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In this paper, the problemof designing a control law in case of rotor failure in quadrotor vehicles is addressed. First,

a nonlinear mathematical model for a quadrotor vehicle is derived, which includes translational and rotational

dynamics. Then a robust feedback linearization controller is developed, which sacrifices the controllability of the yaw

state due to rotor failure to linearize the closed-loop system around a working point, where roll and pitch angles are

zero and the angular speed around the vertical axis is a nonzero constant.AnH∞ loop shaping technique is adopted to

achieve regulation of these variables around the chosenworkingpoint. Finally, an outer loop is proposed for achieving

control of the linear displacement under the assumption of small angles approximation for the pitch and roll angles.

The proposed control strategy allows the vehicle to use the remaining three functional rotors to enter a constant

angular speed around its vertical axis, granting stability and representing an effective way to deal with a rotor failure

in quadrotor vehicles.

Nomenclature

d = ratio between drag and thrust
coefficients of a rotor, m

fj = thrust force provided by the jth rotor, N
fmax = upper bound on thrust force, N
fmin = lower bound on thrust force, N
g = gravity acceleration, 9.81 m∕s2
I = inertia matrix, kg · m2

Ixx, Iyy, Izz = principal moments of inertia, kg · m2

kr = rotational drag, N · m · s
kt = linear drag, N · s∕m
l = arm length, m
m = quadrotor total mass, kg
p = rotational speed around xB axis, rad∕s
q = rotational speed around yB axis, rad∕s
fRg�O; x; y; z� = frame attached to the Earth
fRBg�OB; xB; yB; zB� = frame attached to the body
r = rotational speed around zB axis, rad∕s
uf = total upward lift force provided by

the blades, N
η = quadrotor attitude with respect to

Earth frame, rad
θ = pitch angle, rad
ξ = quadrotor position with respect to

Earth frame, m
τB = torque vector around body frame

axes, N · m
τp, τq, τr = torque vector components due to

actuation forces for axes xB, yB,
and zB, N · m

ϕ = roll angle, rad
ψ = yaw angle, rad

I. Introduction

Q UADROTORS, also called quadcopters, are small aerial
vehicles propelled by four rotors. They are commonly designed

to be used as unmanned aerial vehicles: vehicles that can accomplish
a task without the aid of a human guide. They present several
advantages with respect to comparable scale helicopters. First, the
four rotors generate a vertical lift thrust, which, combined with the
symmetrical geometry, allows this kind of vehicle to be highly
maneuverable. Second, the use of four rotors ensures that individual
rotors are smaller in diameter than the equivalent main rotor on a
helicopter, relative to the airframe size. In this way, the damage
caused by the blades in case of collision is reduced; moreover, by
enclosing the rotors within a frame, the rotors can be protected during
collisions, permitting flight indoor and in obstacle-dense
environments, with low risk of damaging the vehicle, its operators,
or its surroundings [1]. Third, quadrotors are based on fixed rotor
blade pitch angles and vary their attitude by changing the rotational
speed of each rotor: this simplifies the mechanical design of the
vehicle and reduces maintenance time and cost. High maneuver-
ability, safety, and simplicity havemade the quadrotor one of themost
interesting aerial vehicles for indoor/outdoor navigation [2].
Despite different prototypes, control algorithms, and approaches,

all the quadrotor architectures have an increased risk of motor/rotor
failure, with respect to similar vehicles with a reduced number of
motors/rotors. The main contribution of this paper is to successfully
develop a control law that can be applied in case of loss of one of the
actuators (i.e., rotors), to stabilize a subset of the attitude dynamics of
the quadrotor, which is sufficient to maintain controlled flight and
make the quadrotor fly to any desired position in three-dimensional
(3-D) space (usually a specified point on the ground).
Several control approaches have been presented in the literature for

a fault-free quadrotor vehicle. Dynamic inversion and feedback
linearization techniques have been proposed by many authors, using
different models [3,4]: The attitude of the quadrotor vehicle can be
controlled, however, the lack of robustness is a common defect.
Robustness in unmanned aerial vehicles [5–7] can be achieved using
different approaches. In [8,9], a nonlinear control law based on a
nested saturations technique is presented that stabilizes the state of
the quadrotor vehicle around the origin: This approach is robust
against saturation, however, it is valid only for near-hover flight.
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Nonlinear techniques can be applied in a wide range of operating
points: In [10], a comparison between classical feedback lineariza-
tion techniques and sliding mode control for the quadrotor is
performed, whereas in [11], backstepping is adopted to increase
robustness. Recently, H∞ and model predictive control (MPC)
[12,13] have been often adopted to control the quadrotor, because
they grant both good performances and robustness properties.
Only few approaches have been proposed in the literature to deal

with actuator faults for the quadrotor vehicle: feedback linearization
[14], sliding mode [15], and MPC [16]. These approaches, however,
consider only a partial loss of control effectiveness and do not address
the problem of total failure of one of the rotors.
To the best of the authors’ knowledge, however, the control

problem in case of total loss of one of the rotors has never been
addressed before for the quadrotor vehicle. Robust feedback
linearization [17] has been chosen to deal with the problem of
controlling the quadrotor vehiclewhen one of the actuators (rotors) is
lost. The reason is that this technique provides a systematic multi-
input/multi-output method to handle dynamics robustly, and it
proved to be effective to control a quadrotor vehicle when all the
actuators (rotors) are working [18].
The challenging aspect of the proposed problem is in the

impossibility to maintain full control of all the attitude states and all
the translational states when a primary actuator (i.e., a rotor) has
failed and the system becomes underactuated. This paper proposes
a solution to this loss of control action by spinning the vehicle in
the yaw direction, thereby maintaining flight control of a spinning
vehicle.
Flight control is achieved through robust feedback linearization

