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Robust Output Feedback Consensus for Networked
Negative-Imaginary Systems
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Abstract—A robust output feedback consensus problem for net-
worked homogeneous negative-imaginary (NI) systems is investi-
gated in this technical note. By virtue of NI systems theory, a set of
reasonable yet elegant conditions are derived for output consensus
under L2 external disturbances as well as NI model uncertainty.
As a byproduct, this technical note also reaffirms a previous result
by Li et al. which shows the robustness of networked systems is
always worse than that of single agent systems. Furthermore, the
eventual convergence sets are also characterized for several special
NI systems that are commonly studied in the literature. It is shown
how the results in this work embed and generalize earlier results
for these classes of systems. We show that the natural convergence
set boils down to the centroid of the initial pattern when the initial
conditions of the controllers are zero. Numerical examples are
given to showcase the main results.

Index Terms—Consensus, cooperative control, negative-
imaginary systems, robust control.

I. INTRODUCTION

Negative-imaginary (NI) systems are, broadly speaking, systems
with a negative imaginary frequency response. This class of systems
has received extensive attention in recent years [1], [2], [3] since it
was introduced in [4] and found its most successful application in the
area of nano-positioning control [5] where co-located force actuation
and position measurement are typical [6]. NI systems theory has also
been widely applied to the control of flexible structures with highly-
resonant dynamics, which is typically a challenging task to tackle via
classical methods. Robust stability analysis of interconnected systems
with mixed NI and small-gain properties has also been studied in [7].

The area of cooperative control has been very active over the past
decade and it was immediately evident that distributed control and
communication networks play an important role in stability analysis.
The output feedback consensus problem, or more precisely, the output
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synchronization problem was first studied in [8], and a solution for
weakly minimum phase nonlinear systems with relative degree one
was presented. Later, [9] extended the result to heterogeneous cases
even with uncertainties. The output feedback consensus problem that
we consider is to have all the outputs naturally converge to a common
trajectory (not necessarily constant) which is entirely determined by
the subsystems themselves as well as the graph properties. Although
similar approaches were presented in [1], [10] and [11] using a state-
space representation, this work can be distinguished from these works
via the following aspects: (a) a much simpler D.C. gain condition for
robust output feedback consensus is given, while the aforementioned
works mainly build on the existence of a matrix or matrices such that
the error dynamics are stable, which is usually hard to find; (b) [10]
and [11] do not study a robust control law, whereas this article does;
(c) this work also captures the result of [1] regarding the robustness of
the multi-agent systems is never better than that of single agent sys-
tems. Recently, a robust consensus problem for heterogeneous multi-
agent systems was discussed in [12]. However, the agents considered
are constrained to second-order systems, which is just an example
of NI systems and the consensus algorithm is based on full state
information which is infeasible in most cases, whereas here we handle
output feedback. Another work [13] addressed an output consensus
problem of heterogeneous uncertain linear multi-agent systems. How-
ever, this work requires the following assumptions: (a) [13] makes a
minimum phase assumption on all plants which allows the use of high
gain control whereas the NI systems in this work are not necessarily
minimum phase; (b) [13] only studies a class of unmodelled dynamics
but does not explicitly tackle L2 external disturbances whereas this
work studies both; (c) again, [13] deals with an output synchronization
problem to a limited class of trajectories, such as constant, sinusoidal
and diverging signals which are polynomial functions of time due
to technical reasons whereas this work studies a consensus problem
naturally converging to an unspecified trajectory.

This technical note is motivated by applications in which the system
goal cannot be accomplished by a single NI system due to limitations
in its capability, such as coverage or precision. This in turn requires
the coordination of multiple NI systems, which in this work involves
output feedback consensus under external disturbances and model
uncertainty. In this technical note, a homogeneous network of NI
systems and a fixed communication topology are assumed. The ith NI
system is described in the s-domain

yi = P (s)ui, i = 1, · · · , n (1)

where P (s) is the transfer function (generally MIMO), yi ∈ R
m×1

and ui ∈ R
m×1 are the output and input of the system with the dimen-

sion m ≥ 1, n > 1 is the number of agents. Then, an elegant problem
formulation, using the Laplacian matrix and Kronecker product, is
adopted such that the output feedback consensus problem is cast into a
robust stability problem, which can be solved via NI systems theory as
detailed in [4], [14] and [15]. The contributions of this technical note
can be summarized as follows: (a) it provides a novel viewpoint where
consensus problems can be studied as internal stability problems,
(b) it only exploits output feedback information as opposed to the
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full state feedback which is common in the literature, (c) it gives a
class of consensus protocols that can be tuned for performance and/or
robustness, (d) it provides a robustness guarantee via NI systems
theory, and (e) it characterizes the convergence sets.

