
1042 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008

[16] E. D. Sontag, “A ‘universal’ constructive of Artstein’s theorem on
nonlinear stabilization,” Syst. Control Lett., vol. 12, pp. 542–550, 1989.

[17] J. Tsinias, “Asymptotic feedback stabilization: A sufficient condition for
the existence of control Lyapunov functions,” Syst. Control Lett., vol. 15,
pp. 441–448, 1990.

[18] J. L. Wu, “Simultaneous stabilization for a collection of single-input
nonlinear systems,” IEEE Trans. Autom. Control, vol. 50, no. 3,
pp. 328–337, Mar. 2005.

[19] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based on
parameterization of the switching instants,” IEEE Trans. Autom. Control,
vol. 49, no. 1, pp. 2–16, Jan. 2004.

[20] H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical
systems,” IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 461–474, Apr.
1998.

[21] M. Zefran and J. W. Burdick, “Design of switching controllers for systems
with changing dynamics,” in Proc. 37th IEEE CDC, 1998, pp. 2113–
2118.

[22] J. Zhao and G. M. Dimirovski, “Quadratic stability of a class of switched
nonlinear systems,” IEEE Trans. Autom. Control, vol. 49, no. 4,
pp. 574–578, Apr. 2004.

[23] http://researcher.nsc.gov.tw/Jenq Lang Wu/en/

Stability Robustness of a Feedback Interconnection
of Systems With Negative Imaginary Frequency Response

Alexander Lanzon and Ian R. Petersen

Abstract—A necessary and sufficient condition, expressed simply as the
dc loop gain (i.e., the loop gain at zero frequency) being less than unity,
is given in this note to guarantee the internal stability of a feedback inter-
connection of linear time-invariant (LTI) multiple-input multiple-output
systems with negative imaginary frequency response. Systems with nega-
tive imaginary frequency response arise, for example, when considering
transfer functions from force actuators to colocated position sensors, and
are commonly important in, for example, lightly damped structures. The
key result presented here has similar application to the small-gain theorem,
which refers to the stability of feedback interconnections of contractive
gain systems, and the passivity theorem, which refers to the stability of
feedback interconnections of positive real (or passive) systems. A complete
state–space characterization of systems with negative imaginary frequency
response is also given in this note and also an example that demonstrates
the application of the key result is provided.

Index Terms—Bounded-real systems, passivity, positive position feed-
back, positive-real systems, small-gain theorem.

NOMENCLATURE

��n×n
∞ Set of real-rational stable transfer function ma-

trices of dimension (n × n).
R and C Fields of real and complex numbers, respec-

tively.
R

n×n and C
n×n Real and complex matrices, respectively, of di-

mension (n × n).
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Fig. 1. Positive feedback interconnection.

λi (A) The ith eigenvalue of a square complex matrix
A

λ(A) Maximum eigenvalue for a square complex ma-
trix A that has only real eigenvalues.

�(a) and �(a) Real and imaginary parts, respectively, of a ∈
C.

AT and A∗ The transpose and the complex conjugate trans-
pose of a complex matrix A.

M∼(s) Adjoint of transfer function matrix M (s) given
by M (−s)T .

diag(a, b) Shorthand for

[
a 0
0 b

]
.

A−∗ Shorthand for (A−1 )∗.

I. INTRODUCTION

Consider a positive feedback interconnection of two linear time-
invariant (LTI) multiple-input multiple-output (MIMO) systems, M (s)
and N (s), as shown in Fig. 1, denoted by [M (s), N (s)]. The Nyquist
stability theorem [1] gives necessary and sufficient conditions under
which this interconnection is internally stable, using much information
of M (s) and N (s). However, when M (s) and N (s) satisfy certain
known properties (e.g., they are both bounded real with product of
gains less than unity, or they are both positive real, etc.), it is also
possible to derive powerful theorems (such as the small-gain theorem
[2], [3], or the passivity theorem [4], [5], etc.) that use only limited
information on M (s) and N (s) to establish the internal stability of
this feedback interconnection. This is powerful and interesting because
it provides a mechanism to derive robust stability results when systems
are perturbed by uncertain dynamics that are quantified only in terms of
restricted information (e.g., stable and contractive gain for the small-
gain theorem, or stable and positive real for the passivity theorem,
etc.).

