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A new class of nonplanar multirotor rotary vehicle is introduced that has the capability of independent control of

both thrust and torque vectors in three dimensions. The vehicle configuration is based around the use of six thrust-

producing rotors arranged in pairs on three separate reference planes. Variable thrust can be provided via fixed-

pitch/variable-speed rotors or variable-pitch/fixed-speed rotors. The orientation of rotor reference planes affects the

orthogonality of force and torque control, and it is shown how maneuverability can be traded with propulsive

efficiency. The static mapping between force and torque control outputs and rotor inputs is derived from rotor

geometry and a simple rotor aerodynamic model that does not include interference between rotors or fuselage drag

and does not explicitly include induced-velocity effects. Controllers are synthesized for both position and attitude

control, with acceptable stability demonstrated via Lyapunov analysis. Vehicle closed-loop dynamic response is

investigated in simulation, and controller performance is shown to meet design requirements in the presence of

unmodeled rotor inertia effects. Experimental results on a static test rig confirm that the simplified rotor

aerodynamic modeling used for control synthesis is adequate for symmetric flight conditions around hover. A free-

flying prototype has been flight-tested in hover, showing that practical vehicles are possible, accepting the fact that

increased control capability comes at the expense of reduced payload and duration, compared with a conventional

helicopter.

Nomenclature

f = resultant force vector, 2 R3, N
fi, Fi = force vector in three dimensions produced by the

ith rotor, 2 R3, N
fi = magnitude of force produced by the ith rotor,

2 R, N
g = acceleration due to gravity, 2 R (9:8 m=s2).
J = inertia tensor, 2 R3�3, kgm2

Ji = scalar moment of inertia of the ith rotor, 2 R,
kgm2

Jr = scalar moment of inertia of a single rotor, 2 R,
kgm2

k̂ = proportionality coefficient between rotor pitch
angle �i and force fi, 2 R, N=rad

kT = proportionality coefficient between the square of
the rotor pitch angle �2i and rotor torque �i, 2 R,
Nm=rad2

k0 = residual aerodynamic reaction drag experienced
at zero rotor pitch angle, 2 R, Nm

k1 = proportionality coefficient between the square of
rotor spin speed, �2i , and force fi, 2 R, Ns2

k2 = proportionality coefficient between the square of
rotor spin speed, �2i , and rotor torque �2i , 2 R,
Nms2

l = rotor arm length, 2 R, m
m = mass, 2 R, kg

Nr = orientation matrix in R3�m composed of the array
of m vectors ni.

ni = unit vector parallel to the axis of the ith rotor,
2 R3.

nx, ny, nz = set of vectors equispaced in an angle �
comprising a coordinate system for the
characteristic force axes for a given configuration,
2 R3

nxyz = unit vector defining vehicle reference-plane
normal, 2 R3.

q = quaternion vector, 2 R4.
R = rotational matrix mapping vectors read in body

axes to the same vector read in Earth axes,
2 R3�3.

r = position vector, 2 R3, m
Ti = torque vector generated by the ith rotor, 2 R3,

Nm
t = torque vector, 2 R3, Nm
ti = reaction torque produced by the ith rotor in body

axes, 2 R3, Nm
txm , tym , tzm = vectors representing the principal torques in body

axes, 2 R3, Nm
V = Lyapunov candidate function, 2 R, V � 0.
vi,!i = angular speed of the ith rotor, 2 R, rad=s
Xr = position matrix in R3�m composed of the array of

m vectors xi, m
x,y, z = set of vectors defining the characteristic axis

system, 2 R3.
xi = position vector of the ith rotor, 2 R3, m
xm, ym, zm = set of vectors defining the principal torque axes in

body axes, 2 R3.
� = angle between the principal forces, rad
� = angle between the principal moments, rad
�i = collective pitch angle of the ith rotor, rad
�i = magnitude of the reaction torque produced by the

ith rotor, parallel to the ni vector, 2 R, Nm
� = disk plane angle, rad
! = angular velocity vector, 2 R3, rad=s

Subscripts

b = vectors defined in body axes.
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0 = vectors defined in Earth axes.
0123 = selected ordered elements

Superscript

d = Desired (or reference) signals.

I. Introduction

T HIS paper introduces a class of nonplanar rotary-wing vehicle
in which both the vehicle thrust and torque vectors can be

arbitrarily orientated with respect to the vehicle body axes under
quiescent conditions [1]. This capability enables fully independent
control of both vehicle position and orientation in three-dimensional
space, at least during hover or slow forward flight (within the
saturation limits of the actuators). Provision of arbitrary pointing of
torque and thrust vectors on a vehicle is, in itself, relatively
commonplace: for example, many vehicles that use buoyancy as a
means of weight support (such as underwater vehicles or lighter-
than-air vehicles) have this capability, as do vehicles that operate in
low-gravity environments (such as satellites). The key contribution
of the work in this paper is the elucidation of a practical rotary-wing
vehicle solution that meets the independent thrust and torque-
pointing criteria in which the control actuators also provide the
weight support function of the vehicle. The benefits of improved
control authority inevitably come at the expense of increased vehicle
mass, and any future application will have to consider the tradeoff
between vehicle performance (duration, range, and payload) and
level of independent control authority. Furthermore, the current work
does not consider aerodynamic interference effects between rotors or
fuselage drag, and hence the applicability of the concept to control in
forward flight and under wind disturbances is, as yet, unproven.

Since there are many multirotor rotary-wing configurations in
existence, it is important to clearly define the vehicle class to which
the work in the present paper contributes. The first distinction is that
for the vehicle class of interest the orientation of the planes of rotation
of individual rotors on the vehicle is fixed with respect to the vehicle
body axes. Thus, vehicles with variable-orientation rotors (such as
tiltrotor craft) and designs with rotor cyclic pitch control (such as
conventional single- and twin-rotor helicopters) are excluded from
the class of interest. This distinction is noteworthy in that there is
significant mechanical complexity, and hence weight and cost,
associated with tiltrotor designs and the provision of a swashplate for
cyclic control. The second distinction is that the vehicle must possess
six or more rotors arranged on at least three different planes, capable
of delivering thrust at a range of magnitudes for control actuation
purposes. The requirement for six or more rotors on three different
planes stems from the need to control all six degrees of freedom and
will be covered further in the vehicle configuration discussion in
Sec. II. With regard to the manner in which the thrust of the rotor is
varied, the vehicle class of interest includes both fixed-rotor-pitch/

variable-rotor-speed designs and fixed-speed/variable-(collective)-
pitch designs. The examples and case study considered in this paper
are all based on configurations with six rotors of equal size arranged
in a number of different geometric arrangements that satisfy the
independent thrust and torque-vectoring requirements. For ease of
reference in this paper, vehicles corresponding to the class described
above will be referred to as hexrotor vehicles, with additional infor-
mation added to describe the geometric arrangement of rotors for
which this is appropriate.

A photograph of a prototype hexrotor vehicle developed as part of
the present work is shown in Fig. 1a. This vehicle is powered by six
electricmotors driving sixfixed-pitch propellers and is an example of
an orthogonal edge-centered type-I configuration according to the
taxonomy defined in Sec. II. A prototype of the vehicle was
successfully flown in hover and slow forward flight using manual
command of attitude rates and thrust magnitude in November 2009;
see Sec. VIII.E for brief further details of the flight test.

