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SUMMARY

This work proposes a unified algorithm for identification and control. Frequency domain data of the plant
is weighted to satisfy the given performance specifications. A model is then identified from this weighted
frequency domain data and a controller is synthesised using the H1 loopshaping design procedure. The
cost function used in the identification stage essentially minimizes a tight upper bound on the difference
between the achieved and the designed performance in the sense of the H1 loopshaping design paradigm.
Given a model, a method is also suggested to re-adjust model and weighting transfer functions to reduce
further the worst case chordal distance between the weighted true plant and the model. Copyright # 2004
John Wiley & Sons, Ltd.

KEY WORDS: joint identification and control; n-gap metric; identification for control; H1 loopshaping

1. INTRODUCTION

A number of iterative schemes have been proposed over the last few years for model-based
iterative controller redesign. A common feature of these schemes is that iterations are performed
of plant model updates (by identification with the most recent controller applied to the actual
plant) and of model-based controller updates (the controller design being based on the most
recent model). Representative examples of these schemes can be found in [1–4]. In general, there
is no guarantee in these schemes that the succession of designed controllers stabilizes the actual
plant. Some of these schemes are reviewed below.

Experience has shown that stability robustness is enhanced by applying cautious steps of
plant modification and controller modification. Reference [5] uses the n-gap metric [6] and its
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related robust stability results as a tool to justify the need for cautious iterations (i.e. small
controller modifications and, possibly, small plant model adjustments) in iterative identification
and control design. In that paper, it is shown how to use these gap metric results to compute
controller updates that are smaller than what would result from an optimal design based on the
nominal design, and that stability of the actual closed-loop system is guaranteed. These cautious
(or safe) adjustments were recently used in [7] in a reference model-based scheme.

Iterative identification and feedback design has been around in the form of dual
Youla parameterization for a long time. The role of the dual Youla parameterization in
identification for control is highlighted and exploited by several researchers, see e.g. [8–10] and
references therein. The well-known Hansen scheme was modified in [8] in order to estimate the
Youla parameters separately. This modification was motivated by the ultimate objective of
using the identified estimates directly for control design. On the other hand, Kr !oolikowski [11]
proposed an optimal combination of sequential identification and control for a linear bounded-
input bounded-noise discrete-time particular plant. Various configurations of identifying/
controlling sequences were investigated in order to find an optimal tradeoff. The optimal
identifying input sequence was determined by maximization of a given identification accuracy
measure while the control input sequence was derived to assure a good tracking of the control
system.

An integrated identification and controller design approach, based on loopshaping principles,
was presented in [12]. Starting with time-domain input–output data, a coprime factorization of
the plant was identified using linear least-squares techniques. The residual error from the
identification was then used to obtain estimates of the coprime factor uncertainty that were
translated to sensitivity and complementary sensitivity bounds for the closed-loop system. These
bounds were then used as a guide for the selection of a target loop and the controller was
designed using H1-tools. An application on a paper machine simulator was also presented,
illustrating the main ideas of the approach.

The self-tuning frequency-domain loop shaping control problem for stable minimum phase
systems was considered in [13]. The resulting control scheme corresponded to an explicit self-
tuning controller, where identification and control were implemented in the frequency domain,
thereby taking advantage of the properties afforded by frequency domain identification
schemes. The input and output signals to the system were transformed to the frequency domain
via discrete Fourier transforms; subsequently the identification part recursively estimated the
system’s transfer function as a finite impulse response filter. The controller corresponded to a
circular convolver, implemented in the frequency domain, and shapes the open-loop frequency
response by providing the necessary supplement of magnitude and phase in order to match an a
priori closed-loop frequency response.