In this note, we derive a new result of a similar flavor. We assume
that both M (s) and N (s) are LTI MIMO stable systems with “negative
imaginary frequency response”1 and use this information to derive a
necessary and sufficient internal stability condition using only limited
information on M (s) and N (s).

We now show why systems with negative imaginary frequency re-
sponse are important in engineering applications. We will do this via
a simple example. Consider a lightly damped structure with colocated
position sensors and force actuators. Lightly damped structures with
colocated position sensors and force actuators can typically be mod-
eled by a (possibly infinite) sum of second-order transfer functions as
follows:

P∆ (s) :=
H∑

i=1

kiω
2
n ,i

s2 + 2ζiωn ,i s + ω2
n ,i

.

1Broadly, we say that (see Section II for precise set definitions) a system R(s)
has “negative imaginary frequency response” when j[R(jω) −R(jω)∗] ≥ 0
(or >0) for all ω ∈ (0,∞). This is because, for single-input single-output
(SISO) systems, −2�(R(jω)) = j[R(jω) −R(jω)∗]. Note that, at ω = 0 or
ω = ∞, �(R(jω)) = 0 as R(s) is real rational.
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For the purpose of control systems design, however, one typically
tends to include only a small finite number of modes (h � H) in the
modeling of such systems, thereby giving rise to spillover unmodeled
dynamics (i.e., unmodeled dynamics due to the lightly damped modes
not included in the plant model). That is, let P (s) be the truncated
plant model used for control systems design and ∆(s) be the spillover
dynamics, both given by

P (s) :=
h∑

i=1

kiω
2
n ,i

s2 + 2ζiωn ,i s + ω2
n ,i

∆(s) :=
H∑

i=(h+1)

kiω
2
n ,i

s2 + 2ζiωn ,i s + ω2
n ,i

.

It is typically an important, though difficult, design specification to
ensure that the closed-loop system retains stability in the presence
of such spillover dynamics ∆(s). Since the relative degree of such
spillover dynamics is more than unity, standard positive real analy-
sis [4], [5] will not be very helpful in establishing robust stability and
since these systems tend to be highly resonant, application of the small-
gain theorem [2], [3] would typically be very conservative. However,
it is readily noticed that such spillover dynamics ∆(s) are stable and
satisfy a negative imaginary frequency response property. The dc gain
of the spillover dynamics is simply

∑H

i=(h+1) ki . Also, satisfaction
of stability and the negative imaginary frequency response property is
invariant to values of ζi > 0 and ωn ,i > 0 for all i ∈ [h + 1, H ]. Con-
sequently, provided that a controller C(s) is designed so as to make the
closed-loop transfer function C/(1 + PC) from plant output distur-
bances to plant input satisfy a negative imaginary frequency response
property with dc gain strictly less than 1/(

∑H

i=(h+1) ki ), then robust
stability to all spillover dynamics ∆(s), and more, will hold for any
value of ζi > 0 and ωn ,i > 0 for all i ∈ [h + 1, H ], and hence, C(s)
will also robustly stabilize P∆ (s).

Note that a similar condition specifically for a subclass of SISO sys-
tems has existed in the positive position feedback control literature [6]
and [7] for some time. It is also not difficult to see how such a condi-
tion arises in SISO systems via a Nyquist diagram sketch. In fact, most
controller synthesis and analysis in positive position feedback control
is based on graphical techniques using Nyquist plots, or nonconvex
parameter optimization [8]. In this note, we: 1) formalize the robust-
ness qualities of feedback interconnections of systems with negative
imaginary frequency response via a mathematical theorem and corol-
lary (as opposed to graphical Nyquist sketches); 2) extend the ideas
to MIMO LTI systems and show that, even in that case, a necessary
and sufficient condition for the internal stability of such systems is that
the dc loop gain (measured in a precise sense) is less than unity; and
3) give a complete state–space characterization of MIMO LTI systems
with negative imaginary frequency response that may, in future work,
underpin controller synthesis.

