, the stability results in
[12] require additional assumptions such as the invertibility of
FT Ḡ(0)F and Nf being either positive or negative definite
(see [12, Th. 1]). When these assumptions imposed in [12] do
not hold, such as FT Ḡ(0)F being singular or Nf being sign-
indefinite, the conditions in [12] are no longer applicable. Unlike
the results in [12], the conditions in Corollary 31 are easy-to-
check, are necessary and sufficient conditions, impose no extra
assumptions, and do not require any matrix factorizations. In-
deed, the extra assumptions in [12] on objects that are a result of
such factorizations unfortunately inhibit intuition into the results
of [12].

The internal stability condition in 2) of Corollary 31 only
depends on the steady-state (or dc) gains and a negative
definite matrix Ψ. If we rearrange the inequality in 2), we
end up to have λ̄[M1(0)N1(0)] < 1, where M1(s) = [I −
M(s)Ψ]−1M(s) and N1(s) = N(s) − Ψ, which means that the
stability of the positive-feedback interconnection relies on only
the dc loop gain of the transformed system. Surprisingly, sim-
plification of the two inequalities in 3) to obtain the inequality
in 2) is not directly obvious for the MIMO situation. However,
for the SISO case, it is straightforward to realize that the terms
of [M(s)N(∞) − I] and [I − N(∞)M(s)]−1 in first and sec-
ond inequalities of 3) can be eliminated via multiplying both
inequalities in 3) to give the inequality in 2).

We next give a corollary that does not depend of the matrix
Ψ. It is a MIMO specialization of Corollary 31 in the situation
when the NI system necessarily has single or double poles at
the origin in all directions.

Corollary 32: Let M(s) be a strictly proper, NI system and
N(s) be an SNI system. Assume one of the following conditions
holds:

1) lims→0 s2M(s) is nonsingular;
2) lims→0 s2M(s) = 0 and lims→0 sM(s) is nonsingular.

Then, [M(s), N(s)] is internally stable if and only if N(0) < 0.
Proof: Consider each of the two cases of this corollary sep-

arately. Writing M(s) as a Laurent series into either condition
2) or condition 3) of Corollary 31 gives the required result after
evaluating the limit and simplifying. �

In Section V-B, general internal stability conditions of posi-
tive feedback interconnections of NI systems were derived. We
now show that the main stability theorems of that section (i.e.,
Theorems 24 and 26) specialize to the prior stability conditions
in Theorems 9 and 14, respectively, under the corresponding as-
sumption that M(s) is an NI system without poles at the origin,
thereby demonstrating the generality of Theorems 24 and 26.

Since, by inspection, two of the conditions in Theorem 24
(respectively Theorem 26) are trivially equivalent to two of
the conditions in Theorem 9 (respectively Theorem 14), we
only need to proof equivalence of the remaining inequality in
Theorem 24 (respectively Theorem 26) with the remaining in-
equality in Theorem 9 (respectively Theorem 14). Note that
to show these equivalences in Lemmas 33 and 34, we cannot
simply assume that Ψ = 0 since Ψ < 0 is required in the as-
sumptions of both Theorems 24 and 26 and a limiting argument
cannot be used as the results in Theorems 24 and 26 are valid
for any arbitrary Ψ < 0 that satisfies λ̄(M(∞)Ψ) < 1.

Lemma 33: Let all the assumptions of Theorem 24 hold and
furthermore suppose M(s) has no poles at the origin. Then,

λ̄[lims→0 [[I − ΨM(∞)][I − N(s)M(∞)]−1 [N(s)M(s)−I]
[I − ΨM(s)]−1 ]] < 0

⇔ λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] < 0.

