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a b s t r a c t

We derive necessary and sufficient conditions for stability analysis of a positive feedback interconnection
of a discrete-time negative imaginary system and a discrete-time strictly negative imaginary system.
General stability analysis results for continuous-time negative imaginary systems connected in positive
feedback have recently been proposed. Those recent results extend previous theorems by removing
restrictive assumptions on the infinite frequency gains imposed in the earlier literature and by extending
the class of negative imaginary systems for which the results are applicable to include systems with
free body dynamics (i.e., poles at the origin). Here, we present the discrete-time counterparts of the
aforementioned recently developed results which specialise to simple and easy-to-check conditions
under specific assumptions. Last, we illustrate some of the results by several examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Negative imaginary systems theory is emerging as a power-
ful complement to positive real theory and passivity theory. The
negative imaginary systems class was first studied in [1]. Negative
imaginary systems arise in a wide variety of applications, includ-
ing nano-positioning systems [2–5], multi-agent systems [6,7],
lightly damped structure [8–10], vehicle platoons [11], etc. A rich
sequence of results has also appeared in the theory of negative
imaginary systems in recent years, including extensions to Hamil-
tonian systems [12], non-rational systems [13–16], non-proper
systems [13,17], infinite-dimensional systems [18], descriptor sys-
tems [19], strongly strict negative-imaginary systems [20] and
controller synthesis for negative imaginary systems [21–24]. Ac-
cording to [25,26], somepossible futurework for filtering problems
could be further developed.

Stability analysis results of positive feedback interconnections
of negative imaginary systems play a central role in negative
imaginary systems theory. [1] proposed that, under assumptions
on the gains of systems at infinite frequency, a necessary and
sufficient condition for the internal stability of a positive feedback
interconnection of negative imaginary systems can be expressed as
a one-sided restriction on the dc loop gain. This stability result was
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shown to hold true even for negative imaginary systemswith poles
on the imaginary axis [27]. These key results have subsequently
been developed further to allow negative imaginary systems to
have possible poles at the origin [28]. [29] then sought to remove
the assumptions on the infinite frequency gains, i.e.,M(∞)N(∞) =

0 and N(∞) ⩾ 0, by using integral quadratic constraint theory and
derived sufficient conditions (which are not necessary) for stabil-
ity analysis. Necessary and sufficient conditions that remove the
assumptions on the infinity frequency gains were recently derived
in [30]. In contrast with complicated matrix factorisations used
in [28] which loose intuition and restrict the applicability of the
results and in contrast with sufficiently only conditions developed
in [29], a linear shift transformation technique is used in [30] to
establish general necessary and sufficient stability analysis results
applicable for the full class of negative imaginary systems includ-
ing those with free body dynamics (i.e., poles at the origin).

The above theory has all been developed in continuous-time.
The notion of a discrete-time negative imaginary systemswas pro-
posed in [14,31] to fill the gap in the literature. By using a bilinear
transformation, a discrete-time negative imaginary lemma was
derived, in terms of a discrete-time state-space representation,
to characterise discrete-time negative imaginary systems [14,31].
Furthermore, it was shown in [14] that the stability of discrete-
time negative imaginary systems only depends on gains at z = +1
under specific assumptions analogous to the early assumptions in
continuous-time. Here, we extend the stability theorem proposed
in [14] for the full class of real, rational, proper discrete-time
negative imaginary systems available in the literature without
imposing the restrictive assumptions, i.e., P(−1)Q (−1) = 0 and
Q (−1) ⩾ 0. The results in this paper can be considered as, not
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only generalisations of previous work [14,31] but also, discrete-
time counterparts of the general continuous-time results in [30].

In this paper, we first state the definitions of discrete-time
negative imaginary systems. We then remove two restrictive as-
sumptions in the existing literature, i.e., P(−1)Q (−1) = 0 and
Q (−1) ⩾ 0, imposed in [14] and subsequently derive necessary
and sufficient conditions for internal stability of a discrete-time
negative imaginary system without poles at z = +1 and z =

−1 connected in positive feedback with a discrete-time strictly
negative imaginary system. Then, these results are extended to
the case where a discrete-time negative imaginary system with
possible poles at z = +1 is connected in positive feedback with
a discrete-time strictly negative imaginary system. Furthermore,
we specialise these general stability theorems in the single-input
single-output (SISO) setting to reveal simple and intuitive tests.
Additional multiple-input multiple-output (MIMO) specialisations
are also given as corollaries to give simple and elegant tests for
checking feedback stability. Stability conditions with or without
a loop-shifting matrix Ψ are also presented for determining the
internal stability of discrete-time negative imaginary systems con-
nected in positive feedback. Lastly, two examples are given to
illustrate the importance of some of the results.

