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a b s t r a c t

This paper presents a novel unmanned aerial vehicle platform based on a three rotor configuration, which
can achieve the highest level of maneuverability in all 6 dimensions (i.e. 3D position and 3D attitude).
The three propellers can be tilted independently to obtain full force and torque vectoring authority,
such that this new aerial robotic platform can overcome the limitations of a classic quadrotor UAV
that cannot change its attitude while hovering at a stationary position. A robust feedback linearization
controller is developed to deal with this highly coupled and nonlinear dynamics of the proposed tri-
rotor UAV, which linearizes the dynamics globally using geometric transformations to produce a linear
model that matches the Jacobi linearization of the nonlinear dynamics at the operating point of interest.
A distributed formation control tracking protocol is then proposed to control a swarm of tri-rotor UAVs.
The 3D position and 3D attitude of each vehicle can be controlled independently to follow a desired time-
varying formation. The effectiveness of the designed control strategy is illustrated in a realistic virtual
reality simulation environment based on real hardware parameters from a physical construction.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, cooperative control of multi-rotor Unmanned
Aerial Vehicles (UAVs) have received significant attention from
both the practical engineering and academic communities due to
their broad prospect in applications [1]. When working together,
they are able to perform complex tasks with excellent efficiency
and reliability, such as search and rescue [2], crop and weed
management in agriculture [3], oil pipeline surveillance [4], etc.
Aiming atmore efficient configurations in terms of size, autonomy,
flight range, payload capacity and other factors, some innovative
vehicle platforms are developed by researchers [5]. One of such
aerial robotic platforms that holds new and significant properties
is the tri-rotor UAV, which is cost effective with more flexibility
and agility [6,7].
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The proposed tri-rotor UAV has three rotors arranged in an
equilateral triangular configuration and each rotor is attached to a
servo motor that can independently change the rotating direction
of the propeller. Thus, complete 3D thrust and 3D torque vectoring
authority is achieved, which means that the vehicle does not have
a nominally upright flying orientation: it can fly in any orientation
chosen by the user. Any time-dependent 3D position trajectory can
be tracked at the same time as tracking any time-dependent 3D
attitude trajectory. This configuration guarantees the UAV a high
level of flexibility and maneuverability for attitude control and
position movement. Compared to the quadrotor, this innovative
configuration also requires less hover power and hence provides
longer flight time [8], which makes it ideal for deployment in
various missions.

To the best of the authors’ knowledge, no prior literature has
studied a tri-rotor UAV configuration with completely indepen-
dent tilted-rotor capability on all three rotors. The tri-rotor UAV
introduced in [9] only has one servo motor that is installed on
the arm, which cannot hold different attitudes while hovering. A
triangular quadrotor is proposed in [8], which contains a single
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large rotor fixed on the main body. This configuration requires
more power to hover and causes uncompensated gyroscopic drift.

In contrast to a quadrotor UAV, which has zero angular mo-
mentum in hover, a tri-rotor UAV has persistent angular moment,
and hence also gyroscopic dynamics due to the asymmetric con-
figuration of the system which poses significant control systems
complexities. Furthermore, independent attitude and trajectory
tracking can and should be considered simultaneously. However,
the control algorithm in [10] only considers attitude stabilization
(as opposed to simultaneous independent attitude and trajectory
tracking) and the control design proposed in [11] only focus on
the static hovering. In this paper, both these two objectives (i.e. si-
multaneous independent 3D attitude and 3D trajectory tracking)
are considered for the tri-rotor UAV in order to overcome the
limitation of quadrotors and thus create more possibilities when
performing special tasks through aerial robotic platforms.

Furthermore, swarm robotics is a field ofmulti-roboticswhere a
group of robots are controlled in a distributedway to perform com-
plex tasks in a more efficient way than using a single robot [12].
As a key control technique in swarm robotics, distributed co-
operative control of multi-agent systems has also experienced a
rapid growth in the research efforts from the international robotics
community, which includes consensus control [13,14], rendezvous
control [15], obstacle avoidance [16], formation control [17,18],
etc. Formation control of multi-agent systems is hence a key active
area of research which shows broad applications [19]. In appli-
cations where the goal cannot be accomplished by a single robot
or a single aerial robotic vehicle due to physical limitations in
its capability, formation control has been flagged as an important
underpinning methodology. It can be applied to a variety of areas,
such as cooperative surveillance [20], target enclosing [21], load
transport [22], etc. Based on a consensus strategy, [23] proved
that leader–follower, virtual structure and behavior-based forma-
tion control approaches can be unified in the framework of con-
sensus problems. [24] discussed the formation stability problems
for general high-order swarm systems, but the question how to
achieve desired formation was not considered. Static formation
experiments on quadrotor swarm systems based on consensus ap-
proaches is achieved in [25], while time-varying formation control
of aerial swarm systems is still a vigorously active research topic
with much progress still needed.

Motivated by the challenges stated above, the combination
of time-varying formation control and the proposed innovative
tri-rotor drone is developed and investigated in this paper. The
formation control protocol for the designed aerial swarm is fully
distributed. The communication topology of the network is mod-
eled using graph theory. Robust feedback linearization [26] is used
to handle the tri-rotor drone’s highly coupled and nonlinear dy-
namics. It provides a systematic multi-input/multi-output (MIMO)
method which linearizes nonlinear dynamics geometrically to
match the Jacobi linearization of the nonlinear system at the oper-
ating point of interest. In contrast to classic feedback linearization
which does full nonlinear dynamic inversion to produce a linear
system which is simply a chain of integrators, robust feedback
linearization preserves the system information at the operating
point of interest. It has been successfully demonstrated [27] to
provide significant robustness to both model uncertainty and ex-
ternal dynamics. An output feedback formation control protocol is
also applied to the networked tri-rotor UAV swarm,which consists
of an optimal state observer and an optimal (Linear Quadratic
Regulator—LQR) distributed state feedback formation protocol. It is
shown that LQR based optimal design provides a straightforward
way to construct fully distributed controllers and observers that
ensure stabilization and synchronization of the swarm [28].

The paper is organized as follows. Notation andpreliminaries on
algebraic graph theory are presented in Section 2. The nonlinear

dynamical model of the tri-rotor drone is described in Section 3.
Robust feedback linearization of a single tri-rotor drone is first
given in Section 4 and then an optimal distributed formation con-
troller is designed at the end of Section 4 to control a swarm of tri-
rotor drones. Section 5 is devoted to the presentation of simulation
results when the proposed control architecture is applied to the
aerial swarmof tri-rotor drones. Conclusions are given in Section 6.