Iterative solutions to the combined problem of identification and control design were also
proposed in [14,15]. Different techniques were used for identification and control. Each of these
papers demonstrated the applicability of their results through a case example and showed that
the compensator corresponding to the eventual model controls the plant better than ever would
be possible by the best design on an approximate open-loop model. Reference [16] presented an
identification-based mechanism for introducing guaranteed stability when using a data-driven
model-free iterative control design method known as iterative feedback tuning. Also, the use of
unbiased estimates of the Hessian is shown to significantly improve the user control over the
tuning procedure. A method for iterative feedback tuning for a robustness under frequency
domain additive or coprime-factor uncertainty is described in [17].
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Another approach to iterative design and control is through unfalsification of model. In [18],
an asymptotically convergent iterative scheme based on model unfalsification is presented. The
method presented in this paper yields a near-optimal worst-case servo performance under norm
bounded parametric uncertainty. The technique presented in [18] was further developed to
include a variety of robust performance objectives in [19]. An interesting variation of the
unfalsified model based design method is presented in [20]. In this paper, the closed-loop data is
used to identify an unfalsified set of controllers which may have produced that data and which
can achieve a given level of performance. A new controller can then be chosen from this set of
unfalsified controllers to improve upon the measured performance for the present controller.

A detailed survey paper on the progress of control-oriented identification throughout the
1990s with a number of applications in the chemical industry is given in [21].

In the work presented here, the following approach is taken: Given an unknown true plant P0;
the designer wishes to maximize some performance criterion as expressed by a function of plant
and controller, say, JðP0;CÞ: Since P0 is unknown, a model #PP has to be found on the basis of
which a controller can be designed. Since

JðP0;CÞ5JðP;CÞ � jJðP;CÞ � JðP0;CÞj

for any controller C and model P; a promising approach to joint identification and control
design will be to solve

max
P;C

fJðP;CÞ � jJðP;CÞ � JðP0;CÞjg ð1Þ

assuming that this term can be somehow captured in a cost function. An iterative approach is
presented here to solve (1) which involves minimizing a tight bound on the second term and
maximizing the first term. The identification stage in successive iterations does not involve new
experiments. The performance criterion used in this paper is the H1 loopshaping cost and the
corresponding identification criterion is the n-gap metric (as approximated on a finite data). As
will be seen in Section 2, n-gap does capture the difference in closed-loop performance from H1

loopshaping point of view. The algorithm presented here is numerically tractable and may easily
be implemented in MATLAB or similar commercial software. It can be used to design model-
based controllers for multivariable and unstable plants, even for those with a poles on the
imaginary axis. This will be demonstrated through a simulation example later.

Parts of this work have been presented in [22]. The identification algorithm used in this paper
was first proposed in [23]. This algorithm minimizes an upper bound on the (pointwise)
mismatch between the designed and achieved performance for anyz controller within a set of
controllers. The weight optimization stage uses a convex optimization-based procedure, first
proposed in [24], to synthesize weights and a controller that maximize the H1 loopshaping
performance criterion. Note that in H1 loopshaping, the synthesized weights end up with a
part of the implementable controller. Further, a new method of model and weight re-adjustment
to minimize the relevant identification cost is presented here.

The rest of the paper is organized as follows. Section 1.1 introduces the notation used.
Section 2 introduces the H1 loopshaping design procedure and its relation with the n-gap
metric. Section 3 outlines the new algorithm and Section 4 demonstrates it with a simulation
example.

zAlthough the controller does not explicitly appear in the identification problem, its general behaviour is however still
captured through the associated weights.
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1.1. Notation

C and R represent real and complex numbers respectively. Cþ denote the open right half plane,
Cþ :¼ fs 2 C : reðsÞ > 0g: Rm�n denotes the space of all real rational transfer functions with n
inputs and m outputs. The superscript m� n is dropped whenever the dimension of transfer
matrix is irrelevant. L1 denotes the normed space of all functions essentially bounded on jR
and having norm jjf jjL1

:¼ ess supo %ssðf ð joÞÞ:H1 denotes the subspace of functions inL1 that
are analytic and bounded in Cþ: RL1 (RH1) represents the subspace of real rational transfer
functions in L1 (H1). For P 2 R; P�ðsÞ :¼ PTð�sÞ:

P ¼ ND�1 ð¼ *DD�1 *NNÞ is called a normalized right (left) coprime factorization of plant P 2 R
if N; D are right coprime ( *DD; *NN are left coprime) and NnN þDnD ¼ I ( *NN *NNn þ *DD *DDn ¼ I).
Gi :¼ ½NT

i D
T
i �

T and *GiGi :¼ ½� *DiDi
*NiNi� are, respectively, called the normalized right and normalized

left graph symbols of plant Pi:

2. H1 LOOPSHAPING AND THE n-GAP METRIC

H1 loopshaping combines the traditional loopshaping wisdom with robust stabilization of
normalized coprime factors. Given a model P of a plant, a pre-compensator W1 and a post-
compensator W2 are selected so that Ps :¼ W2PW1 has the desired loopshape. The loopshape is
determined from the closed-loop performance specifications. Typically, this means choosing
weights W1 and W2 such that

%
sðPsÞð joÞc1 over some low frequency range, %ssðPsÞ{1 over some

high frequency range and siðPsÞ have a moderate roll off rate around crossover frequency.
Unlike classical loopshaping, the designer need not shape phase explicitly. Following [24], the
loopshaping constraints considered here are

aðoÞ5siðPsð joÞÞ5bðoÞ 8o 2 O and 8i ð2Þ

where a and b are non-negative, real scalar functions and O ¼ fo1;o2; . . . ;omg specifies a set (or
a grid) of frequencies of interest. a and b may be chosen by translating time domain
performance specifications (e.g. relating to servo performance) into frequency domain
specifications (in terms of low frequency gain, high frequency roll-off and 0 dB bandwidth).
The loopshaping weights W1 and W2 are often selected to be diagonal, stable and inversely
stable transfer matrices. It is not always easy to see how the weights affect the singular values of
Ps and hence often the designer has to rely on a process of trial and error to arrive at satisfactory
weighting transfer functions. Following an algorithm proposed in [24], a method is suggested in
Section 3.2 for selection of weights which alleviates these difficulties.

In H1 loopshaping, the performance measure chosen for synthesizing a controller C
stabilizing Ps is

bðPs;CÞ ¼ jjHðPs;CÞjj
�1
1 ð3Þ

where the closed-loop transfer function HðPs;CÞ is defined by

HðPs;CÞ ¼
Ps

I

" #
ðI � CPsÞ

�1 �C I
� �

ð4Þ

bðPs;CÞ represents the robustness of the closed-loop against bounded perturbations of
normalized coprime factors of the shaped plant Ps and is also called the generalized robust
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stability margin. The best achievable generalized robust stability margin is defined by

boptðPsÞ :¼ max
C stabilising

bðPs;CÞ

and can be explicitly computed [25]. The same reference also provides a characterization of
all controllers C achieving bðPs;CÞ5boptðPsÞ: boptðPsÞ is an indicator of success of the
loopshaping design stage; a large (resp. small) boptðPsÞ indicates compatibility (resp.
incompatibility) between the designed loopshape and robust stability. As a rule of thumb,
bðPs;CÞ > 0:3 would be considered adequate in most cases. The final controller is given by
re-aligning weights with the controller; Cs ¼ W1CW2: Besides robust stability, another
motivation for the use of bðPs;CÞ as a performance measure comes from the fact that the size
of each of the four closed-loop transfer matrices in HðP;CsÞ can be bounded from above at each
frequency o in terms of bðPs;CÞ; %ssðPsÞð joÞ;

%
sðPsÞð joÞ and the condition numbers of

W1ð joÞ;W2ð joÞ: More details on H1 loopshaping may be found in [26]. A generalization
of H1 loopshaping procedure through introduction of scalar parameter is discussed in [27].
H1 loopshaping has been used successfully in a variety of applications; see [28] and references
therein.