Notation: R(a) represents the real part of a complex number a.
λ̄(A) [respectively, λ(A)] denote the largest [respectively, smallest]
eigenvalue of a square complex matrix A that has only real eigen-
values. A∗ and AT denote the complex conjugate transpose and
transpose of a complex matrix A respectively. [P(z),Q (z)] denotes
the positive feedback interconnection of P(z) and Q (z). Im denotes
an identity matrix with dimensionsm bym.

2. Preliminaries

We first recall the notion of a discrete-time negative imaginary
system with possible poles at z = +1.

Definition 1 ([14,31]). Let R(z) be a discrete-time, real, rational,
proper transfer function. Then, R(z) is said to be Discrete-Time
Negative Imaginary (D-NI) if

(1) R(z) has no poles in {z ∈ C : |z| > 1};
(2) j[R(ejθ )− R(ejθ )∗] ⩾ 0 for all θ ∈ (0, π ) except the values of θ

where z = ejθ is a pole of R(z);
(3) if z0 = ejθ0 with θ0 ∈ (0, π ) is a pole of R(z), then it is a simple

pole and the residue matrix K0 = z0−1limz→z0 (z − z0)jR(z) is
Hermitian and positive semidefinite;

(4) if z = 1 is a pole of R(z), then limz→1(z − 1)kR(z) = 0 for
all integer k ⩾ 3 and limz→1(z − 1)2R(z) is Hermitian and
positive semidefinite;

(5) if z = −1 is a pole of R(z), then limz→−1(z + 1)kR(z) = 0 for
all integer k ⩾ 3 and limz→−1(z + 1)2R(z) is Hermitian and
negative semidefinite.

[14] considers non-rational systems. To handle possibly non-
rational systems, [14] imposes a symmetric assumption. As stated
in Remark 3.2 of [14], when one restricts attention to rational
systems (as we do in this paper), the symmetric assumption is no
longer needed. The five conditions in Lemma 3.2 of [14] with the
condition corresponding to symmetry removed, are hence used to
directly define rational discrete-time systems as in Definition 1.
This definition is also identical to that used in [31].

The following definition describes discrete-time strictly nega-
tive imaginary systems.

Definition 2 ([14]). Let R(z) be a discrete-time, real, rational,
proper transfer function. Then, R(z) is said to be Discrete-Time
Strictly Negative Imaginary (D-SNI) if

(1) R(z) has no poles in {z ∈ C : |z| ⩾ 1};
(2) j[R(ejθ ) − R(ejθ )∗] > 0 for all θ ∈ (0, π ).

Fig. 1. Positive feedback interconnection of P(z) and Q (z).

3. Main results, part 1: no poles at +1 and −1

In [30], necessary and sufficient conditions for checking the
internal stability of a positive feedback interconnection of a
continuous-time, proper, negative imaginary system without poles
at the origin and a continuous-time strictly negative imaginary sys-
tem were derived. The necessary and sufficient conditions in [30]
generalised the original result in [1] by removing restrictive as-
sumptions on the infinite frequency gains of the two systems. In
this section, we consider the case where a discrete-time negative
imaginary system and a discrete-time strictly negative imaginary
system are interconnected via positive feedback as shown in Fig. 1.
We hence introduce discrete-time feedback stability theorems
that remove restrictive assumptions imposed in earlier literature
(e.g., [14]). These results are applicable for negative imaginary
systems without poles at z = +1 and z = −1 and they are hence
discrete-time counterparts of the work in Section 3 of [30].

Theorem 3. Let P(z) be a discrete-time, real, rational, proper, neg-
ative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Then, [P(z),Q (z)] is internally stable if and only if

I − P(−1)Q (−1) is nonsingular,
λ̄[[I − P(−1)Q (−1)]−1(P(−1)Q (1) − I)] < 0, and
λ̄[[I − Q (1)P(−1)]−1(Q (1)P(1) − I)] < 0.

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Theorem 9]. □

Note that the inequality conditions in Theorem 3 (and indeed in
all negative imaginary results) are one-sided restrictions because
the maximum eigenvalue of matrices, that have only real eigen-
values, can be either positive or negative.

Also, note that no poles at z = +1 in discrete-time corresponds
to no poles at the origin in continuous-time, whereas no poles
at z = −1 in discrete-time corresponds to no poles at infinite
frequency (i.e., a proper system) in continuous-time.