Notation: R
m×n and C

m×n denote the sets of m× n real and
complex matrices respectively. In is the n× n identity matrix and
1n is the n× 1 vector with all elements being 1. Given M ∈
R

n×n, M > (<)0 means M is positive (negative) definite and M ≥
(≤)0 means M is positive (negative) semi-definite. λ̄(M) denotes
the largest eigenvalue of M when M has only real eigenvalues and
σ̄(M), σ(M) represent the maximum and minimum singular values
of M , respectively. N(M) denotes the null space of M . MT and
M∗ are the transpose and the complex conjugate transpose of M . In
addition, given s ∈ C, Re[s] is the real part of s. Given a1, a2 ∈ C,

diag(a1, a2) =

[
a1 0
0 a2

]
. Finally, given a ∈ R

n×1, ave(a) is the

average operation of all elements of a. OLHP is short for open left
half plane and MIMO is short for multi-input and multi-output.

Preliminaries of graph theory: A graph can be mathematically
expressed by G = (V, E) where V = {v1, v2, . . . , vn} is a nonempty
finite set of n nodes and an edge set E ⊆ V × V is used to
model the communications links among nodes. The adjacency ma-
trix A = [aij ] ∈ R

n×n, where aii = 0 and ∀i, j with i �= j, aij =
1 if (vi, vj) ∈ E and 0 otherwise. The in-degree of node i is de-
fined as di =

∑
j
aij and D = diag{d1, d2, · · · , dn} ∈ R

n×n is the
in-degree matrix. The Laplacian matrix of graph G is given by
Ln = D −A. A sequence of successive edges of E in the form of
{(vi, vk), (vk, vl), . . . , (vm, vj)} is defined as a path from node i to
node j. An undirected graph is said to be connected if there is a
path from node i to node j for all the distinct nodes vi, vj ∈ V . It
is well-known that Ln has the following properties when the graph is
undirected and connected:

Ln ≥ 0, N(Ln) = span{1n}. (2)

II. ROBUST OUTPUT FEEDBACK CONSENSUS PROTOCOL

In this section, a class of output feedback consensus protocols
for networked NI systems under external disturbances and NI model
uncertainty is considered. To this end, let us first recall the definitions
of NI and strictly negative-imaginary (SNI) systems:

Definition 1—([15]): A square, real, rational, proper transfer func-
tion P (s) is NI if the following conditions are satisfied:

1) P (s) has no pole in Re[s] > 0;
2) ∀ω > 0 such that jω is not a pole of P (s), j(P (jω)−

P (jω)∗) ≥ 0;
3) If s = jω0 with ω0 > 0 is a pole of P (s), then it is a simple pole

and the residue matrix K = lim
s→jω0

(s− jω0)jP (s) is Hermitian

and positive semi-definite;
4) If s = 0 is a pole of P (s), then lim

s→0
skP (s) = 0, ∀k ≥ 3 and

P2 = lim
s→0

s2P (s) is Hermitian and positive semi-definite.

It can be observed that Definition 1 captures the definitions of NI
systems in [4] and [14]. Examples of NI systems can be found in
[6] and include single-integrator systems, double-integrator systems,
undamped and damped flexible structures, to name a few typically
considered in the consensus literature.

Definition 2—([4]): A square, real, rational, proper transfer func-
tion Ps(s) is SNI if the following conditions are satisfied:

1) Ps(s) has no pole in Re[s] ≥ 0;
2) ∀ω > 0, j(Ps(jω)− Ps(jω)

∗) > 0.

Fig. 1. Networked NI systems.