An envisaged mission for a hexrotorlike vehicle that makes use of
its unique properties is shown in Fig. 2. The work in this paper
contributes toward development of the overall vehicle configuration
and controller design for hover and slow forward flight. It is recog-
nized that significant additional work is required to develop addi-
tional controllers for the ground contact phase of the mission shown
and supervisory strategy for switching between air and ground
controllers. Note that the hexrotor vehicle has some passing resem-
blance with the rotochute concept [2], in that with an appropriate
outer frame it can support a ground reaction at arbitrary attitude.
However, beyond this, there is very little in common from a vehicle
design and control perspective.

Although the concept of a nonplanar multirotor vehicle is novel,
there is a significant body of knowledge on planar multirotor
vehicles, in particular quadrotors, that is relevant, e.g., work by
Hoffmann et al. [3], Waslander et al. [4], Valavanis [5], Bouabdallah
et al. [6], Stepaniak et al. [7,8], and Pounds et al. [9–11]. The main
points of relevance are that the typical rotor disk loading and
Reynolds numbers are similar, both use closely spaced rotors
meaning rotor interference effectsmay be important, and the fuselage
structures are similar, meaning that fuselage aerodynamic effects are
likely to be similar. As a point of difference it is noted that planar
vehicles can make use of translational lift, whereas this is likely to
cause interference in nonplanar vehicles. The overall aerodynamics
of nonplanar multirotor vehicles with arbitrary thrust direction is
clearly more complex than for planar vehicles and the present work
has had to make a number of simplifying assumptions to move the
design problem forward. As a starting point in keeping with typical
practice used in the quadrotor literature, the effect of the rotor wakes
on the fuselage are ignored and the airframe drag is assumed to be
insignificant in low-speed, near-hover flight conditions.

The structure of this paper is as follows. Section II gives a
kinematic analysis of multirotor vehicle configurations. Section III
presents the forward and inverse statics models for the hexrotor

Fig. 1 Orthogonal face-centered hexrotor implementations.
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vehicle. Section IV focuses on the dynamics model of the hexrotor
vehicle. Section V describes the control strategy adopted. Stability
analysis for the attitude control system is presented in Sec. VI.
Relations between quaternion attitude rates and angular velocity
vectors are discussed in Sec. VII. Section VIII presents experimental
results and some simulation results, and the conclusions are
presented in Sec. IX.

II. Vehicle Configuration Design

This section provides an analysis of the force and torque charac-
teristics of a generic multirotor helicopter based on the geometric
arrangement of rotors, leading to a general result that provides
theoretical proof for the existence of a class of six rotor vehicles with
independent control of both force and torque. The analysis assumes
that orientations of the rotor disks are fixed with respect to the body
and that the rotor aerodynamic force is normal to the plane of rotation
of the rotor. The former condition implies a rigid rotor without cyclic
control and the latter conditions implies that the analysis is limited
flight conditions around hover.

A. Generalized Force and Torque Equations for Multirotor Vehicles

Consider a generic multirotor vehicle with m rotor disks. Let the
positions of them rotor disks with respect to the vehicle body axes be
defined by a 3 �mmatrix Xr, composed of position column vectors
xi 2 R3, where i� 1; 2; . . . ; m, and let the orientations of these
disks be defined by 3 �mmatrix Nr, composed of rotor normal unit
vectorsni 2 R3, where i� 1; 2; . . . ; m are in the vehicles body axes.
Assume each rotor spins with angular velocity !i, where i�
1; 2; . . . ; m, with positive defined as anticlockwise about the rotor
normal ni. Each rotor provides a force in the rotor normal direction
ni. The magnitude of the rotor forces can be varied by either
independent or combined changes in the rotor collective pitch angle
and rotor speed, and the forces can be positive or negative. Assuming
the orientation of the rotor normal cannot be varied, the force of the
ith rotor can be expressed as the normal vector ni multiplied by the
scalar magnitude of force fi [12]:

F i � nifi (1)

Rotor forces produce a torque about the vehicle origin, associated
with the cross product of the rotor forceFi and the respective position
vector xi. Each rotor additionally produces an aerodynamic reaction
torque with magnitude �i about the axis of rotation ni, with a sign
opposite to that of the direction of rotation. The vehicle also experi-
ences a torque Ji _!i, associated with the rate of change of angular
momentum of each disk [12]. The torque description is summarized
in the following expression:

T i � �xi � ni�fi � ni�i � niJi _!i (2)

The generalized expressions for force for a multirotor vehicle can
then be written down as

F � Nrf (3)

and the generalized equation for torque is written as

T � �Xr � Nr�f � Nr�� � J _!� (4)

where the forces, torques, moments of inertia, and rotational speed in
the above two equations are, respectively, given by

f�

f1
f2
..
.

fm

2
6664

3
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.

�m
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.

0

0 0 0 Jm

2
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!2

..

.

!m

2
6664

3
7775

(5)

The cross productXr � Nr is a 3 �mmatrix composed of an array
of vectors (xi � ni) and is calculated as the cross product of position
and normal direction vectors.

B. Hexrotor Vehicles with Orthogonal Disk Planes

For a six rotor vehicle there are a large number of ways in which
the rotors can be positioned and orientated and engineering judgment
is required to identify solutions with the greatest degree of prac-
ticality. First, preferred arrangements use paired planar rotors with
opposite spin directions to achieve as near as possible a vehicle with
zero net angularmomentum. Second, it is assumed that the three rotor
pairs exist on three characteristic planes that pass through the origin
of the vehicle axes and whose normals define three equispaced
characteristic axes.

Figure 3 shows three different arrangements of a hexrotor vehicle
based on the use of three pairs of rotors placed on three orthogonal
reference planes. It is instructive to divide the configurations into
what we define as face-centered and edge-centered designs, de-
pending on the location of the rotor disks relative to the characteristic
axes. Furthermore, for the face-centered configuration there are two
distinctly different arrangements identified as type I and type II.With
the type-I arrangement the rotors’ centers exist on a single plane
defined as the vehicle reference plane that passes through the center
of the vehicle. For the type-II arrangement, the disk centers lie on two
different parallel planes that pass above and below the center of the
vehicle. The edge-centered configuration can only exist in one
arrangement. The following provides an analysis of a hexrotor with a
face-centered type-I configuration. The position and orientation
matrices of the rotors for this configuration are given by

Xr � a
1 0 �1 �1 0 1

0 1 1 0 �1 �1
�1 �1 0 1 1 0

2
4

3
5 (6)

Nr �
0 1 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

2
4

3
5 (7)

Substitution into the force and torque equations (3) and (4) gives

F �
f2 � f5
f1 � f4
f3 � f6

2
4

3
5 (8)

Fig. 2 Concept of operation for a hexrotor vehicle. 1: roll to target, 2:

free-flight translation, 3: roll up vertical wall, 4: press and stare, and 5:

free hover.
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T �
��2 � �5 � a�f1 � f4 � f3 � f6�
��1 � �4 � a�f5 � f2 � f3 � f6�
��3 � �6 � a�f1 � f4 � f5 � f2�

2
4

3
5 (9)

It can be seen fromEqs. (8) and (9) that a hexrotor vehicle is able to
produce control force and moment components in all three
(orthogonal) dimensions, meaning that the thrust and torque vectors
can, in principle, be arbitrarily orientated in three-dimensional space.
A more formal mathematical treatment of this statement is provided
in Sec. III as part of the aerodynamicmodeling. Equations (8) and (9)
also show that there is a degree of mechanical robustness in the
provision of actuation, because there is redundancy in the torque
sources, such that one rotor can fail without compromising attitude
control. Note that for orthogonal rotor reference planeswith all rotors
operational, the available components of force will be orthogonal.
However, as a result of geometric differences, the components of
torque for the face-centered arrangement are not orthogonal, whereas
the torque components for the edge-centered arrangement are
orthogonal.