Theorem 3 removes the assumptions imposed in [14, Theorem
4.1], i.e., Q (−1) ⩾ 0 and P(−1)Q (−1) = 0, and as a consequence
generalises that result.

The following example is used to demonstrate the usefulness of
the result stated in Theorem 3.

Example 1. Consider a positive feedback interconnection of P(z)
and Q (z) as shown in Fig. 1 where

P(z) =

⎡⎣ −z + 1
6z + 4

−5z − 5
6z + 4

−9z2 − 10z − 1
12z2 + 8z

15z2 + 32z + 13
12z2 + 8z

⎤⎦
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and Q (z) =

⎡⎣ 5z + 5
6z + 4

−17z − 13
6z + 4

−33z2 − 26z − 1
12z2 + 8z

15z2 + 32z + 13
12z2 + 8z

⎤⎦. Both P(z) and Q (z)

are discrete-time, strictly negative imaginary systems. Since I −

P(−1)Q (−1) =

[
1 −2

−2 0

]
is nonsingular, the feedback system is

well-posed. The internal stability of the closed-loop system cannot
be determined via [14, Theorem 4.1] because P(−1)Q (−1) =[
0 2
2 1

]
̸= 0 andQ (−1) =

[
0 −2

−2 −1

]
⩾̸ 0. Using the stability condi-

tions in Theorem 3, we obtain λ̄[[I−P(−1)Q (−1)]−1(P(−1)Q (1)−
I)] = −0.1340 < 0 and λ̄[[I −Q (1)P(−1)]−1(Q (1)P(1)− I)] = 8 ≮
0. Hence, the positive feedback interconnection of P(z) and Q (z) is
not internally stable. Note that the fact that the closed-loop system
is not internally stable can be confirmed by checking the poles of
(I − PQ )−1. Since two of the poles of (I − PQ )−1 are at z = 6.3702
and z = −1.4981,which are not inside the unit circle, the feedback
system is not internally stable.

When we impose identical assumptions as in [14, Theorem 4.1],
i.e., P(−1)Q (−1) = 0 and Q (−1) ⩾ 0, the stability conditions in
Theorem 3 reduce to the same result as that in [14, Theorem 4.1].

Corollary 4. Let P(z) be a discrete-time, real, rational, proper, neg-
ative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Let P(−1)Q (−1) = 0 and Q (−1) ⩾ 0. Then,
[P(z),Q (z)] is internally stable if and only if λ̄[P(1)Q (1)] < 1.

Proof. This is a direct consequence of Theorem 3 because

(1) P(−1)Q (−1) = 0 ⇒ I − P(−1)Q (−1) is nonsingular;
(2) λ̄[[I − P(−1)Q (−1)]−1(P(−1)Q (1) − I)] < 0

⇔ λ̄[P(−1)Q (1)] < 1
⇔ Q (1)1/2P(−1)Q (1)1/2 < I

(since Q (1) > Q (−1) ⩾ 0 via [14, Lemma 3.9])
⇔ P(−1) < Q (1)−1;

(3) λ̄[[I − Q (1)P(−1)]−1(Q (1)P(1) − I)] < 0

⇔ λ̄[[Q (1)−1
− P(−1)]−1(P(1) − Q (1)−1)] < 0

(since Q (1) > Q (−1) ⩾ 0 via [14, Lemma 3.9])
⇔ [Q (1)−1

− P(−1)]−1/2(P(1) − Q (1)−1)[Q (1)−1

− P(−1)]−1/2 < 0
(since Q (1)−1 > P(−1) via above)

⇔ P(1) − Q (1)−1 < 0
⇔ λ̄[P(1)Q (1)] < 1.

But λ̄[P(1)Q (1)] < 1 ⇔ P(1) < Q (1)−1
⇒ P(−1) < Q (1)−1 (since

P(−1) ⩽ P(1) via [14, Lemma 3.9]). This concludes the proof. □

The following corollary applies to a negative imaginary system P(z)
with a blocking zero at z = −1. The stability condition is the same
as in Corollary 4 which is a very simple necessary and sufficient
condition for internal stability.

Corollary 5. Let P(z) be a discrete-time, real, rational, proper, neg-
ative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Let P(−1) = 0. Then, [P(z),Q (z)] is internally
stable if and only if λ̄[P(1)Q (1)] < 1.

Proof. Direct simplification of Theorem 3 on using P(−1) = 0. □

As shown in [30, Theorem 14], other equivalent feedback stability
conditions can also be obtained. The following result is a discrete-
time counterpart of [30, Theorem 14].