2. Preliminaries

In this section, notation, definitions and basic concepts on graph
theory are introduced.

2.1. Notation and definitions

Let In ∈ Rn×n denote the identity matrix of dimension n and
1N ∈ Rn be the vector with all entries equal to one. diag{ai}
represents a diagonal matrix with diagonal entries ai. The Kro-
necker product is denoted by ⊗. We use the superscript T and ∗ to
denote the transpose and complex conjugate transpose of a matrix
respectively. For λ ∈ C, Re(λ) is the real part of λ.

2.2. Graph theory

Consider a weighted and directed graph G = (V, E,A) with
a nonempty set of N nodes V = {1, 2, . . . ,N}, a set of edges
E ⊂ V × V , and associated adjacency matrix A =

[
aij

]
∈ RN×N .

An edge rooted at node i and ended at node j is denoted by (i, j),
which means information can flow from node i to node j. aij is the
weight of edge (i, j) and aij > 0 if (i, j) ∈ E . Assume that there are no
repeated edges and no self loops. Node j is called a neighbor of node
i if (i, j) ∈ E . Define the in-degree matrix as D = diag{di} ∈ RN×N

with di =
∑N

j=1aij. The Laplacian matrix L ∈ RN×N of G is defined
as L = D−A. A directed graph has or contains a directed spanning
tree if there exists a node, called the root, such that there exists a
directed path from this node to every other nodes.

Lemma 1 ([29]). If G contains a spanning tree, then zero is a simple
eigenvalue of L with associated right eigenvector 1N , and all the other
N − 1 eigenvalues have nonnegative real parts.

The following assumption of graph topology holds throughout
this paper.

Assumption 1. The directed graph G contains a spanning tree and
the root node i can obtain information from the leader node.

3. Mathematical modeling

In this section, we dynamically modeling the proposed tri-rotor
UAV.

3.1. System description

The configuration of the tri-rotor UAV is illustrated in Fig. 1,
which was first proposed in our earlier work [6]. The UAV has a tri-
angular structure with three arms and a force generating unit plus
a revolute joint at the end of each arm. All three arms have identical
length l. Each force generating unit includes a fixed pitch propeller
driven by a brushless DC motor to provide thrust. The motors can
be powered by a single battery pack located at the center ofmass or
by three separate battery packs located at an equal distance from
the center of mass and each other. The propeller-motor assembly
is attached to the body arm via a servo motor that can rotate in
a vertical plane to tilt the propeller-motor assembly with an angle
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Fig. 1. Design of the tri-rotor UAV. (a) Top view. (b) 3D view.

Fig. 2. Front view of one arm.

αsi (the subscript ’s’ denotes servo) in order to produce a horizontal
component of the generated force, which is shown in Fig. 2.

All three propellers can be tilted independently to give full
thrust vectoring authority. Then the UAV becomes a full six-
degrees-of-freedom (6-DOF) vehicle in which all motions can be
achieved independently by changing speed of the propellers and
tilting angles of the servo motor directly. This configuration en-
ables vehicle attitude (i.e. 3D orientation) and vehicle translation
(i.e. 3D movement) to be independently controlled.

In order to develop the dynamicmodel of the proposed tri-rotor
UAV, the following right hand coordinate systems shown in Fig. 3
are considered: (Xe, Ye, Ze) represents the earth coordinate system,
which is assumed to be inertial (i.e. fixed). (Xb, Yb, Zb) denotes the
body coordinate system, where the origin Ob is fixed to the center
of mass of the vehicle. This coordinate system moves with the
vehicle. (Xli, Yli, Zli) with i ∈ {1, 2, 3} is the local coordinate system
of each propeller-motor assembly. The location of the origin of
each local coordinate system coincides with the intersection of the
UAV arm and the propeller-motor assembly, where Xli is extended
outside the ith arm of UAV along the same line as the arm and Zli is
along the direction of the motor shaft axis when the servo angle is
zero.

In this section, the superscript b, e and li are used to denote the
corresponding coordinate system in which vectors are expressed.

Fig. 3. Coordinate systems of the tri-rotor UAV.

The subscript i refers to the ith propeller, servo motor or brushless
DC motor with i ∈ {1, 2, 3}. The nominal mathematical model is
based on the following assumptions:

(1) Fast actuators are assumed, so the dynamics of actuators are
neglected.

(2) Propellers are considered to be rigid, thus blade flapping is
not considered in the model.

(3) The body structure is rigid and the mass is fixed.

It should be noted that although we do not consider these factors
in model design, they can still be included as perturbations and
uncertainties when carrying out simulation or experiment to test
the robustness of the proposed control system in the next section.

In order to obtain the dynamical equations of motion of the
vehicle, both forces and torques acting on the UAV need to be
analyzed.

3.2. Forces analysis

There are twomain forces acting on the tri-rotor, which are the
propulsive force and the gravitational force respectively.

The total propulsive force F b
p is equal to the algebraic sum of the

three individual propulsive forces produced by each propeller. The
individual propulsive forces F li

pi at the local coordinate systems are
given by:

F li
pi =

⎡⎣ 0
kfω2

mi sin(αsi )

kfω2
mi cos(αsi )

⎤⎦ , i ∈ {1, 2, 3} , (1)

where kf is the thrust coefficient of the propeller that can be easily
determined from static thrust tests [30],ωmi is the rotational speed
of the ith brushless DC motor and αsi is the tilting angle of the ith
servo motor.

To obtain the propulsive forces in the body coordinate system,
consider the following rotationmatrices from propeller local coor-
dinate systems l1, l2 and l3 to the body coordinate system b as

Rb
l1 =

[1 0 0
0 1 0
0 0 1

]
, Rb

l2 =

⎡⎢⎢⎢⎢⎢⎣
−

1
2

−

√
3
2

0
√
3
2

−
1
2

0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,

Rb
l3 =

⎡⎢⎢⎢⎢⎢⎣
−

1
2

√
3
2

0

−

√
3
2

−
1
2

0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ .
(2)
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The total propulsive force is then given by

F b
p = Rb

l1F
l1
p1 + Rb

l2F
l2
p2 + Rb

l3F
l3
p3 = kfHf ρ (3)

where

Hf =

⎡⎢⎢⎢⎢⎣
0 −

√
3
2

√
3
2

0 0 0

1 −
1
2

−
1
2

0 0 0

0 0 0 1 1 1

⎤⎥⎥⎥⎥⎦ and ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
m1 sin(αs1 )

ω2
m2 sin(αs2 )

ω2
m3 sin(αs3 )

ω2
m1 cos(αs1 )

ω2
m2 cos(αs2 )

ω2
m3 cos(αs3 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The gravitational force in the earth coordinate system can be
written as

F e
g =

[ 0
0

−mg

]
, (4)

where g is the gravity acceleration and m is the total mass of the
tri-rotor UAV.