which linearizes the nonlinear system around an operating point
where roll and pitch angles are zero but the angular speed around the
vertical axis is a nonzero constant. The closed-loop linearized system
is controlled through anH∞ loop shaping technique, which performs
regulation around the chosen working point. Finally, an outer control
loop is proposed to achieve control of the linear displacement under
the assumption of small angles approximation for the pitch and roll
angles. Thus, the inner attitude control loop handles robustness
considerations and the failure of a primary actuator, and the outer
loop enables translationary flight control to take the vehicle down
safely at an arbitrary location.
From a theoretical point of view, theremay be solutions that enable

a single control law to be designed, thereby avoiding an inner-/outer-
loop architecture. Although some such techniques appear in the
literature for the fault-free case (i.e., when all four rotors are fully
functional), no such methods exist for an underactuated system as
considered in this paper. Additionally, the authors argue that this
inner-/outer-loop decoupling is natural from a practical point of view
because it achieves robust nonlinear attitude control in the inner loop
and slow/low bandwidth translation time-varying (cyclic oscillatory)
control in the outer loop.
The paper is organized as follows. In Sec. II, the nonlinearmodel of

the quadrotor is presented. Section III contains the mathematical
formulation of the control laws. Section IV is devoted to the
presentation of the simulation results obtained when the proposed
solution is applied to the quadrotor. Conclusions are presented at the
end of the paper.

II. Quadrotor Model

A quadrotor simply consists of four dc motors on which propellers
are fixed. These motors are arranged to the extremities of an X-
shaped frame, where all the arms make an angle of 90 deg with one
another. As shown in Fig. 1, the front and rear motors M1 and M3

spin in the clockwise direction with angular velocities ω1 and
ω3, whereas the other two rotors M2 and M4 spin in the counter-
clockwise direction with angular velocities ω2 and ω4.

A. Control Model

Most of the approaches available in the literature consider the
quadrotor as a rigid body subject to forces and moments [1,11,19–
23]. The nominal mathematical model (i.e., the model that will be

used to derive the control laws in Sec. III) is based on this
approximation and on the following assumptions:
1) The quadrotor design is symmetrical in the horizontal plane; in

this way, the inertia along the longitudinal axis is assumed to be the
same as that of the lateral axis.
2) Propellers are considered rigid, thus blade flapping is not

considered in the model.
3) Drag is assumed to be linear, thus obeying Stokes’ law.

These assumptions are usually valid for quadrotors because they are
built with horizontal symmetry and have small propellers [8].
Two frames are used to study the system motion: a frame attached

to the Earth fRg�O; x; y; z�, which is assumed to be inertial, and a
body-fixed frame fRBgfOB; xB; yB; zBg, where OB is fixed to the
center of mass of the quadrotor. The body-fixed frame fRBg is related
to fRg by a position vector ξ � � x y z �T, describing the position
of the center of gravity in fRBg relative to fRg and by a vector of
three independent angles η � �ϕ θ ψ �T , which represent the
orientation of the body-fixed frame fRBgfOB; xB; yB; zBg with
respect to the Earth frame fRg�O; x; y; z�. The adopted notation,
usually called yaw, pitch, and roll, is based on the assumption that the
Earth frame fRg�O; x; y; z� can reach the same orientation of the
body-fixed frame fRBgfOB; xB; yB; zBg by first performing a rotation
of an angle ψ around the z axis (yaw), then a rotation of an angle θ
around the new y axis (pitch), and finally a rotation of an angle ϕ
around the new x axis (roll). All the rotations are right handed with�

−
π

2
< ϕ <

π

2

�
;

�
−
π

2
< θ <

π

2

�

and ψ is unrestricted (see Fig. 1). This implies that the vehicle must
not perform acrobatic maneuvers: The heading of the quadrotor can
vary freely, but the roll and pitch angles cannot assume a value such
that the vehicle undergoes inverted flight. This assumption is valid in
almost any application field of the quadrotor vehicle (e.g.,
surveillance, low-cost photogrammetry). In this way, ξ and η fully
describe, respectively, the translational and the rotational movement
of the rotorcraft with respect to the Earth frame.
The dynamics of the quadrotor can be described analyzing the

forces acting on it, which are the weight force, the thrust forces, and
the drag terms. Theweight force is applied to the center of gravity and
directed along the negative z axis in the Earth frame. The thrust force
f j, where j � 1; 2; 3; 4, is applied to the center of the jth motor,
distant l from the center of mass, and directed along the positive zB
axis because blade flapping is neglected: fj ≥ 0 for j � 1; : : : ; 4.
The imbalance of the forces f j, where j � 1; 3 or j � 2; 4, results in
torques, along a direction perpendicular to the plane containing the
forces f j for j � 1; 3 or j � 2; 4. This torque is responsible for the
rotation of the quadrotor along the yB and xB axes. The rotation about
the zB axis is due to imbalance of clockwise and counterclockwise
drag reaction torques. The drag terms on the vehicle body obey
Stokes’ law: The translational drag is proportional to the linear
velocity and the rotational drag term is proportional to the angular

Fig. 1 Quadrotor scheme used for the development of themathematical
model.
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velocity with coefficients kt and kr assumed to be equal in all
directions for simplicity.
Denote with m the whole mass of the rotorcraft and define the

inertia matrix in the body frame, which is symmetric by assumption,
as

I ≐

2
4 Ixx 0 0

0 Iyy 0

0 0 Izz

3
5 (1)

The force due to the control inputs, expressed into the body frame, has
a nonzero component in the zB direction only: uf � f1 � f2�
f3 � f4.
Denoting withp, q, and r the instantaneous angular speeds around

the xB, yB, and zB axes, respectively, the actuation torques around the
body frame axes are described by

τB �
" τp
τq
τr

#
�

2
4 l�f4 − f2�

l�f3 − f1�
d�f1 − f2 � f3 − f4�

3
5 (2)

where l is the arm length and d is the ratio between the drag and the
thrust coefficients of the blade. Using the well-known rigid-body
equations, with the Newton–Euler formalism [24], the complete
model can be expressed as [25]

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�x � 1
m ��CϕCψSθ � SϕSψ �uf − kt _x�

�y � 1
m ��CϕSθSψ − CψSϕ�uf − kt _y�

�z � 1
m ��CθCϕ�uf −mg − kt _z�

_p � 1
Ixx
�−krp − qr�Izz − Iyy� � τp�

_q � 1
Iyy
�−krq − pr�Ixx − Izz� � τq�

_r � 1
Izz
�−krr − pq�Iyy − Ixx� � τr�

_ϕ � p� qSϕTθ � rCϕTθ

_θ � qCϕ − rSϕ
_ψ � 1

Cθ
�qSϕ � rCϕ�

(3)

where S�:�,C�:�, andT�:� denote sin�:�, cos�:�, and tan�:�, respectively.
In Eqs. (3), the system inputs are uf, τp, τq, and τr, whereas the real
inputs of the system are f1, f2, f3, and f4: this is without loss of
generality because the relation

2
664
uf
τp
τq
τr

3
775 �

2
664

1 1 1 1

0 −l 0 l
−l 0 l 0

d −d d −d

3
775
2
664
f1
f2
f3
f4

3
775 (4)

is bijective.

B. Verification Model

Although it is necessary to adopt a simplified nominal
mathematical model for control purposes, robustness to unmodeled
dynamics should be at the foreground of any consideration when
designing any control law. For this reason, a more comprehensive
model will be used for testing purposes in Sec. IV, to show the
robustness of the proposed solution. More in detail, the verification
model will include the following effects.
1) Blade gyroscopic effect: The gyroscopic moment generated by

the different rotational speeds of the propellers is typically neglected
when all the rotors are properly working, however, it may become
significant in case of rotor failure. The effect has been modeled as an
additional moment, according the following equation [11,26]:

mg � IR�Ω × � 0 0 1 �T��ω1 � ω3 − ω2 − ω4� (5)

whereΩ is the angular velocity of the body read into the body frame
and IR is the propeller inertia.

2) Actuator saturation: From a physical point of view, the rotation
speed of each motor is limited, therefore, there is an upper bound to
the values of each thrust: fj ≤ fmax for j � 1; : : : ; 4.
3) Actuator rate limiting: From a physical point of view, each rotor

needs a certain time to achieve a desired rotational speed, therefore,
there is an upper bound (and lower bound) to the variation of each
thrust: −Δf ≤ _fj ≤ Δf for j � 1; : : : ; 4.

III. Control Architecture

In the literature, several techniques have been proposed to control a
quadrotor vehicle with all rotors functional: dynamic inversion [3,4],
nested saturations [8], nonlinear H∞ control, MPC [12], feedback
linearization [10], and backstepping [11] are among the most used
approaches. Usually the control strategy is based upon a double-loop
architecture. An inner and faster controller has the task to regulate the
attitude angles and the altitude of the vehicle acting independently of
the three torques, but depends on the total lift thrust. An outer and
slower controller has instead the aim of modifying the desired values
of ϕ and θ by small angles to perform trajectory following.
The controller developed here, however, is based on the

assumption that one of the four actuators has failed (no longer able to
provide an upward lift force), while the other three actuators are still
fully functional. For this reason, the objective of this controller is no
longer that of allowing the vehicle to continue its mission, but rather
to safely recover it.When one of the rotors fails, indeed, the quadrotor
loses the ability to control independently the three torques necessary
to fully control the attitude of the vehicle. This typically results in a
vehicle losing attitude control, then losing translational control, and
then finally crashing. This rotor failure implies the loss of
controllability of onevariable from roll, pitch, yaw, and altitude.Most
papers in the literature [5,6,27] argue that, without full attitude
control, flight control cannot be achieved. The authors aim to show
that this statement is not necessarily correct, as one can control a
subset of attitude dynamics and still be able to fly the vehicle, albeit
spinning at a constant angular speed in the yaw dynamics. It is the
authors’ opinion that, from a physical point of view, the most
important variables to control are roll, pitch, and altitude for an
unmanned aerial vehicle. The roll and pitch angles are of vital
importance because a small change in their values results in a big
change in the longitudinal/lateral displacement in theEarth frame.On
the other hand, altitude must always be kept above a positive
threshold to avoid collision with the ground. The impossibility to
control yaw displacement when a rotor failure occurs, instead,
implies loosing the heading of the vehicle, which is only important
whenever the vehicle must accomplish tasks that require directional
sensors (e.g., cameras, lasers, etc.), but may be considered of minor
importance when dealing with a safe landing procedure. For these
reasons, the control law proposed in this paper is developed
sacrificing the controllability of the yaw state.
The control structure can still be realized using the double-loop

architecture already mentioned, however, it must be modified (see
Fig. 2). When the quadrotor is flying using only three rotors, the
unbalance in the propeller drag makes it to spin around its vertical
axis. Increasing the rotational speed of the blades (that is to say,
increasing the upward lift force uf) causes the vehicle to increase its
altitude and also to spin faster in the yaw direction. Basically, the
rotational speed around the quadrotor vertical axis and the altitude
variation depends on the same input and are hence coupled. This
property is exploited in the control law architecture: The inner control
loop controls roll and pitch angles and yaw rotational speed, whereas
the outer control loop sets the desired values of the ϕ and θ angles to
control position in the xy plane. Furthermore, the desired altitude can
be obtained by changing the set point in the yaw rotational speed.
Because roll, pitch, and altitude have the highest priority during
unmanned vehicle flight, the inner controller works much faster than
the outer controller and the inner control loop is specifically designed
for robustness. All the quadrotor states must be accessible to develop
the controller: The inner controller needs the states �ϕ; θ;ψ ; p; q; r�,
whereas �x; y; z� are only needed by the outer control loop. Even
if the knowledge of ψ is requested to control the quadrotor, the
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controllability of the ψ state is sacrificed because the vehicle is
underactuated.

A. Quadrotor Model in Case of Actuator Loss

Fault detection and isolation (FDI) of actuator faults in quadrotor
vehicles is out of the scope of the present paper. However, it is
relevant to mention that a wide class of model-based algorithms [28]
can be applied to the quadrotor vehicle to perform FDI, and several
papers in the literature have already tackled this problem [29,30].
In this section, the case of failure on actuator 2 is described.