Theorem 6. Let P(z) be a discrete-time, real, rational, proper, neg-
ative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Then, [P(z),Q (z)] is internally stable if and only if

I − P(−1)Q (−1) is nonsingular,
λ̄[(P(1)Q (−1) − I)[I − P(−1)Q (−1)]−1

] < 0, and
λ̄[(Q (1)P(1) − I)[I − Q (−1)P(1)]−1

] < 0.

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Theorem 14]. □

We can, of course, use Theorem 6 instead of Theorem 3 to show
the internal stability of a feedback system. Although the follow-
ing example is taken directly from Example 1 to show that the
conditions in Theorem 6 can be used equivalently instead of the
conditions in Theorem 3, this example also illustrates that each
of the individual inequalities in the conditions of Theorem 6 is
not separately equivalent to either individual inequality in the
conditions of Theorem 3.

Example 2. Consider a positive feedback interconnection of P(z)
and Q (z) as shown in Fig. 1 where

P(z) =

⎡⎣ −z + 1
6z + 4

−5z − 5
6z + 4

−9z2 − 10z − 1
12z2 + 8z

15z2 + 32z + 13
12z2 + 8z

⎤⎦ and

Q (z) =

⎡⎣ 5z + 5
6z + 4

−17z − 13
6z + 4

−33z2 − 26z − 1
12z2 + 8z

15z2 + 32z + 13
12z2 + 8z

⎤⎦. Both P(z) and Q (z)

are discrete-time strictly negative imaginary systems. The closed-
loop system is well-posed as shown in Example 1. Instead of
applying the conditions in Theorem 3, via Theorem 6 we have
λ̄[(P(1)Q (−1) − I)[I − P(−1)Q (−1)]−1

] = 3.3028 ≮ 0 and
λ̄[(Q (1)P(1) − I)[I − Q (−1)P(1)]−1

] = 1.5447 ≮ 0. Hence, the
positive feedback interconnection between P(z) and Q (z) is not
internally stable also via Theorem 6. Note that both inequalities
are violated in the conditions of Theorem 6 whereas only one
inequality was violated in the conditions of Theorem 3 in this
specific example illustrating the fact that each inequality in the
conditions of Theorem 6 is not a simple re-write of each inequality
in the conditions in Theorem 3.

Different assumptions can be imposed to simplify the stability
result in Theorem 6. Under the assumption P(1) > 0, the loop gain
condition at z = +1 can again be used to determine the internal
stability of the closed-loop system, but unlike Corollary 4, there is
no sign restriction on Q (−1).

Corollary 7. Let P(z) be a discrete-time, real, rational, proper, neg-
ative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Let P(−1)Q (−1) = 0 and P(1) > 0. Then,
[P(z),Q (z)] is internally stable if and only if λ̄[P(1)Q (1)] < 1.

Proof. This is a direct consequence of Theorem 6 because

(1) P(−1)Q (−1) = 0 implies I − P(−1)Q (−1) is nonsingular;
(2) λ̄[(P(1)Q (−1) − I)[I − P(−1)Q (−1)]−1

] < 0

⇔ λ̄[P(1)Q (−1)] < 1
⇔ P(1)1/2Q (−1)P(1)1/2 < I
⇔ Q (−1) < P(1)−1;

(3) λ̄[(Q (1)P(1) − I)[I − Q (−1)P(1)]−1
] < 0

⇔ λ̄[(Q (1) − P(1)−1)[P(1)−1
− Q (−1)]−1

] < 0
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⇔ λ̄[[P(1)−1
− Q (−1)]−1/2(Q (1) − P(1)−1)[P(1)−1

− Q (−1)]−1/2
] < 0

(since P(1)−1 > Q (−1) via above)
⇔ Q (1) − P(1)−1 < 0
⇔ λ̄[P(1)Q (1)] < 1.

But λ̄[P(1)Q (1)] < 1 ⇔ Q (1) < P(1)−1
⇒ Q (−1) < P(1)−1 (since

Q (−1) < Q (1) via [14, Lemma 3.9]). This concludes the proof. □

4. SISO specialisation

Wehave presented feedback stability results for interconnected
discrete-time, negative imaginary systems without poles at z =

+1 and z = −1 in Theorems 3 and 6. In the SISO case, these results
can be further specialised, as shown in the following theorem,
which is the discrete-time counterpart of [30, Theorem 17]. This
specialisation is useful because it sheds some light as to why the
stability conditions in Theorems 3 and 6 require a mixture of
frequencies at z = +1 and z = −1. The SISO specialisation also
allows a pictorial Nyquist interpretation of the results.