C. Hexrotor Vehicles with Nonorthogonal Disk Planes

The preceding analysis has considered hexrotor configurations
based on orthogonal disk reference planes. The following now
considers the more general case in which the disk reference planes
are nonorthogonal. This is important, because the degree of orthog-
onality between the disk reference planes allows a designer to make
tradeoffs between the overall propulsive efficiency of the vehicle
(maximized when the disk reference planes are coplanar) and the
degree to which orthogonality of force and torque control is required
for a particular application. The following analysis is specifically
applied to the face-centered planar configuration from Fig. 3a;
however, the same broad outcomes are applicable to the other
hexrotor configurations of interest.

Let three unit vectors nx, ny, and nz from Fig. 4b, expressed in
three-dimensional space and equispaced by an angle �, define a

coordinate system for the characteristic force axes of a multirotor
vehicle with rotor configuration Nr. Angle � is, by definition,
given by

�� arccos�nx � ny� � arccos�ny � nz� � arccos�nz � nx� (10)

where the centered dot represents the dot product for vectors.
Let the lines of intersection between the three planes defined bynx,

ny, nz, and the vehicle origin define a characteristic axis system xyz.
The basis vectors for the xyz characteristic axis system are, by
definition,

x � ny � nz; y � nz � nx; z� nx � ny (11)

For the special orthogonal case when �� �=2, corresponding to
the configuration shown in Fig. 3a, the xyz characteristic axis
systems are

x � nx; y � ny; z� nz (12)

Using the basis vectors from the axis system xyz, the vehicle
reference plane is defined by the unit normal vector given by

n xyz �
x� y � z

kx� y � zk

A derived reference angle � referred to as the disk plane angle
represents the angle between the rotor planes and the vehicle
reference plane. The degree of orthogonality between the char-
acteristic force axes can be shown to be equal to the disk plane angle,
calculated as the following dot product:

�� arccos�nx � nxyz� � arccos�ny � nxyz� � arccos�nz � nxyz� (13)

The relationship between the disk plane angle and the angle �
between the characteristic force axes is defined by geometry and can
be shown to be equal to

Fig. 3 Geometric definition of rotor arrangements for an orthogonal hexrotor vehicle.

Fig. 4 Geometric definition of disk plane angle and force and torque orthogonality.
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�� arccos��1
2
sin2�� cos2�� (14)

In a similar way, it can be shown that the angle � between the
characteristic torque axes is defined by

�� � � arccos�1
2
cos2� � sin2�� (15)

Note that angle � in Fig. 4c is based on the principal moments
obtained from the cross product of rotor forces and position and does
not take into account the aerodynamic and inertial torques produced
by the rotors as defined byEq. (4).As such, it is only a partialmeasure
of orthogonality of the torque principal axes. However, since the
force-distance cross product termwill typically be an order ofmagni-
tude greater than the aerodynamic and dynamic torques, it provides a
useful metric to guide choice of the disk plane angle based on
specified operational requirements.

Orthogonality of control force and torque components is advan-
tageous, because it minimizes the energy (or effort) required to
achieve a given force or torque vector. For highly nonorthogonal
systems, i.e., cases in which � and/or � are significantly different
from 90 deg, it is possible that significant energy or effort is used by
one or more than one rotor to cancel out competing force or torque
components. Such a highly nonorthogonal implementation might
also suffer from reduced control authority, because rotor thrust
saturation limits are being reached at lower overall body-axis force
levels.

The relationships given by Eqs. (14) and (15) are shown in Fig. 5.
This plot identifies the tradeoffs between orthogonality of
characteristic force and torque axes and the disk plane angle. To
achieve efficiency in the hover mode, the disk plane angle ’ should
tend toward zero such that all the rotors are producing a force in the
same direction. However, this would lead to a fully planar structure in
which the characteristic force axes are aligned (�� 0), i.e., a control
force can only be produced in a direction normal to the vehicle
reference plane. This arrangement is similar to a quadrotor, from an
actuation point of view. For a disk angle of 45 deg, the orthogonality
angles for the force and torque axes are both equal to 75.5 deg. This
provides a vehicle with a reasonably efficient hover and thrust and
torque orthogonality reasonably close to the ideal of 90 deg for
efficient actuation. However, the highest authority and most energy-
efficient thrust vectoring occurs when the characteristic force axes
are orthogonal (�� 90 deg). For this case, the disk plane angle in
Fig. 5 is 54.7 deg and the angle between characteristic torque axes is
60 deg.

D. Basic Performance Comparison Between Planar and Nonplanar
Multirotor Vehicles

This section provides a brief analysis of the performance
implications of using nonplanar rotary-wing vehicles such as the
hexrotor. It is a given that provision of lift equal to or greater than

weight at any attitude will come at the expense of increased overall
propulsion system mass, compared with a vehicle that needs only
meet this requirement at one attitude. Furthermore, it is a given that
the propulsive efficiency of a nonplanar multirotor vehicle at any
given attitude will be less than that of an equivalent planar vehicle
with rotor plane normal to the direction of thrust. In engineering
terms, the first issue relates to the sizing of the installed power
systems and the second issue relates to sizing of the stored-energy
system (battery).

To address the issue of increased propulsion system mass for
nonplanar vehicles, consider the case of an orthogonal hexrotor
configuration in steady hover. The most demanding hover attitudes
for this orthogonal configuration will be those where the whole
weight of the vehicle is supported on a single pair of rotors, with the
other two pairs of rotors making a contribution of zero to weight
support. Thus, the critical design case for sizing the propulsion
system is that a single pair of rotors needs to provide sufficient thrust
to support theweight of the vehicle, including two additional pairs of
deadweight propulsion units that are not contributing to thrust. This
means that power rating of individual propulsion units might be up to
3 times higher than it would be for an equivalent planar vehicle. As a
practical example, the propulsion unit mass in terms of propeller,
motor, and speed controller for a quadrotor electric rotary-wing
vehicle will be of the order of 30–35% of the overall mass of the
vehicle [5]. For the prototype hexrotor vehicle developed in thiswork
the propulsion unit mass is 55% of the overall mass.

With regard to reduced propulsive efficiency of nonplanar
vehicles, there will always be an element of rotors working against
each other at any attitude and hence reduced efficiency compared
with planar designs. A simple analysis based simply on resolution of
forces gives that for an orthogonal hexrotor configuration generating
a force normal to the vehicle reference plane, the sum of the force
magnitudes from each of the rotors will be 1= cos�54:7 deg� � 1:7
times the force normal to the reference plane.

III. Statics Model

The kinematic analysis relates the connection between the
available actuation and the configuration of the rotor system. The
paper now focuses on calculating the system actuations, given the
required forces and torques; an inverse problem of the first kind [13].
To start the analysis, the direct problem, or the calculation of forces
and torques generated by the system actuators, is tackled first. The
analysis uses a rotor model based on linear aerodynamics [12,13].
The effects of induced velocity and interference between rotors are
not included. Given the limitations in the physics, the model is
applicable for flight conditions around hover only and will be of
limited accuracy at flight conditions where wakes from one rotor are
ingested by other rotors. Amore sophisticated analysis is required for
translating flight and is considered to be beyond the scope of this
paper.