Homogeneous NI agents are defined in the s-domain in the form
of (1). Since P (s) is in general a MIMO plant, the Laplacian matrix
describing the network interconnection is modified via a Kronecker
product to Ln ⊗ Im and the total networked plant under consideration
is depicted in Fig. 1 with

ỹ = P̄ (s)u = (Ln ⊗ Im) (In ⊗ P (s))u = (Ln ⊗ P (s))u (3)

where P̄ (s) is the augmented plant, y = [yT
1 , · · · ,yT

n ]
T ∈ R

nm×1

and u = [uT
1 , · · · ,uT

n ]
T ∈ R

nm×1. In general, robust output feed-
back consensus is defined as follows:

Definition 3: A distributed output feedback control law achieves
robust output feedback consensus for a network of systems when:

1) output consensus is achieved, i.e., yi → yss, ∀i ∈ {1, · · · , n}
for a family of plant dynamics with no external disturbance,
where yss is the final convergence trajectory.

2) yss is perturbed by additive L2[0,∞] signals when L2[0,∞]
disturbances are present on both input and output.

It can be seen that the output y reaches consensus when ỹ → 0 via
the properties of the Laplacian given in (2). This formulation actually
converts the output consensus problem to an internal stability problem
which is easier to tackle and investigate the robustness property via
standard control theoretic methods. We now impose the following
standing assumption:

Assumption 1: G is undirected and connected.
The following preliminary lemmas are needed:
Lemma 1—([16]): Let λj and γk, j = 1, · · · , n, k = 1, · · · ,m, be

eigenvalues of matrices Λn×n and Γm×m, respectively, the eigenval-
ues of Λ⊗ Γ are λjγk.

Note that Lemma 1 also applies to the singular values [16].
Lemma 2: Given Λ ∈ R

n×n and Γ ∈ R
m×m, then

N(Λ⊗ Γ) =
{
a⊗ b : b ∈ R

m×1,a ∈ N(Λ)
}

∪
{
c⊗ d : c ∈ R

n×1,d ∈ N(Γ)
}
.

Proof: The proof simply follows from the definition of null space
and the properties of Kronecker product. �

The following lemma states that the augmented networked plant
P̄ (s) = Ln ⊗ P (s) is NI if and only if every single system P (s)
is NI.

Lemma 3: P̄ (s) is NI if and only if P (s) is NI.
Proof: First note that Ln ≥ 0 due to Assumption 1 in (3). Then,

the sufficiency and necessity are straightforward by applying Lemma 1
to Definition 1. �

Since Lemma 3 requires positive semi-definiteness of Ln, this work
cannot be applied to directed graphs. The output ỹ → 0 if internal
stability is achieved for P̄ (s) with some controller. From [4], [14], and
[15], the following internal stability results are summarized:

Lemma 4: Given an NI transfer function P (s) and an SNI transfer
function Ps(s) with P2 = lim

s→0
s2P (s), P1 = lim

s→0
s(P (s)− (P2/s

2))

and P0 = lim
s→0

(P (s)− (P2/s
2)− (P1/s)), the positive feedback
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interconnection [P (s), Ps(s)] is internally stable if and only if any of
the following conditions is satisfied:

1) λ̄(P (0)Ps(0)) < 1 when P (s) has no pole(s) at the origin,
P (∞)Ps(∞) = 0 and Ps(∞) ≥ 0;

2) JTPs(0)J < 0 when P (s) has pole(s) at the origin and is
strictly proper, P2 �= 0, P1 = 0, N(P2) ⊆ N(PT

0 ), where P2 =
JJT with J having full column rank;

3) FT
1 Ps(0)F1 < 0 when P (s) has pole(s) at the origin and is

strictly proper, P2 = 0, P1 �= 0, N(PT
1 ) ⊆ N(PT

0 ), where P1 =
F1V

T
1 with F1 and V1 having full column rank and V T

1 V1 = I .

Note that the above result is actually a robust stability result because
an NI plant P (s) can be perturbed by any unmodelled dynamics
Δ(s) such that the perturbed plant PΔ(s) which then replaces the
nominal plant P (s) in Lemma 4 retains the NI system property
and still fulfills any one of the conditions in Lemma 4. Similarly,
Ps(s) can be perturbed to any SNI controller subject to 1), 2), 3).
Henceforth, we do not distinguish between P (s) and PΔ(s) for
simplicity of notation, though it is stressed that P (s) could be the
resulting perturbed dynamics of some simpler nominal plant. There
is clearly a huge class of permissible dynamic perturbations to the
nominal dynamics as conditions 1), 2), and 3) impose a restriction on
P (s) only at the frequency ω = 0 or on the associated residues of
P (s) at ω = 0 and the NI class has no gain or order restriction [4]. A
few examples of permissible perturbations are additive perturbations
where the uncertainty is also NI [4], feedback perturbations where
both systems in the feedback interconnection are NI [6] and more
general perturbations based on Redheffer Star-products and Linear
Fractional Transformations [6]. For example, 1/(s+ 5) and (2s2 +
s+ 1)/(s2 + 2s+ 5)(s+ 1)(2s+ 1) are both NI with the same
D.C. gain.