Because of the symmetry of the system, a similar controller can be
easily developed in case of failure on actuators 1, 3, or 4 using the
same principles. In case of failure on M2, the control inputs are
chosen as uf, τq, and τr (i.e., τp is no longer used as a direct control
input) so that the relation

"
uf
τq
τr

#
�
"

1 1 1

−l l 0

d d −d

#"
f1
f3
f4

#
(6)

is again bijective. The constraints on the real inputs, which are

�
fj ≥ 0; j � 1; 3; 4
fj ≤ fmax; j � 1; 3; 4

(7)

must be reexpressed as constraints on the inputs uf, τq, and τr. The
constraints fj ≥ 0 for j � 1; 3; 4 are equivalent to

(
jτqj ≤ l

2

�
uf � τr

d

�
;

jτrj ≤ duf
(8)

This is because

2
4 f1f3
f4

3
5 � 1

4

2
4 1 − 2

l
1
d

1 2
l

1
d

2 0 − 2
d

3
5
2
4 ufτq
τr

3
5 (9)

yields

8<
:
uf −

2τq
l �

τr
d ≥ 0

uf �
2τq
l �

τr
d ≥ 0

2uf −
2τr
d ≥ 0

(10)

when imposing fj ≥ 0 for j � 1; 3; 4, which then is equivalent to
Eq. (8). Furthermore, fj ≤ fmax for j � 1; 3; 4 implies uf ≤ 3fmax:
This follows from Eq. (6) imposing fj ≤ fmax for j � 1; 3; 4.
In a similar way, the constraints due to the rate limiters can be

written as

8>><
>>:
−Δf ≤ 1

4
_uf −

_τq
2l �

_τr
4d ≤ Δf

−Δf ≤ 1
4
_uf �

_τq
2l �

_τr
4d ≤ Δf

−Δf ≤ 1
2
_uf −

_τr
2d ≤ Δf

(11)

Choosing the state vector as

x � � x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 �T

� �ϕ θ ψ p q r x y z _x _y _z �T (12)

and the input vector as

u � � u1 u2 u3 �T � �uf τq τr �T (13)

then the set of Eq. (3) can be written in state-space form as

_x1 � x4 � x5Sx1Tx2 � x6Cx1Tx2 (14a)

_x2 � x5Cx1 − x6Sx1 (14b)

_x3 �
1

Cx2
�x5Sx1 � x6Cx1 � (14c)

_x4 �
1

Ixx

�
−krx4 − x5x6�Izz − Ixx� �

l

2

�
u1 −

u3
d

��
(14d)

_x5 �
1

Ixx
�−krx5 − x4x6�Ixx − Izz� � u2� (14e)

_x6 �
1

Izz
�−krx6 � u3� (14f)

_x7 � x10 (14g)

_x8 � x11 (14h)

_x9 � x12 (14i)

_x10 �
Cx1Sx2Cx3 � Sx1Sx3

m
u1 −

kt
m
x10 (14j)

_x11 �
Cx1Sx2Sx3 − Sx1Cx3

m
u1 −

kt
m
x11 (14k)

_x12 �
1

m
�u1Cx1Cx2 − ktx12 −mg� (14l)

in which Ixx has been chosen equal to Iyy due to the symmetry of
the quadrotor. Note that, in Eq. (14d), τp � lf4 via Eq. (4) since
f2 � 0 and

Fig. 2 Control system scheme: the double-loop architecture in case of actuator loss.
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f4 �
1

4

�
2u1 −

2u3
d

�

via Eq. (9).

B. Robust Feedback Linearization: Definitions and Main Results

Consider a nonlinear systemwith n states,m inputs, andm outputs
described by the state-space equations

_x � f�x� �G�x�u � f�x� �
Xm
i�1
gj�x�uj (15a)

y � �h1�x�; : : : ; hm�x� �T (15b)

where x ∈ Rn denotes the state vector, u ∈ Rm is the control input,
y ∈ Rm is the output vector, and f�x�, g1�x�; : : : ; gm�x�, y are
smooth vector fields defined on an open subset of Rn.
Suppose that system (15) satisfies the well-known conditions for

feedback linearization [31]: The relative degree of hi is equal to ri
∀ i � 1; : : : ; m such that r1� · · · �rm � n, and the decoupling
matrix

M�x� �

2
6664
Lg1L

r1−1
f h1�x� : : : LgmL

r1−1
f h1�x�

Lg1L
r2−1
f h2�x� : : : LgmL

r2−1
f h2�x�

: : : : : : : : :
Lg1L

rm−1
f hm�x� : : : LgmL

rm−1
f hm�x�

3
7775 (16)

is invertible, where L�:��:� denotes the Lie derivative operator. It is
then possible to find a linearizing control law of the form

u�x;w� � αc�x� � βc�x�w (17)

where w is a linear control input and the change of coordinates is
defined by a diffeomorphism as xc � ϕc�x�. This control law
reduces the nonlinear system (15) into a linear system of the form

_xc � Acxc �Bcw (18)

where Ac, Bc are the matrices of the canonical Brunowski form.
The robust feedback linearization, instead, brings the system in

the Jacobian approximation around the origin rather than in the
Brunowski form, that is to say,

_xr � Arxr �Brv (19)

where Ar � ∂xf�0� and Br � G�0�. In this case, the original
nonlinear system is only minorly transformed, which makes it more
probable that the properties of the linear design (including
robustness) still hold for the nonlinear closed loop. In this way, the
original nonlinear system is reduced to a linear system that is
equivalent to its Jacobian linearization around the origin, which can
then be controlled using well-known linear techniques. Indeed
[17,32] have shown that, when the nonlinear system (15) is
transformed to its Jacobian linearization (31), robustness in the sense
ofH∞ loop shaping on Eq. (31) is preserved on the original nonlinear
system (15).
The linearizing control law in this case has the form

u�x; v� � α�x� � β�x�v (20)

where

α�x� � αc�x� � βc�x�LT−1ϕc�x� (21a)