It is also worth pointing out that while a transfer function from force
actuators to colocated position sensors has typically negative imag-
inary frequency response, the corresponding transfer function from
force actuators to colocated velocity sensors has typically a positive
real response. Consequently, it is legitimate to wonder whether sim-
ply replacing M (s) with sM (s) and N (s) with −(1/s)N (s) in Fig.
1 to obtain a negative feedback interconnection and using standard
positive real analysis [4], [5] would do the trick? The answer to this
question is “no, it does not” as (1/s)N (s) is not stable, sM (s) is
not always guaranteed to be proper, and most importantly positive real
analysis yields an unconditional stability result whereas the intercon-
nection of two systems with negative imaginary frequency response

will always be conditionally stable (see Theorem 5). Of course, there
are some connections between positive real systems and systems with
negative imaginary frequency response that, in fact, will be exploited
in Lemma 1 where we give a complete state–space characterization
of systems with negative imaginary frequency response, but the dif-
ferences are also important and should not be discounted (e.g., arising
from frequencies ω = 0 and ω = ∞).

II. SOME TECHNICAL RESULTS

In this section, we generate the technical machinery that will enable
us to concisely prove the main result in the next section. First, for the
sake of brevity, let us define the following two sets of “stable systems
with negative imaginary frequency response” as

� :=
{
R(s) ∈ ��∞

n×n :

j[R(jω)−R(jω)∗] ≥ 0 ∀ω ∈ (0,∞)
}

(1)

�s :=
{
R(s) ∈ ��∞

n×n :

j[R(jω)−R(jω)∗] > 0 ∀ω ∈ (0,∞)
}
⊂ �. (2)

The first lemma gives a complete state–space characterization of
elements in �. Hence, it also provides a test to easily check whether
a transfer function matrix belongs to set � or not. Testing whether a
transfer function belongs to set �s or not requires an additional check
on transmission zeros of R(s)− R̂∼(s) in the open frequency region
(0,∞).

Lemma 1: Let [
A
∣∣B

C
∣∣D
]

be a minimal state–space realization of a transfer matrix R(s). Then,
R(s) ∈ � if and only if A is Hurwitz, D = D∗ and there exists a real
matrix Y > 0 such that

AY + Y A∗ ≤ 0 and B = −AY C∗.

Proof: The two statements are connected via a sequence of equivalent
reformulations:

1) R(s) =

[
A
∣∣B

C
∣∣D
]
∈ �.

2) R̂(s) := (R(s)−D) =

[
A
∣∣B

C
∣∣ 0

]
∈ � and D = D∗. This

equivalence follows on noting that R(s) ∈ � implies
j[R(∞)−R(∞)T ] ≥ 0 via continuity and a limiting argument,
which in turn implies −j[R(∞)−R(∞)T ] = (j[R(∞)−
R(∞)T ])T ≥ 0. Then, these two inequalities together imply
R(∞) = R(∞)T .

3) F (s) := sR̂(s) =

[
A
∣∣B

CA
∣∣CB

]
∈ ��∞

n×n , F (jω) +

F (jω)∗ ≥ 0 ∀ω ∈ R, A is Hurwitz, and D = D∗.
4) A is Hurwitz, D = D∗, and ∃X > 0, L, W such that

XA + A∗X = −L∗L

B∗X + W ∗L = CA

CB + (CB)∗ = W ∗W.

This equivalence is via the positive real lemma [see, for ex-
ample, [4] together with the fact that (CA, A) is observable,
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or [2, Ths. 13.25,13.26] together with the fact that (L∗L, A) is
observable].