Now, we are ready to state the first main result of this work:
Theorem 1: Given a graph G which satisfies Assumption 1 and

models the communication links for networked homogeneous NI
systems, and given any SNI control law Ps(s), robust output feedback
consensus is achieved via the protocol

U cs = P̄s(s)ỹ = Ccs(s)y = (Ln ⊗ Ps(s))y (4)

shown in Fig. 2, or in a distributed manner for each agent i,

ui = Ps(s)

n∑
j=1

aij(yi − yj) (5)

under any external disturbances d1,d2 ∈ L2[0,∞) and any model
uncertainty which retains the NI system property of the perturbed plant
P (s) if and only if P (s) and Ps(s) satisfy 1), 2), or 3) in Lemma 4
except that

λ̄ (P (0)Ps(0)) <
1

λ̄(Ln)
(6)

replaces λ̄(P (0)Ps(0)) < 1 in case 1).
Proof: Before presenting the consensus result, let us first prove

the internal stability of [P̄ (s), P̄s(s)] using Lemma 4. From Fig. 2, we
have P̄ (s) = Ln ⊗ P (s) which has been shown to be NI in Lemma 3
and it is straightforward to see P̄s(s) = In ⊗ Ps(s) is SNI since Ps(s)
is SNI.

(⇐) Sufficiency: From Lemma 4, we can conclude that
[P̄ (s), P̄s(s)] is internally stable since:

1) when P (s) has no pole(s) at the origin, P̄ (s) has no
pole(s) at the origin as well. Also, P̄ (∞)P̄s(∞) = (Ln ⊗
P (∞))(In ⊗ Ps(∞)) =Ln⊗(P (∞)Ps(∞))=0 and P̄s(∞)=
Ln ⊗ Ps(∞) ≥ 0 due to Lemma 1 as well as the pair of
[P (s), Ps(s)] satisfies condition 1) of Lemma 4. Finally,

Fig. 2. Closed-loop system with SNI controllers.

λ̄(P̄ (0)P̄s(0))= λ̄(Ln⊗(P (0)Ps(0)))<1 since λ̄(P (0)Ps(0))<
(1/λ̄(Ln)) due to Lemma 1.

2) when P (s) has pole(s) at the origin, P̄ (s) has pole(s) at the
origin as well. In the case of P2 �= 0, P1 = 0, it is straight-
forward to see N(Ln ⊗ P2) = N(P̄2) ⊆ N(P̄T

0 ) = N(Ln ⊗
PT
0 ) due to Lemma 2 and N(P2) ⊆ N(PT

0 ). Furthermore,
P̄2 = Ln ⊗ P2 = (JLJ

T
L )⊗ (JJT ) =(JL ⊗ J)(JL ⊗ J)T =

J̄ J̄T since Ln and P2 are both Hermitian and positive semi-
definite, where JL has full column rank being n− 1. With the
definition of J̄ = JL ⊗ J , we have J̄T P̄s(0)J̄ = (JL ⊗ J)T

(In⊗Ps(0))(JL⊗J)=(JT
L InJL)⊗(JTPs(0)J) = (JT

L JL)⊗
(JTPs(0)J) < 0 since JT

L JL > 0 (with full rank of n− 1) as
well as Lemma 1 and condition 2) of Lemma 4.

3) The case of P2 = 0, P1 �= 0 follows in a similar manner as
case 2) by noting that F̄1 = JL ⊗ F1.

(⇒) Necessity is trivial by reversing the above arguments.
The internal stability of [P̄ (s), P̄s(s)] implies output consensus

when d1 = d2 = 0, by noting that ỹ → 0 ⇐⇒ y → 1n ⊗ yss, i.e.,
yi → yss ∈ R

m×1, which is the null space of Ln ⊗ Im when G is
undirected and connected.