β�x� � βc�x�R−1 (21b)

ϕ�x� � T−1ϕc�x� (21c)

L � −M�0�∂xαc�0� (21d)

R �M−1�0� (21e)

T � ∂xϕc�0� (21f)

xr � ϕ�x� (21g)

C. Control Loops

The control architecture is based on two control loops, each one
acting on a subsystem.
1) The first subsystem includes the dynamics of the state variables

x1, x2, x4, x5, x6 and is controlled by a robust feedback linearization
controller cascaded with an H∞ loop shaping linear controller.
2) The second subsystem includes the remaining dynamics

[excluding Eq. (14c)]. Because the outer loop dynamics are slower
than that of the inner loop, the longitudinal x and lateral y dynamics
are controlled under the assumption of small angles for ϕ and θ,
whereas the vertical dynamics z are controlled using variation of the
yaw angular speed in the neighborhood of the operating point, which
is chosen to achieve hover flight.

1. Inner Control Loop

The robust feedback linearization is applied to the dynamics of
roll, pitch, and yaw angular speed. Equations (14a), (14b), and (14d–
14f) are written such that the origin of the system is an equilibrium
point when the inputs are chosen to be zero. This is achieved by
choosing

x̂ � � x̂1 x̂2 x̂3 x̂4 x̂5 � ≐
�
x1 x2 x4 x5

�
x6 −

mgd
kr

��
(22a)

û � � û1 û2 û3 � ≐ � �u1 −mg� u2 �u3 −mgd� � (22b)

The x̂ dynamics are given by

_̂x � f̂�x̂� � Ĝ�x̂�û (23a)

ŷ ≐ � ĥ1 ĥ2 ĥ3 �T � � x̂1 x̂2 x̂5 �T (23b)

where

f̂�x̂� ≐

2
66666666664

x̂3 � x̂4Sx̂1Tx̂2 �
�
x̂5 � mgd

kr

�
Cx̂1Tx̂2

x̂4Cx̂1 −
�
x̂5 � mgd

kr

�
Sx̂1

1
Ixx

h
−krx̂3 − x̂4

�
x̂5 � mgd

kr

�
�Izz − Ixx�

i
1
Ixx

h
−krx̂4 − x̂3

�
x̂5 � mgd

kr

�
�Ixx − Izz�

i
1
Izz
�−krx̂5�

3
77777777775
;

Ĝ�x̂� ≐

2
666666664

0 0 0

0 0 0

l
2Ixx

0 − l
2dIxx

0 1
Ixx

0

0 0 1
Izz

3
777777775

(24)

584 LANZON, FREDDI, AND LONGHI

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
an

ch
es

te
r 

on
 F

eb
ru

ar
y 

23
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
98

69
 



The relative degrees are r1 � 2, r2 � 2, and r3 � 1, resulting in a
vector relative degree r � 5, which is equal to the number of states.
The decoupling matrix can be written as

M�x̂� �

2
664

l
2Ixx

Sx̂1Tx̂2
Ixx

Cx̂1Tx̂2
Izz

− l
2dIxx

0
Cx̂1
Ixx

−Sx̂1
Izz

0 0 1
Izz

3
775 (25)

which is always invertible.
After calculating the classical Brunowski form linearizing input

(17), and applying the formulas for the robust feedback linearization
(21), the system can be robust feedback linearized into

_xr � Arxr �Brv

where

Ar �

2
6666664

0 dgm
kr

1 0 0

− dgm
kr

0 0 1 0

0 0 − kr
Ixx

dg�Ixx−Izz�m
Ixxkr

0

0 0 − dg�Ixx−Izz�m
Ixxkr

− kr
Ixx

0

0 0 0 0 − kr
Izz

3
7777775

(26a)

Br �

2
666664

0 0 0

0 0 0
l

2Ixx
0 − l

2dIxx

0 1
Ixx

0

0 0 1
Izz

3
777775 (26b)

The robust feedback linearizing control law (20) for system (23) is
reported in the Appendix.
The linear input v is then chosen using the H∞ loop shaping

technique. The state variables x̂1, x̂2, x̂5 will be regulated to a desired
set of small values around the chosen working point, ϕd, θd, and δrd
as follows:

x̂1 � x1 � ϕ → ϕd ≐ x1;d (27a)

x̂2 � x2 � θ → θd ≐ x2;d (27b)

x̂5 � x6 −
mgd

kr
� r − mgd

kr
→ δrd ≐ rd −

mgd

kr
≐ x6;d −

mgd

kr
(27c)

The scheme for controlling the dynamics of roll and pitch angles and
yaw angular speed in case of actuator loss, based on robust feedback
linearization and H∞ loop shaping, is shown in Fig. 3.
The target loop shape must be chosen to have large gain at low

frequency (for small steady-state error), small gain at high frequency

(for rejection to high-frequency noise and unmodeled dynamics), and
does not roll off at a high rate near crossover (for good robustness)
[33]. In this case, the resulting loop shape has 60 dB gain at low
frequency, −40 dB∕decade gain roll-off at high frequency, and
−20 dB∕decade slope near crossover frequency, which is set at
100 rad∕s. The resulting loop shaping controller modifies the
singular values of the closed-loop system, reducing the condition
number between the values of the singular values of the shaped plant
Ps (see Fig. 4).
The proposed control loop causes roll and pitch angles and yaw

angular speed to follow asymptotically the desired values. When the
desired roll and pitch angles and variation of yaw rotational speed are
chosen to converge to zero, the angular velocitiesp and q converge to
zero and the angular velocity r (and hence also the altitude) converges
to a constant. As already stated, the only uncontrolled variable is the
yaw angle, which is not relevant for stability, and whose control-
lability was sacrificed from the beginning to develop the proposed
underactuated control law.