Lemma 8. Let P(z) be a discrete-time, real, rational, proper, scalar
negative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, scalar strictly
negative imaginary system. Then, the following three statements are
equivalent:

(1) [P(z),Q (z)] is internally stable;
(2) either condition (a) or condition (b) holds:

(a) P(1)Q (1) < 1, P(−1)Q (−1) < 1 and P(−1)Q (1) < 1;
(b) P(1)Q (1) > 1, P(−1)Q (−1) > 1 and P(−1)Q (1) > 1;

(3) either condition (a) or condition (b) holds:

(a) P(1)Q (1) < 1, P(−1)Q (−1) < 1 and P(1)Q (−1) < 1;
(b) P(1)Q (1) > 1, P(−1)Q (−1) > 1 and P(1)Q (−1) > 1.

Proof. Via Theorem 3, [P(z),Q (z)] is internally stable if and only
if P(−1)Q (−1) ̸= 1, (1 − P(−1)Q (1))/(P(−1)Q (−1) − 1) < 0, and
(P(1)Q (1)− 1)/(1− P(−1)Q (1)) < 0. These three conditions yield
condition (2a) or condition (2b). Theorem 6 gives condition (3a) or
condition (3b). □

The internal stability conditions in Lemma 8 can be further
simplified as shown in Theorem 9.

Theorem 9. Let P(z) be a discrete-time, real, rational, proper, scalar
negative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, scalar strictly
negative imaginary system. Then, [P(z),Q (z)] is internally stable if
and only if one of the following three mutually exclusive conditions
holds:

(i) P(1)Q (1) < 1 and P(−1)Q (−1) < 1;
(ii) Q (−1) > 0 and P(−1)Q (−1) > 1;
(iii) Q (1) < 0 and P(1)Q (1) > 1.

Proof. Both conditions (2a) and (3a) in Lemma 8 reduce to condi-
tion (i) in this theorem statement. This then implies that conditions
(2b) and (3b) in Lemma 8 are equivalent.

Next recall that Q (1) > Q (−1) and P(1) ⩾ P(−1) via
[14, Lemma 3.9]. Condition (ii) and these two negative imaginary
properties imply Q (1) > Q (−1) > 0 and P(1) ⩾ P(−1) > 0. Then
P(1)Q (1) > P(1)Q (−1), P(1)Q (1) ⩾ P(−1)Q (1), P(−1)Q (1) >
P(−1)Q (−1) > 1 and P(1)Q (−1) ⩾ P(−1)Q (−1) > 1. These
inequalities then imply conditions (2b) and (3b) in Lemma 8.
Similarly, condition (iii) and the same two negative imaginary
properties imply 0 > Q (1) > Q (−1) and 0 > P(1) ⩾ P(−1).

Then 1 < P(1)Q (1) < P(1)Q (−1), 1 < P(1)Q (1) ⩽ P(−1)Q (1),
P(−1)Q (1) < P(−1)Q (−1) and P(1)Q (−1) ⩽ P(−1)Q (−1). These
inequalities then imply conditions (2b) and (3b) in Lemma 8.

To show the converse, consider the following five complimen-
tary cases: 0 < Q (−1) < Q (1), 0 = Q (−1) < Q (1), Q (−1) <

0 < Q (1), Q (−1) < Q (1) = 0, and Q (−1) < Q (1) < 0. The three
middle cases violate conditions (2b) and (3b) in Lemma 8. Hence
only two valid complimentary cases are permitted by conditions
(2b) and (3b) in Lemma 8: 0 < Q (−1) and Q (1) < 0. Hence,
condition (2b) (respectively, condition (3b)) in Lemma 8 implies
either condition (ii) or condition (iii) of this theorem statement. □

The following example illustrates use of Theorem 9.

Example 3. Consider a positive feedback interconnection of P(z)
andQ (z) as shown in Fig. 1where P(z) = (z+2)/z andQ (z) = (3−

z)/(2z). Both P(z) andQ (z) are strictly negative imaginary systems.
Using Theorem9we conclude that the feedback interconnection of
P(z) and Q (z) is not internally stable since P(1)Q (1) = (3)(1) >

1 and P(−1)Q (−1) = (−1)(−2) > 1, but Q (1) = 1 ≮ 0
and Q (−1) = −2 ≯ 0. The fact that the closed-loop system is
not internally stable can be confirmed by checking the poles of
(I − PQ )−1. Since these poles are at z = 1.5907 and z = −1.2573,
which are not inside the unit circle, the feedback system is not
internally stable.