Proof: Let R = [M(0) − M(∞)]1/2 . See Lemma 8 for
proof that M(0) − M(∞) ≥ 0. Then,

λ̄[lims→0 [[I − ΨM(∞)][I − N(s)M(∞)]−1 [N(s)M(s) − I]
[I − ΨM(s)]−1 ]] < 0
⇔ λ̄[[I − ΨM(∞)][I − N(0)M(∞)]−1 [N(0)M(0) − I]

[I − ΨM(0)]−1 ] < 0 (since M(s) is an NI system with-
out poles at the origin and N(s) is an SNI system, M(0)
and N(0) exist)

⇔ λ̄[[I − ΨM(0)]−1 [I − ΨM(∞)][I − N(0)M(∞)]−1

[N(0)M(0) − I]] < 0
⇔ λ̄[[I − ΨM(0)]−1 [I − ΨM(0) + ΨM(0) − ΨM(∞)]

[I − N(0)M(∞)]−1 [N(0)M(0) − N(0)M(∞) +
N(0)M(∞) − I]] < 0

⇔ λ̄[[I + [I − ΨM(0)]−1ΨR2 ][[I − N(0)M(∞)]−1N(0)
R2 − I]] < 0

⇔ λ̄[[[I − N(0)M(∞)]−1N(0) − [I − ΨM(0)]−1Ψ +
[I −ΨM(0)]−1ΨR2 [I −N(0)M(∞)]−1N(0)]R2 ]< 1

⇔ λ̄[R[[I − N(0)M(∞)]−1N(0) − [I − ΨM(0)]−1Ψ +
[I −ΨM(0)]−1ΨR2 [I −N(0)M(∞)]−1N(0)]R]< 1

⇔ λ̄[[I + R[I − ΨM(0)]−1ΨR][R[I − N(0)M(∞)]−1

N(0)R − I]] < 0
⇔ λ̄[[I − R[M(0) − Ψ−1 ]−1R][R[I − N(0)M(∞)]−1

N(0)R − I]] < 0
⇔ [I − R[M(0) − Ψ−1 ]−1R]1/2 [R[I − N(0)M(∞)]−1

N(0)R − I][I − R[M(0) − Ψ−1 ]−1R]1/2 < 0 (since
I − R[M(0) − Ψ−1 ]−1R > 0 via Lemma 21)

⇔ λ̄[R[I − N(0)M(∞)]−1N(0)R] < 1
⇔ λ̄[[I − N(0)M(∞)]−1N(0)R2 − I] < 0
⇔ λ̄[[I − N(0)M(∞)]−1 [N(0)M(0) − N(0)M(∞)−

I + N(0)M(∞)]] < 0
⇔ λ̄[[I − N(0)M(∞)]−1(N(0)M(0) − I)] < 0.

�
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In Lemma 34, we state the equivalence between the stability
conditions of Theorem 26 and Theorem 14 under the special-
ization that M(s) has no poles at the origin.

Lemma 34: Let all the assumptions of Theorem 26 hold and
furthermore suppose M(s) has no poles at the origin. Then,

λ̄[lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −
M(∞)N(∞)]−1 [I − M(∞)Ψ]]] < 0

⇔ λ̄[(M(0)N(∞) − I)[I − M(∞)N(∞)]−1 ] < 0.

Proof: The proof is similar to that of Lemma 33 except that
the second inequality in Theorem 26 is used instead of the third
inequality in Theorem 24. �

D. Existence and Construction of a Negative Definite
Matrix Ψ

In Sections V-B and V-C, we have derived powerful internal
stability conditions that allow for NI systems with free
body dynamics. Some of the conditions in Theorems 24 and
26 and Corollary 31 are expressed in terms of a negative definite
matrix Ψ that is not a part of the problem data. In Corollary 31,
since M(∞) = 0, then any choice of a negative definite Ψ is
fine. However, if the plant is not strictly proper, i.e., M(∞) 	= 0,
Ψ < 0 also needs to satisfy λ̄[M(∞)Ψ] < 1 as required by
the assumptions of Theorems 24 and 26. We first demonstrate
that such a Ψ always exists, even when M(∞) 	= 0, and give
a simple constructive procedure to determine one such Ψ.

Since M(∞) 	= 0 is a symmetric matrix, M(∞) can be fac-
tored into M(∞) = QΛQT where Q and Λ are orthogonal and
diagonal matrices, respectively. Now, choose Ψ = QΛ−1

1 QT ,
where Λ1 is a diagonal matrix with strictly negative numbers
on its diagonal. It is clear that Ψ < 0. Then, via 1) in Lemma
23, λ̄[M(∞)Ψ] < 1 is equivalent to M(∞) − Ψ−1 > 0. Hence,
the problem reduces to selecting a strictly negative definite and
diagonal matrix Λ1 that satisfies Λ − Λ1 > 0. It is obvious that
there always exists a matrix Λ1 fulfilling Λ1 < Λ. Hence, it is
trivial to construct a matrix Ψ < 0 such that λ̄[M(∞)Ψ] < 1.