2. Outer Loop

The horizontal motion �x; y� of the quadrotor depends on the
direction that the horizontal component of the thrust vector, that is to
say, the sum of the single thrusts of each rotor, assumes in this
horizontal plane. Because this direction depends on the roll and pitch
angles, it is possible to develop an outer control loop whose task is to
generate the desired values for the roll and pitch angles to reach a
desired position in the Earth-fixed frame. The vertical dynamics z are
controlled using a variation of the angular speed around the yaw axis
in the neighborhood of the working point, which is set by the inner
loop controller to achieve hover flight.
Assume that the inner control loop is robustly stabilizing and

operating near the equilibrium (x1 → x1;d, x2 → x2;d, and x6 → x6;d),
the chosen desired values of x1;d and x2;d are small (i.e., the quadrotor
is only required to make small adjustments to its attitudewhen one of
the rotor is experiencing a failure) and the chosen desired value of x6;d
is close to mgd∕kr (i.e., the desired yaw spin speed is in the
neighborhood of the equilibrium value, which is chosen proportional
to the weight of the vehicle). From Eqs. (14a), (14b), and (14d–14f)
follows that, at steady state, u3 → x6;dkr, u2 → 0, and

u1 →
u3
d
� x6;dkr

d

when x1;d → 0 and x2;d → 0. Equations (14g–14l) can now be
expressed as

_x7 � x10 (28a)

_x8 � x11 (28b)

_x9 � x12 (28c)

Fig. 3 Scheme for the robust control law combining linear and nonlinear parts.
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_x10 �
x2;dCx3 � x1;dSx3

m

kr
d
x6;d −

kt
m
x10 (28d)

_x11 �
x2;dSx3 − x1;dCx3

m

kr
d
x6;d −

kt
m
x11 (28e)

_x12 �
1

m

�
kr
d
x6;d − ktx12 −mg

�
(28f)

using the assumptions of small angles for x1;d and x2;d. Denoting
with

~x ≐ � ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 �T

≐ � x7 x8 x9 x10 x11 x12 �T (29a)

~u ≐ � ~u1 ~u2 ~u3 �T ≐
�
krx6;d
dm

x1;d
krx6;d
dm

x2;d
krx6;d
dm

�
T

(29b)

and remembering that x3 � ψ is measurable, then Eqs. (28a–28f) can
be written as

_~x1 � ~x4 (30a)

_~x2 � ~x5 (30b)

_~x3 � ~x6 (30c)

_~x4 � Cψ ~u2 � Sψ ~u1 −
kt
m

~x4 (30d)

_~x5 � Sψ ~u2 − Cψ ~u1 −
kt
m

~x5 (30e)

_~x6 � ~u3 −
kt
m

~x6 − g (30f)

As can be seen, the dynamics of longitudinal and lateral motion
� ~x1; ~x2; ~x4; ~x5� are now decoupled from those of altitude � ~x3; ~x6�.
Indeed, ~x3 and ~x6 have simple linear dynamics that can be controlled
with any standard linear control techniques. The variables ~x1, ~x2, ~x3,
and ~x4, instead, have nonlinear dynamics described by a time-varying
system that depends on the yaw angle ψ . A straightforward and
indeed physically meaningful way of solving this nonlinear control
problem is through this choice of the following control inputs:
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Fig. 4 Singular values of the open-loop plant.

a) b) c)

Fig. 5 Quadrotor vehicle experiencing a fault on motor 2.

586 LANZON, FREDDI, AND LONGHI

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
an

ch
es

te
r 

on
 F

eb
ru

ar
y 

23
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
98

69
 



�
~u1
~u2

�
�
�
Sψ Cψ

−Cψ Sψ

�
T
� ~~u1
~~u2

�
(31)

because this control input (31) reduces Eqs. (30d) and (30e) to

_~x4 � ~~u1 −
kt
m

~x4 (32a)

_~x5 � ~~u2 −
kt
m

~x5 (32b)

where ~~u1 and ~~u2 represent the control inputs for the linear system
(32a) and (32b) with Eqs. (30a) and (30b). These resulting linear
dynamics can then again be controlled using any simple standard
linear control technique. Once ~u1, ~u2, and ~u3 are calculated, it is
possible to compute the desired values of x1;d, x2;d, and x6;d from
Eq. (29b) to use as set points for the inner control loop. Note that x6;d
is close tomgd∕kr (and hence ~u3 is close to g), whereas x1;d and x2;d
are small angles.
The outer controller generates time-varying outputs, which are

references to the inner control loop, because these reference signals
depend on a rotation matrix of the vehicle yaw angle. Because the
quadrotor, due to rotor failure, is spinning around its yaw axis, it is
necessary to periodically cycle the inner control loop set points
generated by the outer control loop to achieve the desired translation
movements in the Earth-fixed reference frame, with a frequency and
phase that must be synchronized with the heading of the spinning
vehicle. All of this is achieved through the rotationmatrix in Eq. (31),
which depends on the yaw angle ψ and the mapping of the linear
control inputs ~~u1 and ~~u2 via this rotation matrix to the periodic cyclic
time-varying control inputs ~u1 and ~u2. Using the outer controller
together with the inner controller, it is then possible to decide the
Earth frame position where the quadcopter can translate to and
perhaps land (if desired).