In the body coordinate system, we have

F b
g = Rb

e F
e
g , (5)

where Rb
e is the rotation matrix from frame e to frame b.

The notation of attitude angles for the UAV is roll angle φ, pitch
angle θ and yaw angle ψ , which represents counterclockwise ro-
tation of angles about the Xb-axis, Yb-axis and Zb-axis respectively.
The rotation matrices are given by

Rx(φ) =

[1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

]
,

Ry(θ ) =

[ cos(θ ) 0 sin(θ )
0 1 0

− sin(θ ) 0 cos(θ )

]
,

Rz(ψ) =

⎡⎣ cos(ψ) − sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

⎤⎦ .
(6)

According to the properties of the rotation matrix we have
Rb
e = (Re

b)
−1, where Re

b is the rotationmatrix from body coordinate
system to the earth coordinate system given by

Re
b = RzRyRx

=

[CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ
CθSψ SθSφSψ + CφCψ CφSθSψ − CψSφ
−Sθ CθSφ CφCθ

]
,

(7)

where S(.) and C(.) represent sin(.) and cos(.) respectively.
Then the gravitational force in the body coordinate system can

be expressed by

F b
g = mgΘ, (8)

where

Θ =

[ sin(θ )
− sin(φ) cos(θ )
− cos(φ) cos(θ )

]
.

Thus, the total force acting on the tri-rotor in the body coordi-
nate system can be written as

F b
= F b

p + F b
g = kfHf ρ + mgΘ. (9)

3.3. Torques analysis

There are two main torques acting on the tri-rotor, which are
the propulsive torque and drag torque.

The propulsive torque is the torque caused by the thrust gener-
ated from the propellers near the center of mass of the UAV. Since
there are three identical arms with length l, the propulsive torque
for each actuator is given by

τb
pi = lbi × F b

pi , i ∈ {1, 2, 3} , (10)

where

lb1 = l

[1
0
0

]
, lb2 = l

⎡⎢⎢⎢⎢⎣
√
3
2

−
1
2
0

⎤⎥⎥⎥⎥⎦ , lb3 = l

⎡⎢⎢⎢⎢⎣
−

1
2

−

√
3
2
0

⎤⎥⎥⎥⎥⎦
and F b

pi = Rb
li
F li
pi .

Then the total propulsive torque with respect to the body coor-
dinate system can be written as:

τb
p = τb

p1 + τb
p2 + τb

p3 = kfHtρ, (11)

where

Ht = l

⎡⎢⎢⎢⎢⎣
0 0 0 0

√
3
2

−

√
3
2

0 0 0 −1
1
2

1
2

1 1 1 0 0 0

⎤⎥⎥⎥⎥⎦ .
The drag torque is expressed as the torque caused by the aero-

dynamic drag forces, which is in the opposite direction to the
rotation direction of propeller. Thus, the resulting drag torque on
the ith propeller is given by kdω2

mi, where kd is the drag torque to
speed coefficient resulting from the rotation of the propeller.

The drag torque on the propellers causes an equal reaction
torque on the vehicle which can be expressed in the local coor-
dinate systems as

τ
li
di

=

⎡⎢⎣ 0

−kdω2
mi sin(αsi )

−kdω2
mi cos(αsi )

⎤⎥⎦ , i ∈ {1, 2, 3} . (12)

The total drag (or reaction) torque in the body coordinate sys-
tem can be written as

τb
d = τb

d1 + τb
d2 + τb

d3 = Rb
l1τ

l1
d1

+ Rb
l2τ

l2
d2

+ Rb
l3τ

l3
d3

= − kdHf ρ.
(13)

Finally, the total torque acting on the tri-rotor UAV in the body
coordinate system can be written as

τb
= τb

p + τb
d = (kfHt − kdHf )ρ. (14)

3.4. Dynamic model

Under the assumption stated earlier that the tri-rotor UAV is a
rigid body of fixed mass, the vehicle’s translational and rotational
dynamics can be calculated by the Newton–Euler’s second law of
motion [31] in the body coordinate frame as

F b
= m(v̇b

v + S(ωb
v)v

b
v ), (15)

τb
= Ibv ω̇

b
v + S(ωb

v)I
b
vω

b
v, (16)
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where vb
v is the vehicle’s translational velocity measured in the

body coordinate frame andωb
v is the vehicle’s angular velocity. The

vehicle’s inertiamatrix expressed in the body coordinate frameand
the skew matrix constructed from the vector ωb

v = [p q r]T are
given by

Ibv =

[Ixx 0 0
0 Iyy −Iyz
0 −Iyz Izz

]
(17)

and

S(ωb
v) =

[ 0 −r q
r 0 −p

−q p 0

]
. (18)

Now, substituting F b and τb from (9) and (14) gives

kfHf ρ + mgΘ = m(v̇b
v + S(ωb

v)v
b
v ), (19)

(kfHt − kdHf )ρ = Ibv ω̇
b
v + S(ωb

v)I
b
vω

b
v. (20)

Let ηv = [φ θ ψ]T and λe
v = [xv yv zv]T denote respectively the

attitude vector and the position vector with respect to the earth
coordinate system. Then

η̇v = Ψωb
v, (21)

λ̇
e
v = Re

bv
b
v , (22)

describe the relations between velocities and positions [32], where
Ψ relates the instantaneous angular velocities around the Xb-axis,
Yb-axis and Zb-axis to the rate of change of the roll, pitch and yaw
angles. It is given in [33] as

Ψ =

⎡⎢⎣1 sin(φ) tan(θ ) cos(θ ) tan(θ )

0 cos(θ ) − sin(φ)

0 sin(φ) sec(θ ) cos(φ) sec(θ )

⎤⎥⎦ ,−π2 < θ <
π

2
. (23)

Therefore, the dynamic model of the tri-rotor can be described
in a compact form as

v̇b
v = gΘ − S(ωb

v)v
b
v +

kf
m

Hf ρ, (24)

ω̇b
v = −(Ibv )

−1S(ωb
v)I

b
vω

b
v + (Ibv )

−1(kfHt − kdHf )ρ, (25)

η̇v = Ψωb
v, (26)

λ̇
e
v = Re

bv
b
v , (27)

where

vb
v =

[ub
vb
wb

]
, ωb

v =

[p
q
r

]
, ηv =

[
φ

θ

ψ

]
and λe

v =

[xv
yv
zv

]
.