The synthesis of the force and moment vectors depends on
understanding the effects of thevehicle force and torque equations (8)
and (9). The geometric interpretation of those vectors for an
orthogonal face-centered hexrotor configuration is shown Fig. 6.
Recall that for this configuration, the principal force axes form an
orthogonal coordinate system. It is analytically convenient to make
the vehicle body-axis coordinate system coincident with this
coordinate system; hence, the principal force axes are now labeled
xb, yb, and zb.

In Fig. 6a, the first and fourth rotors have opposite reaction torques
t1 and t4 and opposite spin directions. The same applies to the second
and fifth rotors and their corresponding reaction torques t2 and t5, as
well as the third and sixth with reaction torques t3 and t6. Figure 6b
shows that thrusts f1 and f4 are generated by the first and fourth
rotors, operating at a distance of l from the intersection of the vehicle
with axis yb and are pointing in the same direction. The same applies
to the forces f2 and f5, with axes xb, associated with the second and
fifth rotors and with f3 and f6, with axes zb, associated with the third
and sixth rotors.

Fig. 5 Effect of disk plane angle on orthogonality of forces and torques

for a face-centered hexrotor configuration.
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A. Propulsion via Constant-Speed/Variable-Pitch Rotors

Provision of variable-pitch rotors enables production of forces in
the positive and negative directions. The thruster consists of a rotor i
producing a perpendicular force that is function of the collective
pitch angle �i. In this case �i is the controllable variable. The thrust is
described by the force function for propellers [12]:

fi � k̂�i (16)

where k̂ is a scalar constant coefficient of proportionality that relates
rotor pitch angle to force as in (16) and has units of newtons/radian.

Note that the constant k̂ is dependent on the rotor geometry and is
specific to the hover operating conditions. Referring to Fig. 6b, the
force equation in body axes is obtained by substituting the rotor
position equation (7) into the net force equation (3):

f b � Nrf�
0 1 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

0
@

1
A

f1
f2
f3
f4
f5
f6

0
BBBBBB@

1
CCCCCCA

(17)

To complete the direct problem, the command pitch angles in
Eq. (16) are substituted into the force equation (17) and are then
converted into the Earth axes using r0 � Rrb, which is the same
frame in which the translational dynamics are defined, to give the net
resultant force on the vehicle:

f 0 � RNrf� k̂R
0 1 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

0
@

1
A

�1
�2
�3
�4
�5
�6

0
BBBB@

1
CCCCA (18)

Figure 7 shows the differential force moments (i.e., the total
moment minus the aerodynamic drag torques) about the principal
torque axes xm, ym, and zm drawn in body axes xb, yb, and zb. Using
the nomenclature in Fig. 6b the so-called differential force moments
are given by

txm � l�f3 � f6� (19)

tym � l�f5 � f2� (20)

tzm � l�f1 � f4� (21)

These moments are expressed in body axes using the matrix Rmb.
Next, the torque direct problem is solved by substituting the
command mapping of force equation (16) into the differential
moments:

t bd � Rmb
txm
tym
tzm

0
@

1
A�

1��
2
p 0 1��

2
p

1��
2
p 1��

2
p 0

0 1��
2
p 1��

2
p

0
B@

1
CA k̂l��3 � �6�

k̂l��5 � �2�
k̂l��1 � �4�

0
@

1
A (22)

From simple propeller theory [12] the propulsive reaction torque
as a function of pitch angle �i for a given rotor i in hover is given by

�i � k0 � kT�2i (23)

where kT is a scalar constant coefficient of proportionality that relates
rotor pitch angle to aerodynamic reaction drag experienced by the
rotor, as given in Eq. (23), and hence has units of Nm=rad2. The
constant k0 is the residual aerodynamic reaction drag experienced at
zero rotor pitch angle with units of newton meters [12]. Although
Eq. (23) represents a simplification, experimental data suggests that
in hover conditions the torque equation is mainly driven by the
constant and quadratic terms, and hence Eq. (23) is suitable for this
purpose.

The reaction torque generated by the rotors is calculated as a
function of the pitch angle �i by replacing the individual reaction
torque equation (23) into the total torque equation (4), considering
the normal rotor axis stated in the matrix Nr from Eq. (7):

tbr � kT

�22 � �25
�24 � �21
�26 � �23

0
B@

1
CA(24)

Combining both differential tbd torques [Eq. (22)] and reaction
torques tbr [Eq. (24)] gives the net torque tb in the body axes:

Fig. 6 Definition of rotor spin directions, drag torques, and forces.

Fig. 7 Relationship between the principal torque axes and vehicle body

axes for an orthogonal face-centered hexrotor.
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tb �

2
6666666664
k̂l���
2
p

1 0 1 �1 0 �1
0 �1 1 0 1 �1
1 �1 0 �1 1 0

0
B@

1
CA

�1

�2

�3

�4

�5

�6

0
BBBBBBBBBB@

1
CCCCCCCCCCA

� kT

0 1 0 0 �1 0

�1 0 0 1 0 0

0 0 �1 0 0 1

0
B@

1
CA

�21

�22

�23

�24

�25

�26

0
BBBBBBBBBB@

1
CCCCCCCCCCA

3
7777777775

(25)

From the direct problem solution, the forces and torques acting on
the vehicle are given by the following composite vector:

f0

tb

 !
�

R 0

0 I

 !
2
66666666664

P P

Q �Q

 !
�1

�2

�3

�4

�5

�6

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

0 0

S �S

 !
�21

�22

�23

�24

�25

�26

0
BBBBBBBBBB@

1
CCCCCCCCCCA

3
77777777775
(26)

where the matrices P, Q, and S are, respectively, given by

P� k̂
0 1 0

1 0 0

0 0 1

0
@

1
A (27)

Q� k̂l���
2
p

1 0 1

0 �1 1

1 �1 0

0
@

1
A (28)

S� kT
0 1 0

�1 0 0

0 0 �1

0
@

1
A (29)

To solve an inverse problem of the first kind, it is necessary to map
the commanded pitch angle �i into net force and torque requirements.
Initially,matrix inversion is carried out to obtain the followingmatrix
equation:

1

2

I I

I �I

 !
P�1RT 0

0 Q�1

 !
f0

tb

 !
�

�1

�2

�3

�4

�5

�6

0
BBBBBBBBBB@

1
CCCCCCCCCCA

� 1

2

Q�1S

�Q�1S

 !
� I �I �

�21

�22

�23

�24

�25

�26

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(30)

Assume that the following net force f0 � 	 f01 f02 f03 
T and
torque tb � 	 tb1 tb2 tb3 
T are required. To make the calculation
easier, the left side of Eq. (30) is defined as the requirement vector
	 u1 u2 u3 u4 u5 u6 
T :

u1
u2
u3
u4
u5
u6

0
BBBBBB@

1
CCCCCCA
� 1

2

I I
I �I

� �
P�1RT 0

0 Q�1

� �
f01
f02
f03
tb1
tb2
tb3

0
BBBBBB@

1
CCCCCCA

(31)