It is trivial to observe that there is a large set of matrices Ψ < 0
satisfying λ̄[M(∞)Ψ] < 1. The statements in Theorems 24 and
26 and Corollary 31 indicate that any arbitrary Ψ in this set could
be selected. The following two theorems show that the condi-
tions that depend on Ψ in Theorems 24 and 26 and Corollary
31 are either fulfilled for all Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1
or violated for all Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1. Hence,
choosing any arbitrary Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1, for
example, via the constructive procedure described earlier, will
be all that is required to use the powerful results in Theorems
24 and 26 and Corollary 31.

Theorem 35: Let M(s) be an NI system and N(s)
be an SNI system. Define X = {Ψ < 0 : λ̄[M(∞)Ψ] <
1}. Then, ∃Ψ1 ∈ X : λ̄[lims→0 [[I − Ψ1M(∞)][I −
N(s)M(∞)]−1 [N(s)M(s)− I][I −Ψ1M(s)]−1 ]]< 0 if and
only if ∀Ψ ∈ X, λ̄[lims→0 [[I − ΨM(∞)][I − N(s)M(∞)]−1

[N(s)M(s) − I][I − ΨM(s)]−1 ]] < 0.

Proof:
(⇐) Trivial.
(⇒) Choose an arbitrary Ψ ∈ X . Let M1(s) =

M(s)[I − ΨM(s)]−1 , N1(s) = N(s) − Ψ, and R =
I − [M1(0) − M1(∞)]1/2 [I + (Ψ − Ψ1)M1(0)]−1(Ψ − Ψ1)
[M1(0) − M1(∞)]1/2 . See Lemma 8 for proof that
M1(0) − M1(∞) ≥ 0 after noting that M1(s) is NI without
poles at the origin via Lemma 20. Then,
λ̄[lims→0 [[I − Ψ1M(∞)][I − N(s)M(∞)]−1 [N(s)M(s)−
I][I − Ψ1M(s)]−1 ]] < 0
⇔ λ̄[lims→0 [[I − Ψ1M(∞)][I − ΨM(∞)]−1 [I − ΨM(∞)]

[I − N(s)M(∞)]−1 [N(s)M(s) − I][I − ΨM(s)]−1 [I −
ΨM(s)][I − Ψ1M(s)]−1 ]] < 0

⇔ λ̄[[−I + [I − N1(0)M1(∞)]−1N1(0)[M1(0) − M1(∞)]]
[I − [I + (Ψ − Ψ1)M1(0)]−1(Ψ − Ψ1)[M1(0) −
M1(∞)]]] < 0

⇔ λ̄[[−I + [M1(0) − M1(∞)]1/2 [I − N1(0)M1(∞)]−1

N1(0)[M1(0) − M1(∞)]1/2 ]R] < 0 (via Lemma 22)
⇔ λ̄[−I + [M1(0) − M1(∞)]1/2 [I − N1(0)M1(∞)]−1

N1(0)[M1(0) − M1(∞)]1/2 ] < 0 (since R > 0 via 6) in
Lemma 23)

⇔ λ̄[lims→0 [[I−ΨM(∞)][I−N(s)M(∞)]−1 [N(s)M(s)−
I][I − ΨM(s)]−1 ]] < 0.

The result then follows since Ψ ∈ X was arbitrary. �
Necessity of Theorem 35 states that if there exists a

Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1 and the third condition in
Theorem 24 (i.e., the condition involving the matrix Ψ), then
this third condition of Theorem 24 is satisfied for all Ψ < 0 sat-
isfying λ̄[M(∞)Ψ] < 1. The contrapositive statement of this
same necessity of Theorem 35 states that if there exists a Ψ < 0
satisfying λ̄[M(∞)Ψ] < 1 that violates the third condition of
Theorem 24, then this third condition of Theorem 24 is violated
for all Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1.