5) A is Hurwitz, D = D∗, and ∃X > 0, L, W such that

XA + A∗X = −L∗L

B = X−1 (A∗C∗ − L∗W )

CX−1A∗C∗ + CAX−1C∗

= W ∗W + CX−1L∗W + W ∗LX−1C∗.

6) A is Hurwitz, D = D∗, and ∃X > 0, L, W such that

XA + A∗X = −L∗L

B = X−1 (A∗C∗ − L∗W )

W = −LX−1C∗ via a completion of squares.

7) A is Hurwitz, D = D∗, and ∃X > 0, L such that XA + A∗X =
−L∗L and B = X−1 (A∗C∗ + L∗LX−1C∗).

8) A is Hurwitz, D = D∗, and ∃X > 0 such that XA + A∗X ≤ 0
and B = −AX−1C∗.

�
The second lemma relates the gain at zero frequency and the gain

at infinite frequency for systems with negative imaginary frequency
response.

Lemma 2: Given R(s) ∈ � (respectively �s ), then R(0)−
R(∞) ≥ 0 (respectively > 0).

Proof: Given a minimal realization

R(s) =

[
A
∣∣B

C
∣∣D
]
∈ �

and applying Lemma 1, we get

R(0)−R(∞) = −CA−1B = CA−1AY C∗ = CY C∗ ≥ 0 (3)

which concludes the proof for the nonstrict inequality.
Now, we focus on R(s) ∈ �s⇔R̂(s) := (R(s)−D) ∈ �s (since

D = D∗ by Lemma 1) and suppose there exists an x ∈ R
n×n such

that R̂(0)x = 0. Then, it follows that CY C∗x = 0 which implies that
C∗x = 0 as Y > 0. This then also gives Bx = 0 via B = −AY C∗

which yields

R̂(jω)x = C(jωI −A)−1Bx = 0 ∀ω ∈ R.

But j[R̂(jω)− R̂(jω)∗] > 0 ∀ω ∈ (0,∞) implies that R̂(jω) is non-
singular for all ω ∈ (0,∞), and hence, the only possible x ∈ R

n×n

such that R̂(0)x = 0 is x = 0. This shows that R̂(0) is also nonsingu-
lar, and thus, R̂(0) > 0. This concludes the proof. �

The following lemma gathers some straightforward computations
that help us understand properties of systems with negative imaginary
frequency response.

Lemma 3: Given R(s) ∈ �, ∆(s) ∈ �, and Rs (s) ∈ �s . Then,

R(s) + ∆(s) ∈ � and Rs (s) + ∆(s) ∈ �s .

Proof: Trivial.
The final technical lemma provides a matrix result that states that

unity is not in the spectrum of matrix AB when matrices A and B
satisfy certain negative imaginary properties.

Lemma 4: Given A ∈ C
n×n with j[A −A∗] ≥ 0 and B ∈ C

n×n

with j[B −B∗] > 0, then,

det(I −AB) �= 0.

Proof: The suppositions can be rewritten as (jA) + (jA)∗ ≥
0 and (jB)−1 + (jB)−∗ > 0. Then, det(I −AB) = det(I +
(jA)(jB)) = det((jA) + (jB)−1 ) det(jB) �= 0. �

III. MAIN RESULT

The key result in this note is Theorem 5. It is an analysis theorem
that states that, provided one system belongs to class � and the other
system belongs to class �s , then a necessary and sufficient condition2

for internal stability of a positive feedback interconnection of these
two systems is to check that the dc loop gain (i.e., the loop gain at zero
frequency) is less than unity.

Theorem 5: Given M (s) ∈ � and N (s) ∈ �s that also satisfy
M (∞)N (∞) = 0 and N (∞) ≥ 0. Then,

[M (s), N (s)] is internally stable ⇔ λ(M (0)N (0)) < 1.