When substituted into the right side of Eq. (30), we are left with a
matrix whose only unknown values are the pitch angles �i:

u1
u2
u3
u4
u5
u6

0
BBBBBB@

1
CCCCCCA
�

�1
�2
�3
�4
�5
�6

0
BBBBBB@

1
CCCCCCA
� 1

2

Q�1S
�Q�1S

� �
� I �I �

�21
�22
�23
�24
�25
�26

0
BBBBBB@

1
CCCCCCA

(32)

The solution of the matrix Riccati equation (32) [14,15] gives the
command pitch angles �i as a function of the requirement vector:

�4

�5

�6

0
B@

1
CA�

2
664I�Q�1S

u1 � u4 0 0

0 u2 � u5 0

0 0 u3 � u6

0
B@

1
CA
3
775
�12664

u4

u5

u6

0
B@

1
CA

� 1

2
Q�1S

�u1 � u4�2

�u2 � u5�2

�u3 � u6�2

0
B@

1
CA
3
775 (33)

�1
�2
�3

0
@

1
A� u1 � u4

u2 � u5
u3 � u6

0
@

1
A � �4

�5
�6

0
@

1
A (34)

where the quantities ui are defined in Eq. (31). Therefore, setting the
command pitch angles as indicated by the solutions for �i will
achieve the vehicle’s desired force and torque vectors.

B. Propulsion via Variable-Speed/Fixed-Pitch Rotors

Variable-speed control using rigid, fixed-pitch rotors can only
produce forces in the positive direction, that is, forces are restricted to
the first positive octant. The force of a given rotor i is proportional to
the square of rotor rotational velocity vi in radians/second [12]:

fi � k1v2i (35)

where k1 is a scalar constant coefficient of proportionality that relates
rotor spin speed in radians/second to force in newtons, as given in
Eq. (35), and has units of N=�rad=s�2.

To solve the direct problem, the component forces, expressed as a
function of rotor speed [Eq. (35)], are substituted into the force
equation (17) and then are transformed into the Earth axes using
Eq. (36) to give the net resultant force on the vehicle:

f0 � k1R
0 1 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

0
B@

1
CA

v21

v22

v23

v24

v25

v26

0
BBBBBBBBBB@

1
CCCCCCCCCCA
(36)

Although the implementation described herein uses the same k1 for
all rotors, vehicles are not limited thereto.
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Referring to Fig. 6a, the propulsive reaction torque �i for the ith
rotor is given by [12]

�i � k2v2i (37)

Note that k2, as given in Eq. (37), is a scalar constant coefficient of
proportionality and relates rotor spin speed in radians/second to
torque in newton meters and has units of Nm=�rad=s�2.

A similar derivation to the preceding section yields a net torque tb
in the vehicle in the body axes once the reaction torque components
and the differential force moments are combined into one expression
mapped to body axes, as given below:

tb �

2
6666666664
k1l���
2
p

1 0 1 �1 0 �1
0 �1 1 0 1 �1
1 �1 0 �1 1 0

0
B@

1
CA

v21

v22

v23

v24

v25

v26

0
BBBBBBBBBB@

1
CCCCCCCCCCA

� k2

0 1 0 0 �1 0

�1 0 0 1 0 0

0 0 �1 0 0 1

0
B@

1
CA

v21

v22

v23

v24

v25

v26

0
BBBBBBBBBB@

1
CCCCCCCCCCA

3
7777777775

(38)

From the above analysis, the forces and torques acting on the
vehicle are given together by the following composite vector:

f0

tb

 !
�

�R 0

0 �I

 !
2
6666666664

�P �P

� �Q� �S� �� �Q� �S�

 !
v21

v22

v23

v24

v25

v26

0
BBBBBBBBBB@

1
CCCCCCCCCCA

3
7777777775
(39)

where matrices �P, �Q, and �S are, respectively, given by

�P� k1
0 1 0

1 0 0

0 0 1

0
@

1
A (40)

�Q� k1l���
2
p

1 0 1

0 �1 1

1 �1 0

0
@

1
A (41)

�S� k2
0 1 0

�1 0 0

0 0 �1

0
@

1
A (42)

The rotor spin speeds are given by an inversion as follows:

v21

v22

v23

v24

v25

v26

0
BBBBBBBBBB@

1
CCCCCCCCCCA
� 1

2

I I

I �I

 !
�P�1 �RT 0

0 � �Q� �S��1

 !
f01

f02

f03

tb1

tb2

tb3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(43)

To calculate the commands for rotational speeds vi, calculate the
matrix product and then take the square-root of each component in

the vector. This requires the matrices �P�1 and � �Q� �S��1 to exist.
Note that the inverse of P always exists, and the condition for the

existence of � �Q� �S��1 is

det� �Q� �S� � �k1l�
3���

2
p � k2�

3�k1l�2
2
� k22� ≠ 0

which is easily fulfilled if

k2 <
��
3
2

q
k1l

which is indeed the case as, in practice, k2 is negligible compared
with k1l.

IV. Dynamics Model

The dynamic model of an orthogonal face-centered hexrotor
vehicle is obtained in the present section for the two cases of variable-
pitch/constant-speed rotors and fixed-pitch/variable-speed rotors.
For simplicity of exposition of the ideas, second-order effects such as
air drag on the vehicle fuselage and rotor mutual interference are not
considered; therefore, simplifying the model to only inertial and
dynamical effects. Likewise, the rotors will be modeled as simple
steady-state force and torque sources. Analysis at the end of this
section also shows that the magnitude of changes in rotor angular
momentum is small compared with the magnitude of the control
torques produced; hence, this effect can be neglected from the control
synthesis in the interest of simplified models.

A. Variable-Pitch Rotors

Let r0 be the current position of a vehicle in Earth axes, and let!b
be the current angular velocity of the vehicle read in the vehicle body
axes such that

r 0 �
x0
y0
z0

0
@

1
A (44)

! b �
!b;x
!b;y
!b;z

0
@

1
A (45)

Also define the skew-symmetric matrix

s�!b� �
0 �!b;z !b;y
!b;z 0 �!b;x
�!b;y !b;x 0

0
@

1
A (46)

assuming negligible aerodynamic drag on the vehicle fuselage. This
assumption is acceptable for the current simplified analysis, because
drag forces tend to slow down performance but do not have any
destabilizing effect. Evaluating the angular momentum, the attitude
dynamics are given by the following Newton–Euler equations
[16,17]:

t 0 �
d

dt
�J0!0� (47)

, tb � Jb _!b � s�!b�Jb!b (48)

B. Variable-Speed Rotors

For this analysis, let r0 be the current position of a vehicle in the
Earth axes and let !b be the current angular velocity such as in
Eqs. (44) and (45). The angular momentum of the rotors is now taken
into account given that the variable speed of the rotors prevents
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perfect cancellation of gyroscopic effects. Evaluating the angular
momentum assuming negligible aerodynamic drag, the attitude
dynamics are given by the following Newton–Euler equation
[16,17]:

t 0 �
d

dt

0
BB@J0!0 � RJr

v5 � v2
v1 � v4
v3 � v6

2
4

3
5
1
CCA (49)

where Jr is the scalar moment of inertia of a single rotor about its
shaft axis, R is the rotational matrix mapping vectors read in body
axes to the same vector read in Earth axes, J0!0 is the angular
momentum in Earth axes, and v1; v2; . . . ; v6 are the rotor speed
commands as calculated in Eq. (43). Equation (49) can be
transformed equivalently to

t b �
(
Jb _!b � Jr

_v5 � _v2
_v1 � _v4
_v3 � _v6

" #)
� s�!b�

8<
:Jb!b � Jr

v5 � v2
v1 � v4
v3 � v6

2
4

3
5
9=
;

(50)

Since, in practice, Jb will typically be several orders of magnitude
larger than Jr, the gyroscopic effects will have negligible effects on
the dynamics and hence can be ignored. Small differential variation
in the angular velocity or angular acceleration of corresponding rotor
pairs will be overridden by a corresponding small variation in the
vehicle angular velocity or vehicle angular acceleration in the same
direction.