5. Main results, part 2: allowing poles at +1

In the previous section, we assumed that each of the discrete-
time negative imaginary system did not have poles at z = +1
and z = −1 to obtain elegant and simple results which specialise
to earlier results in the literature when identical assumptions as
in the literature are additionally imposed. Here, we build on the
results of Section 3 to give general stability theorems that allow
discrete-time negative imaginary systems to have possible poles
at z = +1. Note that while the restriction of no poles at z = −1 is
natural in a discrete-time setting because it corresponds to proper
continuous-time systems via the bilinear transformation z = (1 +

s)/(1 − s), the restriction of no poles at z = +1 was unnatural
and hence it will be removed here. Additionally, we show that the
rather complex results stated in this section can be specialised to
the simpler results of Section 3 under the same assumptions.

5.1. Generalised internal stability results for discrete-time negative
imaginary systems with possible poles at z = +1

In Section 3, we proposed feedback stability results which are
only suitable for discrete-time, negative imaginary systems with-
out poles at z = +1 and z = −1. In this subsection, we generalise
those earlier results and propose general feedback stability theo-
rems for real, rational, proper, discrete-time, negative imaginary
systems with possible poles at z = +1.

Theorem 10. Let P(z) be a discrete-time, real, rational, proper,
negative imaginary system without poles at z = −1, and let Q (z)
be a discrete-time, real, rational, proper, strictly negative imaginary
system. Let Ψ < 0 be such that λ̄[P(−1)Ψ ] < 1. Then, [P(z),Q (z)]
is internally stable if and only if

I − P(−1)Q (−1) is nonsingular,
λ̄[[I − P(−1)Q (−1)]−1

[P(−1)Q (1) − I]] < 0, and
λ̄[lim

z→1
[[I − Ψ P(−1)][I − Q (1)P(−1)]−1

[Q (1)P(z) − I]

× [I − Ψ P(z)]−1
]] < 0.



56 H.J. Chen, A. Lanzon / Systems & Control Letters 114 (2018) 52–58

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Theorem 24]. □

We can also build on Theorem 6, instead of building on Theo-
rem 3, and give another equivalent general stability theorem.

Theorem 11. Let P(z) be a discrete-time, real, rational, proper,
negative imaginary system without poles at z = −1, and let Q (z)
be a discrete-time, real, rational, proper, strictly negative imaginary
system. Let Ψ < 0 be such that λ̄[P(−1)Ψ ] < 1. Then, [P(z),Q (z)]
is internally stable if and only if

I − P(−1)Q (−1) is nonsingular,
λ̄[lim

z→1
[[I − P(z)Ψ ]

−1
[P(z)Q (−1) − I][I − P(−1)

×Q (−1)]−1
[I − P(−1)Ψ ]]] < 0, and

λ̄[lim
z→1

[[Q (1)P(z) − I][I − Q (−1)P(z)]−1
]] < 0.

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Theorem 26]. □

Remark 12. It can be easily shown that all the limits in the stability
conditions are finite by [30, Lemma 20], [30, Remark 25], and
[30, Remark 29] togetherwith the bilinear transformation z = (1+

s)/(1− s). Additionally, the general stability conditions obtained in
Theorems 10 and 11 depend on amatrixΨ fulfilling the properties
Ψ < 0 and λ̄[P(−1)Ψ ] < 1. Note that P(−1) is symmetric
because of condition (2) in Definition 1 together with a continuity
and a limiting argument at θ = π . Here P(−1) has only real
eigenvalues. Then, to construct Ψ < 0 satisfying λ̄[P(−1)Ψ ] < 1,
it suffices to choose Ψ = εI , where ε is any strictly negative real
number if λ(P(−1)) ⩾ 0 and ε is any real number in the interval
(1/λ(P(−1)), 0) if λ(P(−1)) < 0. Finally, note that although there
are many matrices Ψ < 0 satisfying λ̄[P(−1)Ψ ] < 1, only one
arbitrary Ψ < 0 satisfying λ̄[P(−1)Ψ ] < 1 needs to be tested
in Theorems 10 and 11 to conclude the internal stability of the
feedback interconnection. This observation can be proven by using
the bilinear transformation z = (1+ s)/(1− s) on [30, Theorem 35]
(or [30, Theorem 36]).

5.2. Specialisations of the discrete-time generalised internal stability
conditions

In the SISO case, if we assume that P(z) has one or two poles
at z = +1 but no poles at z = −1, the general stability results
obtained in the previous subsection can be simplified to conditions
that are easy to check. Note that the stability conditions in Corol-
lary 13 do not involve the matrix Ψ .