Theorem 36 is similar to Theorem 35, but tackles the second
inequality of Theorem 26 (i.e., the one involving the matrix Ψ)
instead of the third inequality of Theorem 24.

Theorem 36: Let M(s) be an NI system and N(s)
be an SNI system. Define X = {Ψ < 0 : λ̄[M(∞)Ψ] < 1}.
Then, ∃Ψ1 ∈ X : λ̄[lims→0 [[I − M(s)Ψ1]−1 [M(s)N(∞) −
I][I − M(∞)N(∞)]−1 [I − M(∞)Ψ1]]] < 0 if and only
if ∀Ψ ∈ X, λ̄[lims→0 [[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −
M(∞)N(∞)]−1 [I − M(∞)Ψ]]] < 0.

Proof: Proof is omitted as it is similar to that of Theorem 35.
�

Theorem 36 states that the second inequality of Theorem 26 is
either satisfied for all Ψ < 0 with λ̄[M(∞)Ψ] < 1 or violated
for all Ψ < 0 with λ̄[M(∞)Ψ] < 1. Hence, one only needs
any arbitrary Ψ < 0 with λ̄[M(∞)Ψ] < 1 to use the result in
Theorem 26.

VI. NUMERICAL EXAMPLES

Two numerical examples are given to illustrate the internal
stability results developed in the previous sections.
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Fig. 2. Schematic diagram of a slewing beam equivalent to a robotic
arm.

A. Without Poles at the Origin

In this section, an example is given to illustrate the inapplica-
bility or conservativeness of earlier results and demonstrate the
main results developed in this paper. Let us consider a positive
feedback interconnection [M(s), N(s)], as shown in Fig. 1. An
undamped SISO plant M(s) is given by M(s) = 1

s2 +1 + 2,
which is NI without poles at the origin according to [11,
Definition 1]. A SISO controller N(s) is given by N(s) =

1
s+1 + 2, which is SNI according to Definition 2. The inter-
nal stability of [M(s), N(s)] cannot be determined via [11,
Th. 1], since M(∞)N(∞) = 4 	= 0. Also, [23, Corollary 4.3]
cannot be used to check the internal stability of [M(s), N(s)]
since σ̄(M(0)N(0)) = 9 ≮ 1 and σ̄(M(∞)N(∞)) = 4 ≮ 1.
Next, we attempt to use the IQC-based sufficient conditions
of [23, Th. 4.2]. We will demonstrate via this example that
the sufficient conditions of [23, Th. 4.2] are conservative. Let
Π0 = Π∗

0 =
[

a
b

b
c

]
and Π∞ = Π∗

∞ =
[

d
e

e
f

]
. [23, Th. 4.2] is only

applicable if there exist scalars a, b, c, d, e, and f such that
the sufficient conditions in [23, Th. 4.2] are satisfied for all
τ ∈ [0, 1]. However,

[
N (0)

I

]∗Π0
[

N (0)
I

]
= 9a + 6b + c < 0 and[

I
τ M (0)

]∗Π0
[

I
τ M (0)

]
= 9cτ 2 + 6bτ + a ≥ 0 cannot be fulfilled

simultaneously when τ = 1/9. Hence, [23, Th. 4.2] cannot be
used here.

By applying Theorem 17 in Section IV, we can easily
conclude that [M(s), N(s)] is internally stable since either
condition 2) or 3) is satisfied, i.e., M(∞)N(∞) = 4 > 1,
M(0)N(0) = 9 > 1 and M(∞)N(0) = 6 > 1. The robust sta-
bility conditions in this paper are easy to check, are necessary
and sufficient, and only depend on the steady-state and instanta-
neous gains (i.e., the 0 and ∞ frequency gains) of the systems.