Additionally, even when this assumption is not fulfilled, gyro-
scopic effects tend to have a stabilizing effect on attitude, due to
conservation of angular momentum rather than a detrimental effect
[16,17]. Henceforth, it will be assumed that the dynamical model of
the attitude is reduced to

t b � Jb _!b � s�!b�Jb!b (51)

The reduced model in Eq. (51) is the same as that deduced for the
variable-pitch rotor in Eq. (48), given that the gyroscopic effects
present in the variable-speed rotors are neglected around near-hover
conditions. Therefore, in accordance with these models, there is no
need to synthesize two different controllers.

C. Translational Dynamics

The translational model describes the hexrotor vehicle as a particle
with mass moving in free 3-D space. For simplicity of exposition of
ideas, air drag on the fuselage is not considered, therefore limiting the
model only to inertial and dynamic effects. Likewise, the rotors will
be modeled as simple steady-state force sources [16,17]. Newton’s
second law of motion gives

f 0 �
0

0

mg

0
@

1
A�m�r0 (52)

wherem is themass of thevehicle, r0 is the position in Earth axes, and
g is the gravitational acceleration.

V. Control Strategy

The controller of the hexrotor vehicle will take advantage of the
analytically decoupled force and torque subsystems achieved by the
use of six rotors, as demonstrated in Eq. (26) for variable-pitch rotors
and in Eq. (39) for variable-speed rotors. The direct consequence of
actuation independency is that themodel can be decomposed into the
rotational dynamics described by Eq. (48) and completely decoupled
from the translational dynamics described by Eq. (52) [16].

A. Position Control

The control scheme illustrated in Fig. 8 uses full state feedback
linearization to compensate for the gravitational force and a state

feedback controller to follow the designed trajectory. Perfect
cancellation of the gravity vector is assumed to be achieved. Take the
translational dynamics model (52) and assume that the input force
vector f0 � 	 f01 f02 f03 
 is composed of gravitational-force
cancellation plus a trajectory-tracking state feedback control law
[16,18]:

f01
f02
f03

0
@

1
A�� 0

0

mg

0
@

1
A�m	�rd0 � 2�c�_r0 � _rd0� � c2�r0 � rd0�
 (53)

Applying the force equation (53) into the translational dynamics
equation (52) results in the following linear closed loop for position
dynamics:

��r0 � �rd0� � 2�c�_r0 � _rd0� � c2�r0 � rd0� � 0 (54)

where �rd0 is a desired acceleration, _rd0 is a desired velocity, rd0 is a
desired position for the designated trajectory, and the chosen
controller gains � and c are equivalent to the damping factor and
natural frequency, respectively, of the closed-loop dynamics. To run
experiments with acceptable closed-loop pole placement, the
controller gains are chosen as �� 0:7 and c� 2��0:2�. In this way
the position control is globally stable, because all the poles are in the
left-hand plane of the complex plane, and the time constant of the
closed-loop dynamics is 5 s [16,18].

Integral control can be used for exact cancellation of the gravity
vector 	 0 0 mg 
T, but is not considered for simplicity of
exposition. Although the above control law is designed using simple
classical ideas, more robust and optimal control methods could be
designed on the open-loop plant to yield robustness and perhaps
energy-optimal guaranties (see, for example, [15,19–21]). Second-
order systems as the resulting closed-loop dynamics above are
negative imaginary systems [22], which can be exploited in inner/
outer-loop control methods in which the inner loop is fast approx-
imate control and the outer loop is slower, but it ensures that the
correct steady-state equilibria are reached. Offline validation
methods for internal stability using closed-loop data from experi-
ments using a previous stabilizing controller are described in [23,24],
and these methods can be helpful when tuning controllers in practice
to avoid the risk that excessive model mismatch may result in
instability.

B. Attitude Control

The desired attitude trajectory is expressed by the attitude
quaternion qd (we use the quaternion structure of the scalar element
as the top element and the vector below it), angular speed ! d

b and
angular acceleration _!db. The procedure to obtain this trajectory will
be explained in detail in the next section. The attitude control is
performed in the body axes, because both the measurements and
actuators are read and controlled in body axes [16].

The objective of the control law is to follow the designated attitude
trajectory. The control problem is divided into two loops shown in
Fig. 9, because the dynamics of the angular rate are faster than the
attitude dynamics. Full state feedback linearization closes an inner
secondary loop for angular speed, then state feedback in quaternion
space closes the outer loop of attitude control [16]. If chosen
appropriately, from the point of view of the attitude controller, the
model of the vehicle’s speed is reduced tofirst-order linear dynamics,
followed by the model of attitude kinematics. To control the angular
rate, assume the synthesized torque vector tb � 	 tb1 tb2 tb3 
T

Fig. 8 Translational control loop.

CROWTHER ETAL. 1165



compensates for the nonlinear effect of the Coriolis term and at the
same time minimizes the speed error, using a state feedback
controller [17,18]. Choosing

tb1
tb2
tb3

0
@

1
A� s�!b�Jb!b � dJb�!reference

b � !b� (55)

where the parameter d represents a gain matrix for the state feedback
controller, and the closed-loop system is obtained by substituting the
torque tb from Eq. (55) into angular dynamics equation (48) to give
the following linear closed-loop dynamics:

_! b � d!b � d!reference
b (56)

Equation (56) represents a first-order system, where the gain d is
equivalent to the closed-loop time constant of the angular rate. For
this particular implementation, it has been chosen as d� 2��0:2�,
and so a closed-loop response will have a time constant of 5 s.

The outer loop, controlling the attitude, defines a normalized
quaternion error qe to be given by

q e � qd � q� (57)

where qd represents a desired vehicle attitude, q� is the quaternion
conjugate of the current vehicle attitude, and � denotes quaternion
multiplication.

The desired angular attitude qd, expressed as a quaternion, is one
input to the attitude control system. The normalized quaternion error
attitude is calculated by Eq. (57). Letting 	�
123 denote the bottom
three elements of a normalized quaternion, this part extracts the axis
of rotation. Consequently, setting !correction

0 � e	q
123 means that we
choose an angular speed correction that is proportional (with
constant of proportionality e) and aligned in the direction with the
axis of rotation of the normalized quaternion error qe. Since the
angular speed correction !correction

0 is expressed in Earth axes, it is
required to be transformed into body coordinates by rotationalmatrix
RT to obtain the desired angular velocity!correction

b , expressed in body
axes. Then !correction

b is added to the required trajectory (defined by

the desired angular rate and desired angular acceleration), to produce
a reference angular rate !reference

b in the following equation, used as
input by the speed controller (55) in the dynamic relations of
Eq. (56):

!reference
b � !correction

b � !db �
1

d
_!db (58)

Analyzing Fig. 10, a simplification can be found. Define a
mismatch normalized quaternion qm by

q m � q� � qd (59)

Since quaternion algebra gives [25]

q � 	
n

� �
� q� � 	

Rn

� �
(60)

for any arbitrary real scalar 	 and any arbitrary vectorn, it follows that

q m � q� � qd � q� � qd � q� � q (61)

q m � q� � qe � q (62)

Therefore, 	qm
123 � RT 	qe
123.
Hence, it is possible to calculate the mismatch normalized

quaternion qm instead of executing the normalized quaternion error
qe and rotate its bottom three elements by rotational matrix RT .
Figure 10 can now be simplified, as indicated in Fig. 11.