Proof: Let

M (s) =

[
A
∣∣B

C
∣∣D
]

and

N (s) =

[
Ā
∣∣B̄

C̄
∣∣D̄
]

be minimal realizations. Then, by the suppositions of this theorem
and Lemma 1, A is Hurwitz, D = D∗, Ā is Hurwitz, D̄ = D̄∗ ≥ 0,
DD̄ = 0, and there exists real matrices Y > 0 and Ȳ > 0 such that

AY + Y A∗ ≤ 0 and B = −AY C∗, (4)

ĀȲ + Ȳ Ā∗ ≤ 0 and B̄ = −ĀȲ C̄∗. (5)

Now, define

Φ :=

[
AY 0
0 ĀȲ

]
and T :=

[
Y −1 − C∗D̄C −C∗C̄
−C̄∗C Ȳ −1 − C̄∗DC̄

]
and note that

[M (s), N (s)] is internally stable

⇔ (I −M (s)N (s))−1 =[(A BC̄
0 Ā

)
+

(
BD̄
B̄

)
( C DC̄ )

BD̄
B̄

C DC̄ I

]
∈ ��∞

⇔ A :=

[
A BC̄
0 Ā

]
+

[
BD̄
B̄

]
[ C DC̄ ] = ΦT is Hurwitz

(as the previous realization is stabilizable and detectable).

⇔ T > 0
⇔ [(⇒) Since A is Hurwitz and Φ is nonsingular, T is non-

singular. Since Φ + Φ∗ ≤ 0, it follows that TA+ A∗T ≤ 0.
Consequently, A is Hurwitz implies T ≥ 0. But T is also
nonsingular; therefore, T > 0.
(⇐) Since Φ + Φ∗ ≤ 0, it follows that TA+ A∗T ≤ 0. Con-
sequently, T > 0 implies �(λi (A)) ≤ 0 ∀i. But T > 0 and
Φ nonsingular also imply A has no eigenvalue at the origin.
We now invoke Lemma 4 and use the fact that M (s) ∈ �
and N (s) ∈ �s to conclude that det(I −M (jω)N (jω)) �=
0 ∀ω ∈ (0,∞), which in turn is equivalent to A having no
eigenvalue at jω for all ω ∈ (0,∞). ]

2Under some assumptions on the gains of the systems at infinite frequency.
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⇔ Ȳ −1 − C̄∗DC̄ > 0 and

(Y −1 − C∗D̄C)− C∗C̄(Ȳ −1 − C̄∗DC̄)−1 C̄∗C > 0

⇔ λ
[
Ȳ 1/2 C̄∗DC̄Ȳ 1/2

]
< 1 and

Y −1 − C∗D̄C − C∗(I − C̄Ȳ C̄∗D)−1 C̄Ȳ C̄∗C > 0

⇔ λ
[
DC̄Ȳ C̄∗] < 1 and

Y −1 − C∗D̄C − C∗(I −N (0)D)−1 (N (0)− D̄)C > 0

[ as N (0)− D̄ = C̄Ȳ C̄∗ via (3) and D̄D = 0]

⇔ λ [DN (0)] < 1 and

Y −1 − C∗(I −N (0)D)−1 [D̄ + (N (0)− D̄)]C > 0

[ as N (0)− D̄ = C̄Ȳ C̄∗ via (3) and DD̄ = 0]

⇔ N (0)−1 −D > 0 and

Y −1 − C∗(N (0)−1 −D)−1C > 0

[ as N (0) > D̄ via Lemma 2 and D̄ ≥ 0]

⇔
[

Y −1 C∗

C N (0)−1 −D

]
> 0

⇔ N (0)−1 −D − CY C∗ > 0

⇔ N (0)−1 −M (0) > 0

[ as M (0) = D + CY C∗ via (3)]

⇔ λ(M (0)N (0)) < 1.