Choosing the state vector as

x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]T

= [ub vb wb p q r φ θ ψ xv yv zv]T , (28)

and the input vector as

u = ρ =

⎡⎢⎢⎢⎢⎢⎣
u1
u2
u3
u4
u5
u6

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
m1 sin(αs1)

ω2
m2 sin(αs2)

ω2
m3 sin(αs3)

ω2
m1 cos(αs1)

ω2
m2 cos(αs2)

ω2
m3 cos(αs3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)

then the set of (24)–(27) can be written in the state–space form as

ẋ1 = x2x6 − x3x5 + g sin(x8) −

√
3kf
2m

u2 +

√
3kf
2m

u3, (30)

ẋ2 = x3x4 − x1x6 − g sin(x7) cos(x8)

+
kf
m

u1 −
kf
2m

u2 −
kf
2m

u3, (31)

ẋ3 = x1x5 − x2x4 − g cos(x7) cos(x8)

+
kf
m

u4 +
kf
m

u5 +
kf
m

u6, (32)

ẋ4 =
x5x6(Iyy − Izz) + Iyz(x25 − x26)

Ixx
+

√
3kd

2Ixx
u2

−

√
3kd

2Ixx
u3 +

√
3lkf
2Ixx

u5 −

√
3lkf
2Ixx

u6, (33)

ẋ5 =
x4x5(IxxIyz − IyyIyz − Izz Iyz)

IyyIzz − I2yz

+
x4x6(I2yz + I2zz − IxxIzz)

IyyIzz − I2yz
+

Iyzkf l − Izzkd
IyyIzz − I2yz

u1

+
2Iyzkf l + Izzkd
2(IyyIzz − I2yz)

u2 +
2Iyzkf l + Izzkd
2(IyyIzz − I2yz)

u3

−
Izzkf l + Iyzkd
IyyIzz − I2yz

u4 +
Izzkf l − 2Iyzkd
2(IyyIzz − I2yz)

u5

+
Izzkf l − 2Iyzkd
2(IyyIzz − I2yz)

u6, (34)

ẋ6 =
x4x6(IyyIyz + Izz Iyz−IxxIyz)

IyyIzz − I2yz

+
x4x5(IxxIyy − I2yz − I2yy)

IyyIzz − I2yz
+

Iyykf l − Iyzkd
IyyIzz − I2yz

u1

+
2Iyykf l + Iyzkd
2(IyyIzz − I2yz)

u2 +
2Iyykf l + Iyzkd
2(IyyIzz − I2yz)

u3

−
Iyzkf l + Iyykd
IyyIzz − I2yz

u4 +
Iyzkf l − 2Iyykd
2(IyyIzz − I2yz)

u5

+
Iyzkf l − 2Iyykd
2(IyyIzz − I2yz)

u6, (35)

ẋ7 = x4 + x5 sin (x7) tan(x8) + x6 cos(x7) tan(x8), (36)
ẋ8 = x5 cos(x7) − x6 sin(x7), (37)
ẋ9 = x5 sin(x7) sec(x8) + x6 cos(x7) sec(x8), (38)
ẋ10 = x1 cos(x8) cos(x9) + x2(sin(x7) sin(x8) cos(x9)

− cos(x7) sin(x9)) + x3(cos(x7) sin(x8) cos(x9)
+ sin(x7) sin(x9)), (39)

ẋ11 = x1 cos(x8) sin(x9) + x2(sin(x7) sin(x8) sin(x9)
+ cos(x7) cos(x9)) + x3(cos(x7) sin(x8) sin(x9)
− sin(x7) cos(x9)), (40)

ẋ12 = −x1 sin(x8) + x2 sin(x7) cos(x8) + x3 cos(x7) cos(x8). (41)

The output vector is chosen as

y =

⎡⎢⎢⎢⎢⎢⎣
φ

θ

ψ

xv
yv
zv

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
x7
x8
x9
x10
x11
x12

⎤⎥⎥⎥⎥⎥⎦ . (42)

Remark 1. Note that the real inputs (ωmi and αsi) are mapped
into the control inputs ui via the nonlinear mapping (29). It can
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be shown that this nonlinear mapping is invertible thus giving
actuator signalsωmi and αsi for use in real application. The physical
actuator inputsωmi and αsi can be calculated back from the control
inputs ui via

αsi = arctan
(

ui

ui+3

)
and ωmi =

4
√
u2
i + u2

i+3 ∀i ∈ {1, 2, 3}.

4. Control system design

The objective of this section is to design a robust distributed
formation control protocol for swarms of the proposed tri-rotor
UAV. Since the dynamical model of a single tri-rotor UAV is highly
coupled and nonlinear, a robust feedback linearization technique
is first applied to each tri-rotor to obtain simpler closed-loop
dynamics. Then the swarm of identical tri-rotor UAVs is controlled
through an optimal distributed formation control protocol which
solves the time-varying formation tracking problem for tri-rotor
robotic swarms.

4.1. Robust feedback linearization

Consider a single nonlinear system with n states,m inputs, and
m outputs described by

ẋ = F (x)+ G (x) u = F (x)+

m∑
i=1

Gi (x) ui, (43)

y = [H1 (x) , . . . ,Hm (x)]T , (44)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm is the control
input, y(t) ∈ Rm is the output vector, and F (x), G1 (x) , . . . ,Gm (x),
y are smooth vector fields defined on an open subset of Rn.

Suppose that this system satisfies the well-known conditions
for feedback linearization [34]: The relative degree of Hi is equal to
ri for i ∈ {1, . . . ,m} such that r1+· · ·+ rm = n, and the decoupling
matrix

M(x) =

⎡⎢⎢⎣
LG1L

r1−1
f H1 (x) . . . LGmL

r1−1
f H1 (x)

...
. . .

...

LG1L
rm−1
f Hm (x) . . . LGmL

rm−1
f Hm (x)

⎤⎥⎥⎦ (45)

is invertible, where L(.) (.) denotes the Lie derivative operator [34].
It is then possible to find a feedback linearizing control law of the
form

u (x,w) = αc (x)+ βc (x)w, (46)

where w(t) is a new control input, and αc(x) = −M−1(x)[
Lr1f H1(x) . . . Lrmf Hm(x)

]T
, βc(x) = M−1(x), such that on appli-

cation of the control law in (46), the nonlinear state-equation (43)
reduces into the linear state-equation

ẋc = Acxc + Bcw, (47)

where Ac and Bc are matrices of the Brunovsky canonical form
[34], and a change of coordinates xc = φc (x) with φT

c (x) =[
φT
c1(x) . . . φT

cm(x)
]
and φT

ci(x) = [Hi(x) LfHi(x) . . . L
ri−1
f Hi(x)] .