Robustness issues can appear from the insertion of the inexact
compensation for Coriolis force and uncertainty in the rotors. The
inexact cancellation of forces produces a small amount of coupling
between force and torque, which, in principle, was assumed to be
cancelled by the torque controller. This effect can affect the overall
performance of the hexrotor, as illustrated by a simulated rotational
maneuver in Sec. VIII. To address this problem, robust controllers
[21] use knowledge of disturbances, including motor time constants
and Coriolis structure, to synthesize a controller d that will stabilize

Fig. 9 Attitude control loops.

Fig. 10 Attitude control.

Fig. 11 Attitude control simplified.
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the plant and keep acceptable performance, even with small torque
and force coupling.

VI. Stability Analysis of Attitude Control

A stability analysis for attitude and angular velocity control is
performed in the feedback control proposed. Let the Lyapunov
candidate function V [16] be defined as

V � �!b � !
d
b�T�!b � !db�
2d

� e�	qm
21 � 	qm
22 � 	qm
23

� �	qm
0 � 1�2� (63)

where 	q
i denotes the ith element of the quaternion q, 0 denotes the
first element, and 3 denotes the last one.

Note that V � 08 !b, qm, and V � 0 if and only if the trajectory
goal!b �!db and q� qd (since qm � 	 1 0 0 0 
T) is achieved.
Since qm is a normalized quaternion, we have kqmk � 1, and hence
V can be rearranged as

V � �!b � !
d
b�T�!b � !db�
2d

� 2e�1 � 	qm
0� (64)

If the Lyapunov candidate function is now differentiated, the
resulting function is

_V � �!b � !db�T
�
_!b
d
� _!db
d

�
� 2e	 _qm
0 (65)

Substituting _!b from the linear dynamics equation (56) we obtain

_V � �!b � !db�T
�
�!b �!reference

b � _!db
d

�
� 2e	 _qm
0 (66)

Further substituting the reference angular speed !reference
b using

Fig. 11 and Eq. (58),

_V � �!b � !db�T��!b � e	qm
123 �!db� � 2e	 _qm
0 (67)

and regrouping similar terms,

_V ���!b � !db�T�!b � !db� � e�!b � !db�T 	qm
123 � 2e	 _qm
0
(68)

Therefore, the derivative of the Lyapunov function is negative,
_V < 08!b ≠ !db, since

�!b � !db�T 	qm
123 � 2	 _qm
0 � 0

because qm � q� � qd and 	qm
0 � qTqd, which implies that

	 _qm
0 � qT _qd � �qd�T _q� 	q� � _qd
0 � 	�qd�� � _q
0

� 1

2

�
q� � qd �

0

!db

" #�
0

� 1

2

�
qd� � q �

0

!b

" #�
0

� 1

2

�
qm �

0

!db

" #�
0

� 1

2

�
qm� �

0

!b

" #�
0

�� 1

2
�!db�T 	qm
123 �

1

2
!Tb 	qm
123 (69)

	 _qm
0 � 1
2
�!b � !db�T 	qm
123 (70)

The function V�t� reaches an equipotential whenever !b�t��
!db�t�, since _V�t� � 0. Now it will be shown that

! b�t� �!db�t� 8 t) q�t� � qd�t� 8 t

If the measured angular speed is equal to the desired angular speed
!b�t� �!db�t� 8 t, then _!b�t� � _!db�t� 8 t, and hence!correction

b �t� �
0 via Eq. (56) and the fact that

! reference
b �!correction

b �!db �
1

d
_!db

Then !correction
b � e	qm
123 � 0 yields qm�t� � 	 1 0 0 0 
T for

the normalized quaternion qm. The only way to achieve this
condition is to make the measured trajectory q equal to the desired
quaternion trajectory qd, i.e., q�t� � qd�t�. Hence, we have shown
that stabilizing angular velocity control also implies stabilizing
attitude control.

VII. Relations Between Quaternion Rates
and Angular Velocities

The specific mission is defined by the required trajectory in
quaternions. To calculate the required speed and acceleration for the
trajectory, the quaternion defining the path has to be differentiated
using [25]

_q d � 1

2
qd � 0

!db

� �
(71)

Making the angular speed subject and then differentiating
another time to find the angular velocity, we get angular position
qd, angular velocity !db � 2	qd� � _qd
123, angular acceleration _!db�
2	qd� � �qd
123, and for an attitude trajectory designed in quaternion
space, �qd; _qd; �qd�.

VIII. Results and Discussion

We report the simulations of translational and rotational
maneuvers. The numeric values of mechanical parameters used in
the translational model (52) and in the rotational model (48) are take-
off mass m� 5:006 kg, gravitational acceleration g� 9:81 m=s2,
motor time constant 0.1 s, and moment of inertia in the vehicle
reference plane of

Jb �
0:2 0:05 0:05
0:05 0:2 0:05
0:05 0:05 0:2

2
4

3
5 kgm2

The rotor geometrical position Xr is

0:3
1 0 �1 �1 0 1

0 1 1 0 �1 �1
�1 �1 0 1 1 0

2
4

3
5m

and the rotor direction Nr is

0 1 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

2
4

3
5

Aerodynamic constants for the fixed-pitch/variable-speed rotors
are given in Table 1. Aerodynamic constants for the fixed-speed/
variable-pitch rotors are given in Table 2.

To control the hexrotor vehicle, the control parameters are
described in Table 3. The parameters are chosen so that perfect
cancellation of gravity force mg and Coriolis force s�!b�Jb!b are
achieved. However, in the prototype, perfect cancellation will be not
possible, but only a good approximation, and therefore small
deviations on signals can happen. The controller for translation is
described in Eq. (53), the controller for angular rate is described in
Eq. (55), and the controller for quaternion attitude is described by the
diagonal gain matrix e in Fig. 11.

A. Steady State

An experiment was conducted to evaluate the extent of aero-
dynamic interference between the six rotors when operating in near-
hover conditions, i.e., to evaluate the validity of the assumption used
in the modeling that all rotors act independently (at least in level
hover). Figure 12 shows a flight-capable airframe rigidly mounted to
a six-component balance on a test rig. The speed of each rotor can be
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controlled independently, and the speed, current, and voltage of all
six propulsion units are recorded, as well as six components of force
and torque from the balance, Torque and force are demanded through
relations (6–9), and the generated torque and force are thenmeasured
from the balance. The measured torques and forces are then
compared with those obtained from substituting experimental rotor
speed into Eqs. (6–9).