Corollary 13. Let P(z) be a discrete-time, real, rational, proper, scalar,
negative imaginary system without poles at z = −1 and Q (z) be a
discrete-time, real, rational, proper, scalar, strictly negative imaginary
system. Let z = +1 be a (single or double) pole of P(z). Then,
[P(z),Q (z)] is internally stable if and only if one of the following two
mutually exclusive conditions holds:

(i) P(−1)Q (−1) < 1 and Q (1) < 0;
(ii) P(−1)Q (−1) > 1 and Q (−1) > 0.

Proof. Writing P(z) as a Laurent series, the three conditions in
Theorem 11 simplify, in the scalar case, to P(−1)Q (−1) ̸= 1,
Q (−1)/(1 − P(−1)Q (−1)) < 0 and Q (1)/Q (−1) > 0 after taking
the limit as z → 1. It is easy to see that these three conditions are
equivalent to either condition (i) or condition (ii) in this corollary
statement using the negative imaginary property Q (1) > Q (−1)
via [14, Lemma 3.9]. □

In theMIMOcase, under the assumption that P(z) has a blocking
zero at z = −1, the results obtained previously specialise to the
following corollary.

Corollary 14. Let P(z) be a discrete-time, real, rational, proper, nega-
tive imaginary system without poles at z = −1 but with P(−1) = 0.
Let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Let Ψ < 0. Then, the following three conditions
are equivalent:

(1) [P(z),Q (z)] is internally stable;
(2) λ̄[limz→1[[Q (1)P(z) − I][I − Ψ P(z)]−1

]] < 0;
(3) λ̄[limz→1[[I − P(z)Ψ ]

−1
[P(z)Q (−1) − I]]] < 0 and

λ̄[limz→1[[Q (1)P(z) − I][I − Q (−1)P(z)]−1
]] < 0.

Proof. Direct consequence from Theorems 10 and 11 on using
P(−1) = 0. □

The next result, which is again valid in the MIMO case, is
independent of the matrix Ψ under the assumptions that P(z) has
a single or double poles at z = +1 and a blocking zero at z = −1.

Corollary 15. Let P(z) be a discrete-time, real, rational, proper, nega-
tive imaginary system without poles at z = −1 but with P(−1) = 0.
Let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Assume one of the following conditions holds:

(i) limz→1(z − 1)2P(z) is nonsingular;
(ii) limz→1(z − 1)2P(z) = 0 and limz→1(z − 1)P(z) is nonsingular.

Then, [P(z),Q (z)] is internally stable if and only if Q (1) < 0.

Proof. Consider each of the two cases of this corollary separately.
Writing P(z) as a Laurent series into either condition (2) or condi-
tion (3) of Corollary 14 gives the required result after evaluating
the limit and simplifying. □

In Section 5.1, general stability theorems for discrete-time, real,
rational, proper negative imaginary systems including possible
poles at z = +1 were introduced. We here demonstrate that
under the assumption that P(z) has no poles at z = +1 and
z = −1, the general stability results obtained in Theorem 10
and Theorem 11 specialise to the previous stability conditions in
Theorems 3 and 6. Since it is easy to see that two of the conditions
in Theorem 10 (resp. Theorem 11) are trivially equivalent to two of
the conditions in Theorem 3 (resp. Theorem 6) by inspection, we
only need to show that the remaining inequality in Theorem 10
(resp. Theorem 11) is equivalent to the remaining inequality in
Theorem 3 (resp. Theorem 6).

Lemma 16. Let all the assumptions of Theorem 10 hold and further-
more suppose P(z) has no poles at z = +1. Then,

λ̄[lim
z→1

[[I − Ψ P(−1)][I − Q (1)P(−1)]−1
[Q (1)P(z) − I]

× [I − Ψ P(z)]−1
]] < 0

⇔ λ̄[[I − Q (1)P(−1)]−1(Q (1)P(1) − I)] < 0.

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Lemma 33]. □

Similarly, if we additionally assume that P(z) has no poles at
z = +1, the equivalence between the stability conditions in
Theorems 6 and 11 can also be established.

Lemma 17. Let all the assumptions of Theorem 11 hold and further-
more suppose P(z) has no poles at z = +1. Then,
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Fig. 2. Spring–mass system.

λ̄[lim
z→1

[[I − P(z)Ψ ]
−1

[P(z)Q (−1) − I][I − P(−1)

×Q (−1)]−1
[I − P(−1)Ψ ]]] < 0

⇔ λ̄[(P(1)Q (−1) − I)[I − P(−1)Q (−1)]−1
] < 0.