B. With Poles at the Origin

In this section, a physically motivated example is presented to
demonstrate the application of the generalized feedback stability
results derived in this paper. The example is directly taken from
[12] for ease of comparison. Let us consider a flexible robotic
arm, as shown in Fig. 2, which is driven by a motor mounted
at one end and with two piezoelectric patches attached to either
side of the arm which are used as an actuator and a sensor,
respectively. The control inputs of this flexible structure are
the voltage Va applied to the actuator patch and the torque of
the motor τ , while the outputs of the system are the voltage
Vs generated by the sensor patch and the motor hub angle θ.
Using techniques detailed in [28], this flexible robotic arm can
be modeled as an infinite-dimensional transfer function:

G(s) =
1

D(s)

[
Nτ,θ (s) NVa ,θ (s)
Nτ,Vs

(s) NVa ,Vs
(s)

]
,

where Nτ,θ (s), NVa ,θ (s), Nτ ,Vs
(s), NVa ,Vs

(s), and D(s) are
given in [28, eq. (26)–(28)]. Through approximation ap-
proaches, we can represent the above model G(s) as the finite-
dimensional model, and for the sake of simplification, we here
only consider the finite-dimensional model M(s) with only the
first resonant mode, which can be expressed as

M(s) =
1∑

i=0

⎡
⎢⎢⎢⎣

ai

s2 + p2
i

bi

s2 + p2
i

ci

s2 + p2
i

di

s2 + p2
i

⎤
⎥⎥⎥⎦ ,

where a0 = 0.14, b0 = c0 = d0 = p0 = 0, a1 = 3.0907, b1 =
c1 = 3.5573 × 10−4 , d1 = 2.35, and p1 = 3.4 [12]. This finite-
dimensional model M(s) is an NI system since all poles of M(s)
are located in the closed left-half plane, j[M(jω) − M(jω)∗] =
0 for all ω ∈ (0,∞)\3.4, the residue matrix

lim
s→j3.4

(s − j3.4)jM(s)

=

⎡
⎢⎢⎢⎣

3.0907
6.8

3.5573 × 10−4

6.8
3.5573 × 10−4

6.8
2.35
6.8

⎤
⎥⎥⎥⎦ > 0,

and lims→0 s2M(s) =
[ 0.14

0
0
0

] ≥ 0 which imply that the
conditions 3) and 4) in Definition 1 are fulfilled. We then apply
the SNI controller [3] N(s) = (sI + ΓΦ)−1Γ − Δ, where
Γ =

[ 35
15

15
20

]
, Φ =

[ 0.745
0.521

0.521
1.021

]
and Δ =

[ 4.29
0

0
2.22

]
, as detailed

in [12]. Note that since M(s) is an NI system with two poles
at the origin, the internal stability results introduced in [11]
and [23] are not applicable. Hence, for ease of calculation, we
directly set Ψ = N(0) < 0 and use the generalized stability
results presented in Section V-C. Using the stability condition
in 2) of Corollary 31, we get λ̄[lims→0 [[N(s)M(s) −
I][I − ΨM(s)]−1 ]] =λ̄[lims→0 [[N(0)M(s) − I][I −
N(0)M(s)]−1 ]] = −1 < 0. Hence, feedback stability of
[M(s), N(s)] is guaranteed for the chosen controller via 2) in
Corollary 31 without any complicated calculations. In contrast,
the results in [12] require computation of several matrix
factorizations and also a set of different inequalities need to
be checked for different cases that depend on the positive
or negative semidefiniteness of a specific matrix which is a
result of such factorizations in order to determine whether the
positive-feedback interconnection is internally stable or not.

VII. CONCLUSION

We have removed restrictive assumptions from the robust
stability analysis of positive feedback interconnections of NI
systems, and generalized results for NI systems that may also
have poles at the origin. New necessary and sufficient conditions
have thus been derived that reduce to the earlier necessary and
sufficient conditions when the assumptions of earlier literature
are imposed. This demonstrates that the new results generalize
the earlier work in the area. We also show that it is possible to
simplify the new necessary and sufficient conditions by impos-
ing alternative new succinct assumptions that were not known
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in prior literature. Because the proposed extended internal sta-
bility results rely on a negative definite matrix Ψ with specific
properties, it was also shown that such a matrix always exists.
Moreover, a systematic procedure was given for constructing Ψ
to fulfil the required properties. We also prove that no search
is needed for an appropriate Ψ as the results are valid for any
arbitrarily chosen Ψ. Two numerical examples are given that
demonstrate the completeness of the derived results in this pa-
per and illustrate the knowledge gap in the earlier literature.
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