3. Physical Considerations

The proposed control law exploits the conservation of the angular
momentum around the vertical axis of the quadrotor.When one of the
rotors fails, (e.g., rotor 2 in Fig. 5b), the speed of the rotor laying on
the opposite end of the faulty rotor is modulated until the value of the
angle of inclination of the vehicle from the horizontal plane
converges to zero.When this is achieved (Fig. 5c), the healthy rotor of

Table 1 Quadrotor and controller parameters

Value Unit Description

m 0.5 kg Quadrotor mass
g 9.81 m∕s2 Gravity acceleration
Ixx 5.9 × 10−3 kg · m2 Inertia coefficient along xB axis
Iyy 5.9 × 10−3 kg · m2 Inertia coefficient along yB axis
Izz 1.16 × 10−3 kg · m2 Inertia coefficient along zB axis
l 0.255 m Distance between rotor and c.g.
d 2.4 × 10−3 kg · m2 Ratio between blade drag and thrust

coefficients

Table 2 Initial conditions for the inner
control loop simulation

Value Unit Description

x1 −π∕4 rad ϕ
x2 π∕4 rad θ
x3 π∕4 rad ψ
x4 −0.5 rad∕s p
x5 0.5 rad∕s q
x6 2.7 rad∕s r
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Fig. 6 Angular dynamics of the closed-loop system (inner control loop with saturation and rate limiting).
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the faulty couple supplies an almost zero thrust, and the lift thrust
necessary to cancel out the gravity force must be supplied by the
healthy couple of rotors. In this configuration, the quadrotor is
parallel to the ground, spinning around the vertical axis with a steady-
state rotational velocity depending on the rotational drag. Varying
simultaneously the rotational velocity of the two rotors of the healthy
couple, it is also possible to set a desired altitude for the vehicle. Once
the vehicle is spinning around its vertical axis, it is possible to supply
a proper cyclic periodic control input to the healthy couple of rotors to
make the quadrotor reach any desired position in 3-D space. The
control law needs only to modify the desired direction of the total lift
thrust, because the motion in 3-D space depends on that direction.
Because the vehicle rotates around its yaw axis, to keep the total lift
thrust at a desired direction, it is necessary to vary each motor thrust
with a synchronized frequency and phase proportional to the vehicle
yaw angular velocity at which the vehicle is rotating.
When both the inner and outer control loops are running, the

quadrotor can remain parallel to the ground spinning on its vertical
axis, using only the two motors mounted opposite each other on
opposite arms, and move to a desired position in 3-D space, applying
a pseudoperiodic lift thrust to each functional rotor, with the same
frequency and phase as the rotational velocity.
When the quadrotor touches the ground, the angular velocity r

must be limited to avoid possible damages to the vehicle. It may be
sensible to equip the undercarriage of the quadrotor with unactuated
free rotative wheels.

IV. Simulation Results

The developed control strategy is capable of stabilizing the
quadrotor roll and pitch angles and to perform 3-D position control.
As previously anticipated in Sec. II.B, the higher fidelity verification
model used in the simulator includes blade gyroscopic effect,
actuators saturation, and rate limiting. Blade gyroscopic effect can be
seen as amodel uncertainty (i.e., an effect that has not been taken into
account for synthesizing the control law, but which is present in the
real system). Saturations and rate limiters, instead, can be seen as
actuator uncertainties. This section shows the behavior of the system
controlled by the inner control loop first and by both the control loops
afterward, when both model and actuator uncertainties are taken into
account. The simulation system consists of three modules:
1) The nonlinear system module includes all the differential

equations described in Sec. II (rigid body dynamics, drag, and blade
gyroscopic effect).
2) The nonlinear controller module includes the equations

described in Sec. III.
3) A constraint module that contains actuators saturation and rate

limiting.
In the present section, the results of two different simulations are
reported. Both simulations have been performed with the controllers
activated at t � 0 and using the parameters reported in Table 1.

A. Inner Control Loop Simulation

In the first simulation scenario, only the inner control loop is
activated, and it must stabilize the roll and pitch angles (i.e., x1;d → 0,
x2;d → 0) while regulating the angular speed r at a desired value
(chosen to be the steady-state value at which the quadrotor retains an
arbitrary constant altitude, i.e., x6;d → mgd∕kr). The simulation has
been run for 60 s, saturation and rate-limiting constraints have been
included in the simulation scenario (fmax � 5 N, fmin � 0 N,
Δf � 50 N∕s), and the initial conditions are reported in Table 2.
The angular speeds around xB, yB, and zB axes, together with the

values of roll and pitch angles, are reported in Fig. 6. The rotor forces
requested by the inner control law exceed the admissible upper (5 N)
and lower (0 N) saturation levels and hence saturate at 5 and 0 N,
respectively, as shown in Fig. 7; nevertheless, the states reach their
desired values at steady state.

B. Outer Control Loop

In the second simulation scenario, both the inner and outer control
loops are activated. The controller must fly the quadrotor vehicle
from its initial position to x � 0 and y � 0 of the Earth frame, staying
in hover flight above x � 0, y � 0 at z � 1 m (i.e., x7;d � xd → 0,
x8;d � yd → 0, and x9;d � zd → 1). This represents a possible real
scenario, where the quadrotor experiences a problem to a rotor,
switches that rotor off and moves back to its recovery base, which is
here assumed to be at the origin.
The simulation has been run for 60 s, saturation and rate-limiting

constraints have been included in the simulation scenario
(fmax � 5 N, fmin � 0 N, Δf � 50 N∕s) and the initial conditions
are reported in Table 3.
The quadrotor position in 3-D space is reported in Fig. 8. The rotor

forces requested by the control law exceed again the admissible upper
(5N) and lower (0N) saturation levels and hence are saturated at these
upper and lower limits, as shown in Fig. 9; nevertheless, the states
reach their desired values at steady state. As already described in
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Fig. 7 Rotor forces required by the inner control loop to stabilize the quadrotor.

Table 3 Initial conditions for the outer
control loop simulation

Value Unit Description

x1 0.075 rad ϕ
x2 0.025 rad θ
x3 0.1 rad ψ
x4 0.03 rad∕s p
x5 0.02 rad∕s q
x6 2.7 rad∕s r
x7 5 m x
x8 5 m y
x9 5 m z
x10 0 m∕s _x
x11 0 m∕s _y
x12 0 m∕s _z
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Sec. III.C.2, the roll and pitch reference generated by the outer
controller is cyclic, and this is illustrated in Fig. 10.