Robustness to model uncertainty which retains the NI property of
P (s) is assured as the result is applicable to any NI plant P (s).
Furthermore, the external disturbances d2,d1 in Fig. 2 on input u and
output y are equivalent to d2, (Ln ⊗ Im)d1 on input u and output ỹ,
which is a subset of L2 disturbances. Hence, the control protocol (4)
or (5) will achieve a perturbed L2 consensus signal on output y (due
to superposition principle of linear systems) for all L2 disturbances
d1,d2. �

Remark 1: It can be seen that the condition in inequality (6) is
stricter than that in the inequality of case 1) of Lemma 4 due to
the network interconnection. If originally Ps(0) was such that 0 <
λ̄(P (0)Ps(0)) < 1, the controller Ps(0) needs to be tuned for smaller
eigenvalues in order to satisfy inequality (6). On the other hand, if
λ̄(P (0)Ps(0)) < 0, there is no need to tune further.

From Fig. 2 and [17], it is convenient to define the input
loop transfer matrix, Li = −(In ⊗ Ps(s))(Ln ⊗ P (s)) = −Ln ⊗
(Ps(s)P (s)), and output loop transfer matrix, Lo = −(Ln ⊗
P (s))(In ⊗ Ps(s)) = −Ln ⊗ (P (s)Ps(s)), respectively. The input
and output sensitivity matrices are defined as Si = (I + Li)

−1 and
So = (I + Lo)

−1. If the closed-loop system is internally stable, the
following equations hold:

ỹ =So(Ln ⊗ Im)d1 + So (Ln ⊗ P (s))d2
(7)

u =Si (Ln ⊗ Ps(s))d1 + Sid2.
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Good robustness to high frequency unmodelled dynamics is given by
the condition in [17]:

σ (−Ln⊗P (jω)Ps(jω))�1, σ (−Ln⊗Ps(jω)P (jω))�1

and σ (−Im ⊗ Ps(jω)) � M

⇐⇒σ (P (jω)Ps(jω))�
1

σ(Ln)
, σ (Ps(jω)P (jω))� 1

σ(Ln)
(8)

and σ (Ps(jω)) �
M

σ(Ln)

where M is sufficiently small and σ(Ln) = λ(Ln) for the undirected
and connected graph.

Remark 2: Inequality (8) implies that the robust condition for
networked systems is always more stringent than that for a single
system by noting that σ(Ln) = λ(Ln) > 1 ([18]), which reaffirms the
result of [1].

III. CONVERGENCE SET STUDY

Section II provides a class of general robust output feedback con-
sensus protocols that guarantees the convergence of the NI systems’
outputs yi under external disturbances as well as NI model uncertainty.
This section mainly aims at investigating the steady state nominal
values of yss under the proposed output feedback consensus protocol.
In order to specify the exact convergence set, the external disturbances
and model uncertainty will not be considered in this section.

Given a minimal realization of the ith NI plant P (s){
ẋp×1

i = Ap×pxp×1
i +Bp×mum×1

i

ym×1
i = Cm×pxp×1

i +Dm×mum×1
i

, i = 1, · · · , n (9)

and a minimal realization of the ith SNI controller Ps(s){
˙̄x
q×1
i = Āq×qx̄q×1

i + B̄q×mūm×1
i

ȳm×1
i = C̄m×qx̄q×1

i + D̄m×mūm×1
i

, i = 1, · · · , n (10)

where p and q are the dimensions of the states of the NI plant and
the SNI controller, respectively. The closed-loop system of Fig. 2 is
given as[

˙̄x
ẋ

]
=

[
In ⊗ Ā+Ln ⊗ B̄DC̄ Ln ⊗ B̄C

In ⊗BC̄ In ⊗A+Ln ⊗BD̄C

][
x̄
x

]
(11)

Δ
= Ψ

[
x̄
x

]
.

The spectrum of Ψ is of importance since it will determine the
equilibria. In particular, in this work, the eigenvalues of Ψ on the
imaginary axis will determine the steady-state behavior. To this end,
the following lemma is given to characterise the spectrum of Ψ.

Lemma 5: Let λi
L be the ith eigenvalue of Ln associated with

eigenvector vi
L. The spectrum of Ψ is given by the union of spectra

of the following matrices:

ψi =

[
Ā+ λi

LB̄DC̄ λi
LB̄C

BC̄ A+ λi
LBD̄C

]
, i = 1, · · · , n.