The robust feedback linearization technique [26], on the other
hand, exactly transforms the nonlinear state-equation into a linear
state-equation that is equal to the Jacobi linear approximation
of the original nonlinear state-equation around the origin. This
can then be controlled using linear techniques [27]. In the robust
feedback linearization case, the linearized state-equation becomes

ẋr = Arxr + Brv, (48)

where Ar = ∂xF (0) and Br = G (0). The nonlinear state-equation
(43) is geometrically transformed into the linear state-equation of

any operating point, not only in a small neighborhood of the origin
point. [26] argues that classical feedback linearization may be non
robust in the presence of uncertainties as any system is trans-
formed into a chain of integrators (i.e. Brunovsky form) whereas
robust feedback linearization preserves some system information.

The robust feedback linearization control law is

u (x, v) = α (x)+ β (x) v, (49)

where

α (x) = αc (x)+ βc (x) LU
−1φc (x) , (50)

β (x) = βc (x)R
−1, (51)

φr (x) = U−1φc (x) , (52)

L = −M (0) ∂xαc (0) , (53)

R = M−1 (0) , (54)

U = ∂xφc (0) , (55)

xr = φr (x) . (56)

Now we apply the robust feedback linearization to the dynam-
ics of tri-rotor UAV system. The relative degrees are r1 = 2, r2 = 2,
r3 = 2, r4 = 2, r5 = 2 and r6 = 2, resulting in a vector
relative degree r = 12, which is equal to the number of states.
The decoupling matrixM(x) can also be written in a compact form
as given in [6]:

M(x) =

⎡⎣Ψ(Ibv )
−1(kfHt − kdHf )
kf
m

Re
bHf

⎤⎦ . (57)

It can be verified that det[M(x)] ̸= 0 as the pitch angle is assumed
to be in the range of −π/2 < θ < π/2, such that M(x) is always
invertible in this case. As a result, the conditions for feedback
linearization are satisfied.

After calculating the classic Brunowski form linearizing input
(46) and applying the formulas for the robust feedback lineariza-
tion (49)–(56), the system can then be robust feedback linearized
into

ẋr = Arxr + Brv, (58)

y = Crxr . (59)

The state–space matrix Ar , Br and Cr are shown in Box I.
Furthermore, L, R and U are calculated by

L =

⎡⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎦ , (63)

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −
Iyz
3kf l

Izz
3kf l

0
2m
3kf

kdm
3k2f l

0 −
Iyz
3kf l

Izz
3kf l

−

√
3m

3kf
−

m
3kf

kdm
3k2f l

0 −
Iyz
3kf l

Izz
3kf l

√
3m

3kf
−

m
3kf

kdm
3k2f l

0 −
2Iyy
3kf l

2Iyz
3kf l

0 −
2kdm
3k2f l

m
3kf

√
3Ixx

3kf l
Iyy
3kf l

−
Iyz
3kf l

√
3kdm
3k2f l

kdm
3k2f l

m
3kf

−

√
3Ixx

3kf l
Iyy
3kf l

−
Iyz
3kf l

−

√
3kdm
3k2f l

kdm
3k2f l

m
3kf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (64)
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Ar =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (60)

Br =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −

√
3kf
2m

√
3kf
2m

0 0 0

kf
m

−
kf
2m

−
kf
2m

0 0 0

0 0 0
kf
m

kf
m

kf
m

0

√
3kd

2Ixx
−

√
3kd

2Ixx
0

√
3lkf
2Ixx

−

√
3lkf
2Ixx

Iyzkf l − Izzkd
IyyIzz − I2yz

2Iyzkf l + Izzkd
2(IyyIzz − I2yz)

2Iyzkf l + Izzkd
2(IyyIzz − I2yz)

−
Izzkf l + Iyzkd
IyyIzz − I2yz

Izzkf l − 2Iyzkd
2(IyyIzz − I2yz)

Izzkf l − 2Iyzkd
2(IyyIzz − I2yz)

Iyykf l − Iyzkd
IyyIzz − I2yz

2Iyykf l + Iyzkd
2(IyyIzz − I2yz)

2Iyykf l + Iyzkd
2(IyyIzz − I2yz)

−
Iyzkf l + Iyykd
IyyIzz − I2yz

Iyzkf l − 2Iyykd
2(IyyIzz − I2yz)

Iyzkf l − 2Iyykd
2(IyyIzz − I2yz)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (61)

Cr =

⎡⎢⎢⎣
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎦ . (62)

Box I. .

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (65)

and φc and φr are given by

φc = [x7 x8 x9 x10 x11 x12 ẋ7 ẋ8 ẋ9 ẋ10 ẋ11 ẋ12]T , (66)

φr = [ẋ10 ẋ11 ẋ12 ẋ7 ẋ8 ẋ9 x7 x8 x9 x10 x11 x12]T . (67)

From (56) we know xr = φr (x). Finally, α (x) and β (x) can then be
computed from (50) and (51) directly.

4.2. Distributed optimal formation protocol design

In practical applications, some states do not need to be mea-
sured by sensors for controller design. For example, the vehicle’s
translational velocity in the body coordinate frame vb

v is not used
in the robust feedback linearization controller. It can hence be

obtained by using an observer on input and output information
of the feedback linearized system. In this section, we propose a
distributed optimal formation protocol which uses the neighbor-
hood state estimation information for controller design and the
local output estimation error information for the observer design.
The scheme for controlling the dynamics of attitude and position of
each tri-rotor UAV, based on robust feedback linearization and dis-
tributed optimal output feedback formation protocol, is illustrated
in Fig. 4.

Consider a set of N tri-rotor UAVs. Suppose that each tri-rotor
UAV has the identical linearized dynamics described by

ẋri = Arxri + Brvi, (68)

yi = Crxri. (69)

It can be easily verified that (Ar ,Br , Cr ) is stabilizable and de-
tectable.

The dynamics of the leader node, labeled 0, is given by

ẋ0 = Arx0, (70)

y0 = Crx0. (71)
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Fig. 4. Control system scheme: Distributed optimal formation control law and robust feedback linearization combining linear and nonlinear parts.

where x0 ∈ Rn is the state, y0 ∈ Rp is the output. It can be
considered as a command generator, which generates the desired
target trajectory. The leader can be observed from a subset of
agents in a graph. If node i observes the leader, an edge (0, i) is said
to exist with weighting gain gi > 0 as a pinned node. We denote
the pinning matrix as G = diag {gi} ∈ RN×N .