Results presented in the format t0 � 	t01 t02 t03 
T shows the results
for a pure yawing moment (t03 ) and pure pitching moment demand
(t02 ) are shown in Fig. 13. The yawing demand is varied from�11 to
11Nm, and the rest of themoments have a zero demand. The result is
a change in moment only around the Z axis, and the rest of the
moments are kept null. The rotors that are not contributing to the
yawing moment are still running, keeping the rest of the moments
equal to zero. The experiment demonstrates that the torque generated

by the array of rotors follows the relations described by Eqs. (6), (7),
and (9), where the key assumption is that the torque vector t depends
only on the thrust Fi and drag torque �i. The same experiment is
repeated for a pitching moment demand in Fig. 13, with similar
results. These results show that for the relatively benign case of level
hover, use of a simple uncoupled rotor aerodynamic model for
control is fit for purpose. At more extreme flight conditions rotor
interaction are likely to be larger and nonlinear; hence, the simple
modeling approach adopted in this paper may not be sufficient.

Figure 14 shows the experiment when thrust is demanded in the Z
axis. The force vector is expressed in the form f0 � 	f01 f02 f03 
T .
The experiment follows the force relation proposed by Eqs. (6–8).
The thrust in theZ axis is varied from�10 to�100 N. The result is a
thrust generated only in theZ axis, and resultant thrusts in theX andY
axes are kept null by the rotors.

The above experimental results provide evidence to support the
validity of using the simplified aerodynamic rotor model proposed in
Sec. II for flight conditions around hover with the vehicle reference
plane horizontal.

B. Simulated Translational Maneuver

The degree of coupling between the proposed position control and
attitude regulation is evaluated through a simulated translational
maneuver corresponding to a position demand of 1m inX,�1:7 m in
Y, and 0 m in Z (Fig. 15). The rotor speeds during the maneuver are
shown in Fig. 16.

The results for X and Z show a step response with damping ratio
�� 0:69 and natural frequency of 1:4 s�1, which are values very
close to those expected by the control definition in Table 3, and the
attitude is held constant, as required.

C. Simulated Rotational Maneuver

The simulated maneuver for evaluation of the attitude control
corresponds to a rotational sequence of [�=8 0 �=4 ] radians
about the x, y, and z body axes, respectively, with the position of the
vehicle held constant. The initial attitude of the vehicle is with the
vehicle reference plane horizontal. The intention of this experiment is
to show the independence of attitude control from thrust control,
even in large rotations.

Simulation results for position and attitude are shown in Fig. 17,
with corresponding rotor speeds shown in Fig. 18. A noticeable
feature of the simulation results is weak coupling between the
attitude response and the position of the vehicle. This characteristic
appears because the rotors generating the lift forces have time
constants not cancelled fast enough by the angular-rate control, due
the fact that the time constant of the attitude closed loop is very close
to that of the rotors. However, at the end of the simulated maneuver
the steady-state position reaches the reference signal at 0 m, showing
that controllers are robust enough to cancel effect of small deviations
from the ideal model. With reference to the rotor speeds shown in
Fig. 18, it can be seen that at the start of themaneuver all rotor speeds
are equal, consistentwith the symmetry associatedwith generation of
a net force vector normal to the vehicle reference plane. At the end of
the maneuver the required net force vector is nonnormal to the
vehicle reference plane, and hence the required rotor speeds are
unequal.

Analysis of the attitude step response gives a closed-loop damping
ratio of 0.25 and natural frequency of 1:85 s�1, with zero steady-state
error. This second-order response is explained by the fact that the
attitude controller is naturally adding an extra order to the first-order
inner angular-rate loop, because the attitude itself is the integral of the
angular speed. If the attitude controlled is required to reduce its
overshoot, the proportional constant e has to be decreased; e can be
seen as the open-loop gain for the attitude control system.

D. Free to Pitch, Roll, or Yaw Experiments

To evaluate the attitude control dynamics before flight test, the
prototype flight vehiclewasmounted on amechanical gimbal, giving
approximately30 degrees of freedom in roll and pitch and around

Table 1 Aerodynamic constants of fixed

pitch and variable speed

Parameter Value

Thrust constant k1 5 � 10�3 N=�rad=s�2
Torque constant k2 1 � 10�2 Nm=�rad=s�2

Table 2 Aerodynamic constants offixed

speed and variable pitch

Parameter Value

Thrust constant k̂ 6:40 � 10�5 N=rad

Torque constant kT 1:74 � 10�6 Nm=rad2

Table 3 Control parameters

Parameter Value

Translational damping � 0.7
Translational natural frequency c 2��0:2� rad=s
Angular speed damping d 2��0:2�
Quaternion proportionality constant e 2�

Fig. 12 Experimental setup for thrust and torque measurements.
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15 deg in yaw. The primary purpose of these tests was to verify the
implementation of the attitude control laws onboard the vehicleflight
control computer, to validate choice of rate control gains and to
provide a very basic flight-training simulator for the remote pilot.

E. Flight-Test Report

The airframe shown on the test stand in Fig. 12was flown as a free-
flight vehicle in November 2009. The main objectives of the flight
testwas to demonstrate that a viablevehicle could be developedusing
commercially available actuator and sensor components and that the
simplified rotor aerodynamic modeling used in this paper is fit for
the purposes of controller design around hover. The all up weight of
the flight-test vehicle was 5.5 kg with a weight breakdown of 55%
propulsion group (including speed controllers), 9% structures, 26%
battery, and a payload fraction of around 10% used for instru-
mentation. The flight duration in hover was approximately 5 min.
Tests were conducted indoors, without access to absolute measure-
ment of position and attitude, but with onboard measurement of
three-axis acceleration and angular rates. Pilot input was provided
through demand of angular rates and overall thrust magnitude in the
samemanner inwhich a conventional planar helicopter is flow.As an
indication of the inherent robustness of the actuation strategy, the

Fig. 13 Moment independence.

Fig. 14 Thrust independence.

Fig. 15 Simulated translational maneuver.
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vehicle was initially flown for short test flights using simple open-
loop control of rates and thrust magnitude. Progressive introduction
of closed-loop control of rates and thrust magnitude improved the
vehicle handling qualities until steady-hover and slow-translation
flight could be achieved.

IX. Conclusions

This paper has introduced a new hexrotor class of rotary-wing
vehicles that provides the capability for independent control of both
position and attitude for hover and slow forward flight. It has been
shown that there are a number of different configurations of hexrotor
vehicle possible, depending on the relative orientation of the
reference planes on which the rotors are arranged and the arrange-
ment of rotors on these planes (face-centered or edge-centered
layout). A relationship between reference-plane orientation and
orthogonality of force and torque control has been defined, and it is
shown how a designer may tailor a design according to competing
requirements for maneuverability and propulsive efficiency.

A key theoretical contribution of the paper is the analytical
derivation of the static mappings between demanded control forces
and torques and the required rotor thrusts. The existence of a solution

to this inverse problem is not a given from inspection of the vehicle
geometry, and the general proof given here is valid for arbitrary
vehicle geometry and both variable-pitch/fixed-speed and fixed-
pitch/variable-speed rotors. Position and attitude controllers have
been successfully synthesized for the vehicle based on full state
feedback control, with controller dynamic performance validated in
simulation. Control performance is robust to the unmodeled
dynamics associated with varying rotor angular momentum for a
fixed-pitch/variable-speed control implementation.

The hexrotor vehicle concept has been prototyped in a face-
centered planar configuration with fixed-pitch/variable-speed rotors.
Ground tests on this vehicle have demonstrated the ability of the
configuration to generate independent force and torque control under
hover conditions using practical rotor systems. Furthermore, this
vehicle has been successfully flown in hover with manual control of
position and attitude and with inner closed-loop control of angular
rates.
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