�
One may wonder whether integral quadratic constraint (IQC) the-

ory [9] captures the sufficiency part of Theorem 5 or not. This
question is subtle and its answer is nontrivial. However, in short,
the answer is “no, it does not.” The subtlety of the question arises
from the fact that IQC theory deals with the full frequency range
ω ∈ R whereas systems N (s) ∈ �s satisfy the frequency-domain in-
equality j[N (jω)−N (jω)∗] > 0 only on an open frequency interval
ω ∈ (0,∞). This strict inequality cannot be satisfied at ω = 0 because
via Lemma 2, we know that N (0) = N (0)∗. This fact causes the main
theorem in [9, Th. 1], which underpins IQC theory, to be inapplicable
by violation of its suppositions.

The following corollary is a weaker restatement of the main theorem,
written in the same form as the small-gain theorem or the passivity
theorem.

Corollary 6:
1) Given γ > 0 and M (s) ∈ �s with M (∞) ≥ 0. Then,

[∆(s), M (s)] is internally stable for all ∆(s) ∈ � satisfying
∆(∞)M (∞) = 0 and λ(∆(0)) < γ (respectively ≤ γ) if and
only if λ(M (0)) ≤ 1/γ (respectively < 1/γ).

2) Given γ > 0 and M (s) ∈ �. Then [∆(s), M (s)] is internally
stable for all ∆(s) ∈ �s satisfying ∆(∞) ≥ 0, ∆(∞)M (∞) =
0 and λ(∆(0)) < γ (respectively≤ γ) if and only if λ(M (0)) ≤
1/γ (respectively < 1/γ).

Proof: Sufficiency of the two statements follows on noting that
λ(M (0))λ(∆(0)) < 1 implies λ(∆(0)M (0)) < 1. Necessity can
be proved via a contrapositive argument on choosing ∆(s) =
1/[λ(M (0))(s + 1)]I as the destabilizing ∆(s).

IV. ILLUSTRATIVE EXAMPLE

Consider the lightly damped mechanical plant depicted in Fig. 2,
which consists of two unit masses constrained to slide rectilinearly

Fig. 2. Lightly damped uncertain mechanical plant.

on a frictionless table. Each mass is attached to a fixed wall via a
spring of known unit stiffness and via a damper of known unit viscous
resistance. Furthermore, the two unit masses are coupled together via a
spring of uncertain stiffness k (in Newton per meter) and via a damper
of uncertain viscous resistance α (in Newton second per meter). A
force is applied to each mass (denoted by u1 and u2 , respectively) and
the displacement of each mass is measured (denoted by y1 and y2 ,
respectively).

Although, this is not an extremely difficult design problem, it does
illustrate a number of important points arising from the results in this
note, as it contains key features such as an uncertain MIMO system with
uncertainty that has negative imaginary frequency response. Similar
examples have been considered in the literature as benchmark problems
by a number of authors, including [1] and [10] to mention a few.

For shorthand, let us define some commonly appearing transfer
functions and matrices. Let

p(s) :=
1

s2 + s + 1
, δ(s) :=

1
s2 + (2α + 1)s + (2k + 1)

and Ψ :=

[
1 0
1 1

]
.

Then, elementary mechanical modeling reveals that the transfer func-
tion matrix for the plant depicted in Fig. 2 from force input vector

u :=

[
u1

u2

]
to displacement output measurements

y :=

[
y1

y2

]
is given by y(s) = P∆ (s)u(s) where

P∆ := p(s)δ(s)

×
[

(s2+(α+1)s + (k + 1)) (αs+k)

(αs+k) (s2+(α + 1)s + (k + 1))

]
.

It is clear that P∆ (s) is uncertain because k and α are unknown.
For the purpose of control system design, we now choose to

split the uncertain plant P∆ (s) as P∆ (s) = P (s) + ∆(s), where
P (s) is the nominal completely known plant model and ∆(s) is
the uncertain remainder. Via partial fraction expansion, we see that
P (s) = Ψdiag(0.5p(s), 0)Ψ∗ and ∆(s) = Ψ−1diag(0.5δ(s), 0)Ψ−∗.
It is then a simple computation to check that ∆(s) ∈ � for all α > 0
and k > 0.