Furthermore, let [vi
1
T
vi
2
T
]
T

be an eigenvector of ψi. Then, the

corresponding eigenvector of Ψ is

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]
.

Proof: Let λψi
be the eigenvalue of ψi and

Ψ

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]
=

[
vi
L ⊗

(
Āvi

1 + λi
LB̄DC̄vi

1 + λi
LB̄Cvi

2

)
vi
L ⊗

(
BC̄vi

1 +Avi
2 + λi

LBD̄Cvi
2

) ]

=

[
vi
L ⊗ λψi

vi
1

vi
L ⊗ λψi

vi
2

]
= λψi

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]

which shows that λψi
is also an eigenvalue of Ψ with the associated

eigenvector being

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]
. �

It is well known in [19] that there is only one zero eigenvalue in
Ln, λi

L = 0, when the graph G satisfies Assumption 1. In this case,

ψi has eigenvalues λA and λĀ associated with eigenvectors

[
0
vA

]

and

[
vĀ

(λĀIn −A)−1BC̄vĀ

]
respectively since ψi =

[
Ā 0
BC̄ A

]
,

where λA and λĀ are the eigenvalues of A and Ā, vA and vĀ are
the corresponding eigenvectors of A and Ā, respectively. This also
shows that eigenvalues of Ψ include λA and λĀ with the associated

eigenvectors being

[
0

1⊗ vA

]
and

[
1⊗ vĀ

1⊗ (λĀIn −A)−1BC̄vĀ

]
. It

is worth noting that the invertibility of A− λĀIn follows since an SNI
controller can always be chosen such that λĀ �= λA.

In the case of λi
L > 0 and det(A) �= 0, it can be shown in a similar

manner as [4, Theorem 5] that

ψi =

[
Ā+ λi

LB̄DC̄ λi
LB̄C

BC̄ A+ λi
LBD̄C

]
(12)

=

[
Ā 0
BC̄ A

]
+ λi

L

[
B̄
BD̄

]
[DC̄ C ] = ΦT

where T =

[
Ȳ −1 − λi

LC̄
∗DC̄ −λi

LC̄
∗C

−C∗C̄ Y −1 − λi
LC

∗D̄C

]
and Φ =[

ĀȲ 0
0 AY

]
. ψi is Hurwitz if and only if λ̄(P (0)Ps(0)) < (1/λi

L),

which coincides with the condition in Theorem 1 when λi
L = λ̄(Ln).

In the case of λi
L > 0 and det(A) = 0, it can be verified in a similar

manner as [15] that

ψi =

[
Ā λi

LB̄C
BC̄ A+ λi

LBD̄C

]
(13)

due to D = 0. ψi is also Hurwitz when the conditions 2) and 3) in
Lemma 4 hold. A detailed proof is omitted due to page limitations.

One direct observation from the above analysis: the number of
eigenvalues of Ψ on the imaginary axis is equal to the number of
eigenvalues of A on the imaginary axis and all of the other eigenvalues
lie in the OLHP since Ā is Hurtwiz [14]. Thus, the steady state of the
closed-loop system (11) in general depends only on the eigenvalues of
A on the imaginary axis as shown in the following theorem:

Theorem 2: Given the closed-loop system in (11), the steady state
can be expressed in the general form

[
x̄(t)
x(t)

]
t→∞
−−−−−→ [wj , · · · , wg

k ] e
J′t

⎡
⎣ vT

j

...
vg
k
T

⎤
⎦[

x̄(0)
x(0)

]
(14)

where J ′ is the Jordan block associated with n0 eigenvalues of Ψ on
the imaginary axis denoted by λA, wj and vj are the right and left
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eigenvector of Ψ associated with λA given by

wj =

[
0

1⊗ vr
A

]
, vj =

[
1⊗

(
1
n
(λAIq − Ā)−1C̄TBTvl

A

)
1⊗ 1

n
vl
A

]
(15)

∀j = 1, · · · , n0 − (na − ng), where na and ng denote the algebraic
and geometric multiplicity of λA respectively. vr

A,v
l
A are the right and

left eigenvectors of A associated with λA. Moreover, in the case that
na > ng , wg

k and vg
k are the generalised right and left eigenvectors

given by

wg
k=

[
0

1⊗ v
rg
A

]
, vg

k=

[
1⊗

(
1
n
(λAIq − Ā)−1C̄TBTv

lg
A

)
1⊗ 1

n
v
lg
A

]
(16)

where k = 1, · · · , na − ng , v
rg
A and v

lg
A are the generalised right and

left eigenvectors of A associated with λA.