The desired formation is specified by the vector h =[
hT
1, h

T
2, . . . , h

T
N

]T with hi ∈ Rn being a preset vector known by
the corresponding ith agent. It should be noted that the formation
problem reduces to a consensus problem when hi = 0 ∀ i ∈

{1, . . . ,N}.
Denote the estimate of the state xri by x̂ri ∈ Rn and let the state

estimation error be x̃ri = xri − x̂ri. Then the consequent estimate of
the output yi is given by ŷi = Cr x̂ri and the output estimation error
for node i is given by ỹi = yi−ŷ i. Consider the following distributed
optimal formation protocol

vi = cK
∑
j∈Ni

aij
((
x̂rj − hj

)
−

(
x̂ri − hi

))
+ cKgi

(
x0 −

(
x̂ri − hi

))
+ γ i,

(72)

˙̂xri = Ar x̂ri + Brvi − cF ỹi, (73)

where c > 0 is the scalar coupling gain, K ∈ Rm×n is the feedback
control gain matrix, F ∈ Rn×m is the observer gain, and γ i ∈ Rm

represents the formation compensation signal to be designed.
Let x =

[
xTr1, x

T
r2, . . . , x

T
rN

]T , x̂ =
[
x̂Tr1, x̂

T
r2, . . . , x̂

T
rN

]T , x̃ =[
x̃Tr1, x̃

T
r2, . . . , x̃

T
rN

]T , x0 = 1N ⊗ x0, and γ =
[
γT
1, γ

T
2, . . . , γ

T
N

]T .
Under a control protocol with directed topology, the tri-rotor UAV
swarm can be written in a compact form as

ẋ = (IN ⊗ Ar )x − c[(L + G)⊗ BrK ](x̂ − x0)

+ c[(L + G)⊗ BrK ]h + (IN ⊗ Br) γ,
(74)

˙̂x = (IN ⊗ Ar )x̂ − (IN ⊗ cFCr )(x − x̂)

− c[(L + G)⊗ BrK ](x̂ − x0)

+ c[(L + G)⊗ BrK ]h + (IN ⊗ Br) γ .

(75)

It follows the fact that matrix Br given in (61) is of full rank,
there always exists a nonsingular matrix [B̃T , B̄T

]
T with B̃ ∈ Rm×n

and B̄ ∈ R(n−m)×n such that B̃Br = Im and B̄Br = 0. The following
theorem which is motivated by [35], has been improved to deal
with output feedback tracking of multi-agent systems.

Theorem 1. Let λi (i ∈ {1, . . . ,N}) be the eigenvalues of (L + G).
Then the tri-rotor UAV swarm with directed interaction topology

asymptotically converges to the formation specified by (x0 +hi) ∈ Rn

∀i ∈ {1, . . . ,N} if the following conditions hold for all i ∈ {1, . . . ,N}

B̄Arhi − B̄ḣi = 0, (76)

Ar − cλiBrK and Ar + cFCr are Hurwitz, (77)

and γ i = B̃ḣi − B̃Arhi for all i ∈ {1, . . . ,N} . (78)

Proof. Let formation tracking error for each UAV beΦi = xri −hi −

x0 and Φ = [ΦT
1 ,Φ

T
2 , . . . ,Φ

T
N ]

T . Then the global formation error
dynamics with directed interaction topology can be written as

Φ̇ =[IN ⊗ Ar − c (L + G)⊗ BrK ]Φ

+ c[(L + G)⊗ BrK ]x̃

+ (IN ⊗ Ar) h − (IN ⊗ IN )ḣ

+ (IN ⊗ Br) γ .

(79)

The global observer error dynamics is

˙̃x = IN ⊗ (Ar + cFCr )x̃. (80)

In view of Assumption 1, all the eigenvalues of matrix (L + G)
have positive real parts [36]. It is well known that there exists a
nonsingular T such that T−1 (L + G) T is in the Jordan canonical
form J . Let ϑ =

(
T−1

⊗ In
)
Φ =

[
ϑT
1,ϑ

T
2, . . . ,ϑ

T
N

]T
. Then multi-

agent system can be represented in terms of ϑ as

ϑ̇ = (IN ⊗ Ar − cJ ⊗ BrK )ϑ

+ c[T−1 (L + G)⊗ BrK ]x̃

+
(
T−1

⊗ Ar
)
h − (T−1

⊗ IN )ḣ

+
(
T−1

⊗ Br
)
γ .

(81)

If condition (76) holds, then for all i ∈ {1, . . . ,N}

B̄Arhi − B̄ḣi + B̄Brγ i = 0. (82)

By letting γ i = B̃ḣi − B̃Arhi, it follows that

B̃Arhi − B̃ḣi + B̃Brγ i = 0. (83)

From (82) and (83) and the fact that
[
B̃T , B̄T

]T is nonsingular, one
gets

Arhi − ḣi + Brγ i = 0. (84)

which means that

(IN ⊗ Ar) h − (IN ⊗ IN )ḣ + (IN ⊗ Br) γ = 0. (85)
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Pre-multiplying the both sides of (85) by T−1
⊗ IN yields(

T−1
⊗ Ar

)
h − (T−1

⊗ IN )ḣ +
(
T−1

⊗ Br
)
γ = 0. (86)

Then (81) reduces to the following dynamics

ϑ̇ = (IN ⊗ Ar − cJ ⊗ BrK )ϑ + c[T−1 (L + G)⊗ BrK ]x̃. (87)

From (87) and (80), it can be obtained that[
ϑ̇
˙̃x

]
=

[
Ae Be
0 IN ⊗ (Ar + cFCr )

][
ϑ
x̃

]
, (88)

where

Ae = IN ⊗ Ar − cJ ⊗ BrK ,

Be = cT−1 (L + G)⊗ BrK .

Therefore, the global error system in (88) is asymptotically stable
if and only if both Ae and IN ⊗ (Ar + cFCr ) are Hurwitz, and the
latter can be satisfied due to the detectability of (Cr ,Ar ). Note
that the state matrix Ae is either block diagonal or block upper-
triangular. Hence the stability of (88) is equivalent to the stability
of the N subsystems defined with the diagonal blocks. Therefore,
Ar −cλiBrK is Hurwitz ∀ i ∈ {1, . . . ,N} if and only if IN ⊗Ar −cJ ⊗
BrK is Hurwitz. Therefore,ϑ converges asymptotically to the origin
which is equivalent to stating that xri converges asymptotically to
x0 + hi for all i ∈ {1, . . . ,N}. □

Next wewill show how to select state variable feedback control
gain K to guarantee stability on arbitrary directed graphs contain-
ing a spanning tree by using LQR based optimal design and proper
choice of the coupling gain c. The following theorem is an extension
of a result in [28], which only considers the consensus problem. In
the casewhere h = 0, the optimal formation tracking protocol (72)
becomes the optimal consensus tracking protocol of [28], so it can
be viewed as a special case of the result in the current paper.