Now, let us consider the controlled closed-loop sys-
tem given in Fig. 3, and let C(s) be chosen as C(s) :=
Ψ−∗diag(−2(s2 + s + 1)/(2s3 + 4s2 + 4s + 3),−1/(s + 1))Ψ−1 .
Then, define M (s) := −C(s)(I + P (s)C(s))−1 to be the transfer
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Fig. 3. Controlled closed-loop system.

Fig. 4. Rearranged closed loop.

function matrix mapping w to z so that the closed-loop system in
Fig. 3 can be rearranged into Fig. 4 for robust analysis.

Since P (s) ∈ ��∞
2×2 , internal stability of the nominal feedback

loop [i.e., pretending ∆(s) = 0] is equivalent to M (s) ∈ ��∞
2×2 .

Furthermore, since ∆(s) ∈ �, we additionally require M (s) ∈ �s to
be able to apply the proposed results of Theorem 5 and Corollary 6 to
conclude robust stability.

For our particular choice of C(s), it is easy to see that M (s) =
1/(s + 1)Ψ−∗Ψ−1 , which clearly belongs to �s , and furthermore,
satisfies M (∞) = 0. Since M (0) = Ψ−∗Ψ−1 (which incidentally is
strictly greater than M (∞) as stated in Lemma 2) and ∆(0) =
Ψ−1diag(0.5/(2k + 1), 0)Ψ−∗ [which incidentally is greater than or
equal to ∆(∞) as stated in Lemma 2], it follows that λ(∆(0)M (0)) =
5/[2(2k + 1)], λ(M (0)) = (3 +

√
5)/2 and λ(∆(0)) = 1/(2k + 1).

Consequently, Corollary 6 Part I states that the feedback intercon-
nection given in Fig. 3 is robustly stable for all uncertainties ∆ ∈ �
(not just those of the form ∆(s) = Ψ−1diag(0.5δ(s), 0)Ψ−∗) satis-
fying λ(∆(0)) < 2/(3 +

√
5) (= 1/λ(M (0))). Additionally, The-

orem 5 states that, for any given α > 0, the physical system of Fig. 2
is robustly stabilized by the controller C(s) defined earlier if and only
if k > 0.75, obtained through the condition λ(∆(0)M (0)) < 1. The
former statement is powerful because it characterizes a huge class of
systems (including spillover dynamics) for which the closed-loop sys-
tem is robustly stable. The latter statement is powerful because, for a
given uncertainty class, it tells us exactly in a necessary and sufficient
manner the parameter boundary of robust stability.

V. CONCLUSION

SISO LTI systems with negative imaginary frequency response have
been studied in the context of positive position feedback control of
lightly damped structures and the analysis/synthesis methods there de-
pended on graphically Nyquist plots. This note generalizes the key sta-
bility result of MIMO LTI systems with negative imaginary frequency
response showing that, even in this case, a necessary and sufficient
condition for the internal stability of such systems is that the dc loop
gain (measured in a particular precise sense) is less than unity. We also
gave in this note a complete state–space characterization of MIMO
LTI systems with negative imaginary frequency response. This could

possibly be used in future work to assist with synthesizing systems
with negative imaginary frequency response.

The next steps to extend applicability of this research are: 1) devise
a controller synthesis procedure that generates systems that belong to
either class � or �s and 2) generalize the analysis result given in this
note to allow one (or possibly both) systems to be nonlinear and/or
time-varying. Focusing on the latter, we point out that a theory for
SISO nonlinear systems has been derived in [11] with counterclockwise
input–output dynamics that is closely related to this research. It is
consequently interesting to see whether the ideas in [11] generalize to
MIMO systems or not, or whether the use of dissipativity theory may
lead to the required MIMO nonlinear generalizations.
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