V. Conclusions

The present paper deals with the problem of controlling a
quadrotor aerial vehicle when one of the actuators/rotors is no longer
capable of supplying thrust (e.g., propeller loss, electrical or
mechanical actuator failure). The problem is solved using a double
control loop architecture in which model-based techniques are
adopted in both control loops.
The developed control laws exploit the conservation of angular

momentum around the vertical axis of the quadrotor. The only loss in
control is the yaw angle, because the vehicle is made to enter a yaw
constant angular velocity spin by the designed control law. This
aspect is not problematic for vehicle safety, though it does limit the
ability for the vehicle to point any visual sensor in a desired direction.
However, this is a minor loss because it is already a significant
achievement to keep the vehicle flying in the air with only three
functional rotors.

Once the vehicle has entered a constant yaw angular velocity spin,
it is possible to provide a cyclic reference in desired roll and pitch
angles to make it translate to a desired position to 3-D space. The
period of each cyclic reference depends on the steady-state value of
the yaw angular speed, which is related to the vehicle mass, drag,
blade drag, and thrust coefficients.
For this architecture to be applied on a real vehicle, however, the

following points should be considered.
The motors should be capable of providing the maximum thrust

required by the control law and this has to be compatible with the
size and energy requirements of the vehicle. The minimum
theoretical maximal thrust that must be provided by each motor
is equal to 1∕2 mg because, at steady state, only two rotors are
working to compensate for the gravitational force. Simulation
results showed that, if the user wishes to have a fast transient, it is
necessary to have generous actuator saturation levels, with a good
rule-of-thumb represented by a saturation level equal to the
quadrotor weight.
Maximum thrust is not the only property that should be taken into

account when choosing the motors. Motors should also be chosen to
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a) Rotor force f1 b) Rotor force f3 c) Rotor force f4

Fig. 9 Rotor forces required by the double-loop architecture to perform trajectory following.
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Fig. 10 Desired values of roll and pitch generated by the outer control.
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Fig. 8 Position in 3-D space (inner and outer control loops with saturation and rate limiting).
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provide the maximum angular acceleration (thrust rate), and this
should be compatible with the size and energy requirements of the
vehicle. Vehicle stabilization requires the rotor that is opposed to the
failed actuator to provide a pulse-like thrust. It is thus important that
the thrust reference generated by the control law can be followed
quickly by the motor. Simulation results showed that, to retain
stability and have a quick transient response, a good rule-of-thumb
choice is represented by a rate limiter, which allows the saturation
level to be reached in tenths of seconds.
Finally, the control hardware should be chosen to have enough

computational power to run the proposed control algorithms. The
computational requirements of the proposed solution are actually
being investigated through hardware-in-the-loop simulations by the
authors. This should not be a big limitation becausemodern embedded
electronic microcontrollers can perform fast floating point arithmetic.
Notwithstanding the fact that the proposed approach has been

tested in simulation only and the FDI problem has not been directly
addressed, the authors believe that the proposed control scheme
presented in this paper lays down the important conceptual
foundations for subsequent robust fault tolerant control designs in the
presence of actuator failure, and shows, for the very first time, that a
quadrotor can maintain stable controlled flight with only three
functional rotors. Thiswork shows that, by spinning thevehicle in the
yaw direction andmaintaining roll and pitch torque control, actuators
can be cycled to obtain full translational control.

Appendix: The Robust Feedback Linearizing
Control Law

The robust feedback linearizing control law (20) for system (23) is
given by

û�x̂; v� � α�x̂� � β�x̂�v
� � α1�x̂� α2�x̂� α3�x̂� �T � β�x̂�� v1 v2 v3 �T

where

α1�x� � −2lIzzk2r
�
Ixx

�
−
1

4
C−2
x̂2
Izz�2d2g2m2�S2x̂1 � x̂1 � C2x̂2�−4Sx̂1 � x̂1� − S2x̂2 x̂2Tx̂1��

2dgmkr�−3x̂4 − 4C2x̂2Sx̂1 x̂5 � C−1
x̂1
�2x̂4 − C3x̂1 x̂4 � 2C2x̂1C2x̂2 x̂4 � S3x̂1 x̂5��

� �2S2x̂2 x̂3 � x̂5�Tx̂1� � �k2r�−6x̂4x̂5 − C−1
x̂1
�2S2x̂2 x̂3x̂4 � 2C3x̂1 x̂4x̂5 � S3x̂1�x̂4 − x̂5��x̂4 � x̂5���

� �x̂25 − 3x̂24 � 2C2x̂2 x̂
2
4� · Tx̂1�� − C−1

x̂1
k3r x̂5Tx̂2� � Izz�k2r�C−1

x̂1
krx̂5Tx̂2 − dgm�x̂2�

� C−1
x̂1
�−1� Sx̂1 x̂1�Tx̂2�� � �Izz�−k2r x̂4x̂5 � dgmkr�−x̂4 � Cx̂1 x̂4 − Sx̂1 x̂5 � x̂3Tx̂1Tx̂2�

� Sx̂1�x̂5 � x̂4Tx̂1�T2
x̂2
� � d2g2m2 · �x̂1 − x̂2Tx̂1Tx̂2 � Sx̂1 �−1� T2

x̂2
���
��
;

α2�x� � Izzk2r�Ixx�−k3r x̂5Tx̂1 � Izz�d2g2m2�C−1
x̂1
x̂2 � �−2� Cx̂1�Tx̂2� � k2r�x̂3�2x̂5 � x̂4Tx̂1��

� C−1
x̂1
�Sx̂1 x̂4 � Cx̂1 x̂5�2Tx̂2 � � 2dgmkr�x̂3 − C−1

x̂1
x̂3 � �Sx̂1 x̂4 − x̂5 � Cx̂1 x̂5 − x̂4Tx̂1�Tx̂2����

� Izz�C−1
x̂1
k2r�dgm�Sx̂1 − x̂1� � Sx̂1krx̂5� � Izz�−k2r x̂3x̂5 � d2g2m2�−C−1

x̂1
x̂2 � Tx̂2 ��
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x̂1
�x̂3 � �x̂5 � x̂4Tx̂1�Tx̂2����;

α3�x� � 0;
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BBBBBB@
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