Theorem 2. Let Q = Q T
∈ Rn×n and R = RT

∈ Rm×m be positive
definite matrices. Let P be the unique positive definite solution of the
algebraic Riccati equation

AT
r P + PAr + Q − PBrR−1BT

r P = 0. (89)

Then, under Assumption 1 and condition (76), the distributed forma-
tion tracking control protocol (72) with

K = R−1BT
r P (90)

and γ i set as in (78) ensures that the tri-rotor UAV swarm with di-
rected interaction topology asymptotically converges to the formation
specified by (x0 + hi) ∈ Rn

∀i ∈ {1, . . . ,N} if the coupling gain

c ≥
1

2λR
(91)

with λR = mini∈{1,...,N}Re (λi), where λi are the eigenvalues of
(L + G).

Proof. Consider the stability of the following subsystem

δ̇i = (Ar − cλiBrK ) δi, (92)

where δ denotes the formation tracking closed-loop error. Con-
struct the following Lyapunov candidate function

Vi = δ∗

i Pδi. (93)

Taking the derivative of Vi along the trajectory of subsystem gives

V̇i = δ∗

i

(
PAr + AT

r P − cλ∗

i (BrK )TP − cλiPBrK
)
δi. (94)

Algorithm 1 Procedure for construction of the control law of a tri-
rotor UAV robotic swarm
1: initialize state variables for a tri-rotor UAV robotic swarm;
2: for each vehicle i ∈ {1, . . . ,N} do
3: select the desired formation reference hi ∈ Rn;
4: if formation feasibility condition (76) is satisfied then
5: compute distributed feedback gain K using (90) and

(89);
6: select coupling gain c according to condition (91);
7: compute local optimal observer gain F using (98) and

(99);
8: set γ i ∈ Rn according to (78);
9: set the distributed optimal formation control protocol vi

as in (72) and (73);
10: set the robust feedback control law ui as in (49).
11: else
12: back to Step 3;
13: end if
14: end for

Substituting K = R−1BT
r P and AT

r P + PAr = −Q + PBrR−1BT
r P

into (92) one has

V̇i =
[
1 − 2cRe (λi)

]
δ∗

i

(
PBrR−1BT

r P
)
δi − δ∗

i Q δi. (95)

It can be seen that if condition (91) holds, then V̇i < 0. Therefore,
Ar − cλiBrK is Hurwitz for all i ∈ {1, . . . ,N} by Lyapunov the-
ory [37]. This completes the proof. □

The ARE in (89) is extracted by minimizing the following per-
formance index for each tri-rotor UAV

Ji =
1
2

∫
∞

0
(δTi Q δi + vT

i Rvi)dt. (96)

The design Riccati matrices Q and R can be selected to adjust
the relative cost of formation tracking error and control effort.
This allows the cooperative control system to be tuned to trade-
off between the speed of formation tracking and the speed of DC
motors to achieve it.

Remark 2. In order to enhance the robustness of our tri-rotor UAV,
suppose external white noises ε1 and ε2 are added to (68) and (69)
respectively, which satisfy that

E[ε1ε1
T
] = Q̄ , E[ε2ε2

T
] = R̄, E[ε1ε2

T
] = 0, (97)

where E donates the expected value, and Q̄ and R̄ are positive
definite matrices. Then a local optimal observer gain F can be
calculated by a similar approach (see [38] for further details) as

F = P̄C T
r R̄

−1, (98)

where P̄ is the unique positive definite solution of ARE

Ar P̄ + P̄AT
r − P̄C T

r R̄
−1Cr P̄ + Q̄ = 0. (99)

This optimal observer is also known as Kalman–Bucy filter [39],
which has beenwidely used in system state estimation. It has been
demonstrated [40] to have many advantages, including optimality
of state estimation in the presence of white noise and external
disturbance [41].

With the above analysis, the procedure to construct the control
law ui is given in Algorithm 1 .

Validation of internal stability using closed-loop data from ex-
periments can be performed using technique described in [42].
This is useful as one would also expect unmodeled dynamics.
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Fig. 5. The hardware of the designed tri-rotor UAV.

5. Simulation results

The numerical simulation carried out in this section is based
on real hardware as shown in Fig. 5. The electric propulsion unit
of the tri-rotor UAV includes energy storage units (battery packs),
electronic speed control units (ESC), electric motors (brushless DC
motors), and propellers. Also, an embedded system is installed on
themain body,which includes an on-boardmicrocontroller (OBM),
a data acquisition module (DAQ) and a sensor module (IMU). The
measured model parameters of the tri-rotor UAV are given in
Table 1.

The simulation environment has been designed and imple-
mented in SimscapeMultibodyTM and Simulink R⃝ formore realistic
results as this provides a 3D graphical display of physical devices.
Simscape MultibodyTM is used to develop the dynamic model of
the tri-rotor UAV based on physical components such as joints,
constraints, force elements, and sensors. The designed control
system is implemented in Simulink R⃝. Furthermore, a time delay of
0.01 s in servo motor responses and a maximum speed saturation
constraint of 12000 RPM on the electric motors are considered in
the simulation model to mimic real physical considerations.

For this case study, consider a set of six tri-rotor UAVs per-
forming a target surveillance task, whose goal is to track a prede-
fined time-varying formationwhilemaintaining different attitudes
individually for monitoring the full range of target activity. The
directed interaction topology among the six vehicles is shown in
Fig. 6, where the leader agent 0 provides the formation reference
signal and the directed topology is switched every 5 s in sequence.
Recall that hi ∈ Rn is the formation offset vector with respect to
the formation reference x0 ∈ Rn. The 3D attitude and 3D position
of each UAV are chosen independently.

The matrix B̄ can be chosen as

B̄ =

⎡⎢⎢⎣
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎦ ,
and B̃ can be calculated as a left generalized inverse of Br , which is
given by

B̃ =

⎡⎢⎢⎢⎢⎢⎣
0 406.09 29.68 0 −0.05 0.28 0 0 0 0 0 0

−351.68 −203.04 29.68 0 −0.05 0.28 0 0 0 0 0 0
351.68 −203.04 29.68 0 −0.05 0.28 0 0 0 0 0 0

0 −59.36 203.04 0 −1.79 0.10 0 0 0 0 0 0
51.41 29.68 203.04 1.99 0.89 −0.05 0 0 0 0 0 0

−51.41 29.68 203.04 −1.99 0.89 −0.05 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Table 1
Tri-rotor UAV and controller parameters.