Proof: It is straightforward that

[
x̄(t)
x(t)

]
= eΨt

[
x̄(0)
x(0)

]
=

PeJtP−1

[
x̄(0)
x(0)

]
t→∞
−−−−−→P

[
eJ

′t 0
0 0

]
P−1

[
x̄(0)
x(0)

]
, where J ′

r×r

is the Jordan block associated with n0 eigenvalues on the imaginary
axis. Also, P = [w1, · · · ,wn0

, · · · ,w(p+q)n], where wi is the right
eigenvector of Ψ and P−1 = [v1, · · · ,vn0

, · · · ,v(p+q)n]
T , where vi

is the left eigenvector of Ψ.
It can be found, without loss of generality, that the right and left

eigenvectors of Ψ associated with the eigenvalues on imaginary axis
are given in (15). Thereby, the steady state generally converges to

[
x̄(t)
x(t)

]
t→∞
−−−−−→ [w1, · · · , wn0

] eJ
′t

⎡
⎣ vT

1

...
vT
n0

⎤
⎦[

x̄(0)
x(0)

]
. (17)

However, in the case that na > ng , the generalised right and left
eigenvectors are given in (16). Thus, the steady state converges to (14)
instead of (17). �

Next, convergence sets of several special cases of NI systems are
given in detail:

Corollary 1: In the case that the NI plant is a single-integrator,
i.e., ẋi = ui, yi = xi, the convergence set of (11) is yss = −C̄Ā−T ·
ave(x̄(0)) + ave(x(0)).

Proof: The convergence set can be obtained by noting the
eigenvectors wj = [0T 1T

n ]
T , vj = [−(1/n)C̄Ā−T1T

n (1/n)1T
n ]

T

and applying (17) in Theorem 2. �
Corollary 2: In the case that the NI plant is a double-integrator,

i.e., ξ̇i = ζi, ζ̇i = ui, yi = ξi, the convergence set of (11) is yss =
−C̄Ā−T · ave(x̄(0))t+ ave(ξ(0)) + ave(ζ(0))t.

Proof: For double-integrator plants, na = 2 > 1 = ng for
λ(A) = 0. The convergence set is straightforward by noting wj =

[0T 1T
n 0T ]

T , vj = [0T (1/n)1T
n 0T ]

T , wg
k = [0T 0T 1T

n ]
T , vg

k =

[−(1/n)C̄Ā−T1T
n 0T (1/n)1T

n ]
T after rearranging x = [ξT ζT ]

T

and applying (14). �
Corollary 3: In the case that the NI plant is a damped flexible

structure, the convergence set of (11) is yss = 0.
Proof: This is straightforward and thus omitted. �

IV. ILLUSTRATIVE EXAMPLES

In this section, numerical examples of typical NI systems are given
to illustrate the main results of this technical note. A scenario of 3 NI
systems is considered and the communication graph G is given as in
Fig. 3. Therefore, the Laplacian matrix of G can be derived according
to the definition in Section I:

Fig. 3. Communication topology G and associated Laplacian matrix.

Fig. 4. Robust output consensus for networked single-integrator systems.

A. Multiple Single-Integrator Systems

Suppose that the NI systems have identical single-integrator dynam-
ics as shown in Corollary 1 with the initial condition being x(0) =
[1 2 3]T . The SNI controller is designed as indicated in Theorem 1
to be Ā = −2, B̄ = 1, C̄ = 1, D̄ = −1, with the initial condition
being x̄(0) = [0.1 0.2 0.3]T . Without considering disturbances firstly,
it can be verified as Corollary 1 that yss = −C̄Ā−T · ave(x̄(0)) +
ave(x(0)) = (1/2) ∗ 0.2 + 2 =2.1, which is shown at the top left of
Fig. 4. If external disturbances are inserted, robust output feedback
consensus is also achieved with the steady state consensus value
perturbed by filtered disturbances as shown at the top right of Fig. 4.
The robust performance of the control law can be improved by tuning
the SNI controller to, for example D̄ = −5, which are shown in the
bottom left and right of Fig. 4, respectively.