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Lemma 34]. □

6. Numerical examples

Two examples are given to illustrate some of the results of this
paper.

6.1. Negative imaginary without poles at z = +1 and z = −1

The following example is directly taken from [27]. A spring–
mass system is given in Fig. 2 where two springs k1 and k2 are used
to connect the mass to the wall and massesm1 andm2 are coupled
with a spring k. Assume both masses m1 and m2 are only allowed
tomove horizontally on a frictionless ground. The forces applied to
m1 and m2 are denoted as f1 and f2 respectively and the displace-
ments corresponding to these masses are x1 and x2 respectively. If
we set the parameters k = k1 = k2 = 1 N/m and m1 = m2 = 1
kg and we discretise the continuous-time signals with a sampling
time of T = 2 s, the system with input forces f1 and f2 and output
displacements x1 and x2 can bemodelled (via Newton’s second law
of motion and a discretisation process) as MIMO transfer function

given by P(z) =

⎡⎣ 3z4 + 8z3 + 10z2 + 8z + 3
8z4 + 8z3 + 16z2 + 8z + 8

z4 + 4z3 + 6z2 + 4z + 1
8z4 + 8z3 + 16z2 + 8z + 8

z4 + 4z3 + 6z2 + 4z + 1
8z4 + 8z3 + 16z2 + 8z + 8

3z4 + 8z3 + 10z2 + 8z + 3
8z4 + 8z3 + 16z2 + 8z + 8

⎤⎦.

We then apply a simple controller Q (z) =

[
−2z

3z + 1
0

0
−2z

3z + 1

]
. The

plant P(z) is a discrete-time, real, rational, proper negative imag-
inary system without poles at z = +1 and z = −1 according to
Definition 1 and the controllerQ (z) is a discrete-time, real, rational,
proper, strictly negative imaginary system according to Defini-
tion 2. [14, Theorem 4.1] is not applicable since P(−1)Q (−1) = 0
but Q (−1) = −I2 ⩾̸ 0. However, by using Corollary 5 (since
P(−1) = 0 and λ̄[P(1)Q (1)] = −1/6 < 1), the closed-loop system
is guaranteed to be internally stable with the proposed controller.
The closed-loop stability can be confirmed by checking all the poles
of the closed-loop transfer function (I − P(z)Q (z))−1P(z). Since all
the poles of the closed-loop transfer function (I − P(z)Q (z))−1P(z)
are −0.2308 + 0.9020j, −0.2308 − 0.9020j, −0.5632 + 0.7925j,
−0.5632 − 0.7925j, −0.3023 and −0.2884, which are inside the
unit circle, the feedback system is internally stable.

6.2. Negative imaginary with poles at z = +1

Let us now consider a positive feedback interconnection as
shown in Fig. 1 which consists of a discrete-time, real, rational,
proper, negative imaginary system P(z) = (3z4 + 4z3 + 2z2 +

4z + 3)/(2z4 − 4z3 + 4z2 − 4z + 2) and a discrete-time, real,

rational, proper, strictly negative imaginary systemQ (z) = (−3z+
1)/2z. [14, Theorem 4.1] is suitable only for the case where nega-
tive imaginary system without poles at z = +1 and z = −1. In
this case, since P(z) is negative imaginary with poles at z = +1
according to Definition 1, we cannot apply [14, Theorem 4.1] for
stability analysis. Since P(z) is a negative imaginary system with
P(−1) = 0, using condition (2) in Corollary 14, we conclude that
the positive feedback interconnection of P(z) and Q (z) is internally
stable because we can set Ψ = Q (1) = −1 < 0 to give
λ̄[limz→1[[Q (1)P(z) − I][I − Ψ P(z)]−1

]] = λ̄[limz→1[[Q (1)P(z) −

I][I − Q (1)P(z)]−1
]] = −1 < 0. Closed-loop stability can also

be confirmed by checking all the poles of the closed-loop transfer
function P(z)(I − Q (z)P(z))−1. Since these poles are −0.5803 +

0.7235j, −0.5803 − 0.7235j, 0.3990 + 0.8830j, 0.3990 − 0.8830j
and 0.2858, which are inside the unit circle, the feedback system is
internally stable.

7. Conclusion

We proposed feedback stability analysis results for discrete-
time negative imaginary systems which are counterparts to the
continuous-time results in [30]. These general results can be used
to conclude discrete-time closed-loop stability for positive feed-
back interconnections of discrete-time, negative imaginary sys-
tems. Examples were also given to illustrate the usefulness of the
proposed work.
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