Value Unit Description

m 0.5 kg Tri-rotor mass
g 9.81 m/s2 Gravity acceleration
l 0.23 m Arm length
Ixx 6.8 × 10−3 kg · m2 Moment of inertia along Xb
Iyy 5.3 × 10−3 kg · m2 Moment of inertia along Yb
Izz 1.7 × 10−3 kg · m2 Moment of inertia along Zb
Iyz 3.1 × 10−4 kg · m2 Product of inertia about Yb and Zb
kf 1.97 × 10−5 kg · m/rad2 Thrust to speed coefficient
kd 2.88 × 10−7 kg · m2/rad2 Drag to speed coefficient

Fig. 6. Directed interaction topologies.

In this case, the states of the leader node are given by

x0 = [0 0 0 0 0 0 0 0 0 5 − 5 0]T ,

which indicates that the reference position will be located at a
static position (5,−5, 0)with roll, pitch and yaw angles being zero,
and all the reference velocities and reference angular velocities are
kept zero to maintain the static target position. It should however
be pointed out that the individual attitudes and positions of each
UAV are also effected by the choice of hi, which will not be set to
zero. The proposed control strategy is valid regardless of the target
is static or time-varying. In this case, hi is selected as

hi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 cos(t +
(i − 1)π

3
)

−10 sin(t +
(i − 1)π

3
)

0
0
0
0

−0.5 × (−1)i

−0.5 × (−1)i

0.5 × (−1)i

10 sin(t +
(i − 1)π

3
)

10 cos(t +
(i − 1)π

3
)

20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(for i ∈ {1, 2, . . . , 6}),

where the desired offsets of 3D attitude and 3D position with
respect to the reference signal for each agent are represented by
last six rows, and the first six rows are the derivatives of them
according to the change of coordinates given in (67).

It can be verified that the formation tracking feasibility con-
dition (76) in Theorem 1 is satisfied. Then the optimal state-
feedback gain K and coupling gain c can be obtained using the
approach in Theorem 2. The local optimal observer gain F for each
UAV can also be selected easily by solving the corresponding ARE
based on the estimation of noise. These design gains are hence
given by

c = 5,



172 J. Hu, A. Lanzon / Robotics and Autonomous Systems 103 (2018) 162–174

Fig. 7. 3D trajectories of the tri-rotor swarm.

K =

⎡⎢⎢⎢⎢⎢⎣
−2.1 0.3 12 −0.1 −2.3 3.2 −0.9 −9.4 18 −2.2 0.5 2.6
2.1 −2.9 12 2.6 1.2 3.1 11 7.6 17 2.8 −3.5 2.6
2.6 2.5 12 −2.4 1.3 3.1 −11 8.9 17 3.7 2.9 2.6
−20 0 85 0 −17 0.3 0.1 −81 −0.5 −25 0 18
10 −18 85 17 8.4 −0.8 77 40 −3.6 12 −22 18
10 18 85 −17 8.4 −0.8 −77 40 −3.6 12 22 18

⎤⎥⎥⎥⎥⎥⎦ ,

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.12 10.08 −0.01 9.83 0 0
−10.14 −0.12 0 0 9.83 0

0 0 −0.18 0 0 1.25
160.26 0 0 −0.12 5.57 0

0 208.61 50.72 −6.01 −0.12 0
0 50.72 916.32 −0.13 0 −0.18

17.90 0 0 −0.01 −0.20 0
0 20.36 1.60 0.16 −0.01 0
0 1.60 42.77 0 0 0

−0.01 0.16 0 4.43 0 0
−0.20 −0.01 0 0 4.43 0

0 0 0 0 0 1.5864

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On using robust control law (49) with optimal distributed for-
mation control protocol (72) and (73), the trajectory of each tri-
rotor UAV is given by Fig. 7. The 3D visualization of distributed
formation of the tri-rotor UAV swarm are illustrated in Fig. 8. The
attitude tracking performance with respect to roll, pitch and yaw
angles is shown in Fig. 9. The position tracking of hovering is shown
in Fig. 10. From all these figures, it can be seen that the tri-rotor
swarm forms a regular hexagonal formation with circular time-
variation in the x-y plane after 25 s and the surveilled target lies
in the middle of the circular rotation at ground level. The attitude
of each tri-rotor UAV varies with time along the circular trajectory
so that each tri-rotor points (e.g. its onboard camera) to the target
located at the center of the circle. It is concluded that the desired
formation and attitude tracking of the UAV swarm is achieved
independently, and the designed control system preserves good
robustness properties when subjected to simulated aerodynamic
disturbances and model uncertainties.

6. Conclusion

In this paper, we have proposed a new tri-rotor unmanned
aerial vehicle which is more efficient and flexible than a quadrotor
UAV. A formation tracking problem of a networked tri-rotor UAV
swarm has also been solved using a distributed formation control
protocol.

To achieve this, the dynamical model was first derived based on
force and torque kinematic analysis and subsequent translational
and rotational dynamic modeling. A robust feedback linearization
controller was then developed to deal with this highly coupled and
nonlinear tri-rotor UAV to achieve a feedback linearized system
through geometric transformation that is valid at any operating
point but matches the Jacobi linearization of the system at the
operating point of interest. The technique preserves robustness as
it does not invert all nonlinear dynamics, unlike classic feedback
linearization. An distributed optimal formation tracking control
protocolwas thendeveloped for the tri-rotor robotic swarm,which
guarantees that the target time-varying position and time-varying
attitude of each UAV can be achieved independently. Finally, sim-
ulation results were given in a realistic environment based on 3D
graphical display and physical visualizations. It has been shown

Fig. 8. 3D shots of the tri-rotor swarm. (a) t = 0 s. (b) t = 5 s. (c) t = 10 s. (d) t = 15 s. (e) t = 25 s. (f) t = 50 s.
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Fig. 9. Attitude response of the tri-rotor swarm system. (a) Roll angle φ. (b) Pitch angle θ . (c) Yaw angle ψ .

Fig. 10. Position response of the tri-rotor swarm system. (a) Longitudinal displacement xv . (b) Lateral displacement yv . (c) Vertical displacement zv .

that the proposed tri-rotor UAV swarm is able to track a desired
time-varying formation whilst independently tracking different
time-varying attitudes. A target surveillance task was performed
effectively by these tri-rotor UAVs, which lays the foundation for
some more complex collaborative tasks to be explored.

Future work will take obstacle avoidance and power manage-
ment as shown in [43] into consideration, the proposed distributed
controller will be applied to real hardware, and robust methods
such as [44,45] will be exploited in the design of the distributed
control protocol.
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