One may notice that when the initial condition of the controller
x̄(0) is set to 0 (a reasonable choice as the controller is determined
by the designer), the convergence set naturally becomes the centroid
of the initial pattern, i.e., yss = ave(x(0)), which in turn implies
that the result for the average consensus protocol in [19] is a special
case of the proposed result. Alternatively, the desired convergence
point can be chosen by properly initialising the SNI controller, which
can be seen as a more general result.

B. Multiple Double-Integrator Systems

Suppose that the NI systems have identical double-integrator dy-
namics as shown in Corollary 2 with the initial conditions being ξ(0)=
[1 2 3]T , ζ(0) = [0.1 0.2 0.3]T . The same SNI controller can be
adopted as in Section IV-A. Without considering disturbances firstly,
it can be verified using Corollary 2 that yss = ξi(∞) = −C̄Ā−T ·
ave(x̄(0))+ave(ξ(0))+ ave(ζ(0))t=(1/2) ∗ 0.2+2+0.2t=2.1+
0.2t and ζi(∞) = −C̄Ā−T · ave(x̄(0))+ave(ζ(0)) =(1/2) ∗ 0.2 +
0.2 = 0.3, which is exactly as shown at the top of Fig. 5. If the same
disturbances as in Section IV-A are inserted, output consensus is also
achieved with the steady state values perturbed by filtered disturbances
as shown at the bottom of Fig. 5. Again, appropriate choices of the SNI
controller can be made to minimise the effects of external disturbances,
which is omitted here due to the page limitations.

One can also choose the initial condition of the controller to
be x̄(0) = 0 to obtain the natural convergence set as yss = ξss =
ave(ξ(0)) + ave(ζ(0))t and ζss = ave(ζ(0)). The same conclusion
can hence be drawn as in Section IV-A.
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Fig. 5. Robust output consensus for networked double-integrator systems.

Fig. 6. Robust output consensus for networked flexible structures.

C. Multiple Flexible Structures Systems

Suppose that the NI systems are damped flexible structures as
shown for example in Fig. 2 of [4]: M ẍi + Cẋi +Kxi = ui, yi =

xi, i = 1, · · · , 3 where xi = [x1
i
T
x2
i
T
]
T

, ui = [u1
i
T
u2
i
T
]
T

, M =

diag(m1,m2), C =

[
c1 + c −c
−c c2 + c

]
, K =

[
k1 + k −k
−k k2 + k

]
with m1 = 1, m2 = 0.5, k1 = k2 = k = 1 and c1 = c2 = c = 0.1.
The initial conditions are given as x(0) = [1 2 3 4 5 6]T and ẋ(0) =
[0.1 0.2 0.3 0.4 0.5 0.6]T . The SNI controller can be designed as
indicated in Theorem 1 to be Ā = −4I2, B̄ = I2, C̄ = I2, D̄ = 02
since λ̄(P (0)) = 1 and thus λ̄(P (0)Ps(0)) = (1/4) < (1/λ̄(Ln)) =
1/3 with the initial condition being [0 0 0 0 0 0]T . Robust output
feedback consensus can be achieved as shown at the top of Fig. 6 under
external disturbances, which also validates Corollary 3.

If the NI systems are considered as undamped flexible structures
as shown in Fig. 2 of [14], which correspond to the above damped
flexible structure dynamics without the damping term C, robust output
feedback consensus can be achieved as shown at the bottom of Fig. 6
under external disturbances.

V. CONCLUSION

NI systems include a wide range of LTI systems that are com-
monly studied in the consensus literature. This class of systems and
corresponding theory also include a large class of dynamical systems
that have not been studied in consensus literature to date. The robust
output feedback consensus problem for this class of systems is hence
of interest. The advantage of using NI systems theory for solving
the consensus problem is four-fold: (a) it only uses output feedback

information as opposed to full-state feedback information; (b) it pro-
vides robustness guarantees w.r.t. L2 external disturbance; (c) it allows
tuning of a whole class of SNI control laws for performance; and
(d) it bypasses traditional searches for Lyapunov candidate functions.
In addition, the characterized convergence set also makes it possible
to initialize the controller state to achieve the desired final consensus
target.

Future research directions include robust output feedback consensus
for networked heterogeneous NI systems as well as the impact of
switching topologies and time delays.
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