A metric called n-gap metric was suggested in [6] as a natural dual to bðPs;CÞ: The n-gap
between two plants P1;P2 2 R can be defined as

dnðP1;P2Þ ¼ inf
Q;Q�12L1

jjG1 � G2Qjj1 if IðP1;P2Þ ¼ 0

¼ 1 otherwise ð5Þ

where IðP1;P2Þ :¼ wno detðGn
2G1Þ ¼ wno detð *GG1

*GGn
2Þ and wno ðgÞ denotes the winding number of

gðsÞ evaluated on the standard Nyquist contour indented to the right around any poles on jR:
For a real rational transfer matrix X such that X ;X�1 2 RL1; winding number wno detðXÞ
is the excess of number of zeros of X in Cþ over the number of poles of X in Cþ: When
IðP1;P2Þ ¼ 0; dnðP1;P2Þ equals L2-gap, defined by

dL2
ðP1;P2Þ :¼ jj *GG2G1jj1 ¼ sup

o
kðP1;P2Þ ð6Þ

where kðP1;P2Þð joÞ is the pointwise chordal distance,

kðP1;P2Þð joÞ :¼ %ssððI þ P2P
n

2Þ
�1
2ðP2 � P1ÞðI þ Pn

1P1Þ
�1
2Þð joÞ

It is known that [6] any controller stabilizing P1 and achieving bðP1;CÞ > a stabilizes the plant
set

fP2 : dnðP1;P2Þ4ag

More importantly, dnðP1;P2Þ is a measure of the ‘closeness’ of the closed-loop performance of
P1 and P2 for any stabilizing controller. The following result can be easily derived from the
proof of Theorem 3.8 in [29]:

Lemma 1

Suppose a controller C stabilizes a given pair of plants P1;P2: Then

1

%ssðHðP1;CÞÞð joÞ
5

1

%ssðHðP2;CÞÞð joÞ
� kðP1;P2Þð joÞ ð7Þ
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From (3)–(7), it follows that any controller C that stabilizes P2 with a good bðP2;CÞ also
stabilizes P1; without any significant deterioration in performance (in terms of bðP1;CÞ), provided
dnðP1;P2Þ is small.

To pose a control-oriented identification problem with finite data, some relevant
quantities need to be defined. As a posteriori information in the identification process,
suppose that a block matrix of (not necessarily uniformly spaced) frequency response
samples of the true plant P0ðsÞ 2 Rp�n at measurement frequencies oi; i ¼ 1; 2; . . . ;m is
given:

PO :¼ ½P0ð jo1Þ P0ð jo2Þ . . . P0ð jomÞ� ð8Þ

It is implicitly assumed here that some qualitative a priori information is available about the
plant to decide a sensible grid of frequencies. Care has to be taken not to miss significant
dynamics e.g. pairs of resonant poles not too far from each other; flexible structures often
display such dynamics.

Next, define

dOðP1;P2Þ :¼ max
i2½1;m�

kðP1;P2Þð joiÞ if IðP1;P2Þ ¼ 0

¼ 1 otherwise: ð9Þ

Finally, for any model P1 and a controller C stabilizing both the plant P0 and model P1; define a
performance measure over finite frequency set,

bOðPk;CÞ :¼ max
i2½1;m�

%ssðHðPk;CÞÞð joiÞ
� ��1

; k ¼ 0; 1 ð10Þ

Then from (7), it is easy to show that

bOðP0;CÞ5bOðP1;CÞ � dOðP0;P1Þ ð11Þ

holds, where dOðP0;P1Þ is as defined in (9).

3. A UNIFIED ALGORITHM FOR IDENTIFICATION AND H1 LOOPSHAPING
CONTROL

3.1. Outline of the algorithm

From (11), a sensible}although intractable}joint identification and control problem fromH1

loopshaping point of view would be

max
C;W1;W2; #PP

bOð #PP;CÞ � dOðW2P0W1; #PPÞ ð12Þ

where the weighting transfer function matrices W1;W2 and the model #PP are constrained to
appropriate sets, C belongs to the set of controllers stabilizing #PP and W2P0W1ð joÞ satisfies the
loopshaping constraints (2). Comparing with (1), note that the second term in (12) is
independent of controller (although the controller C does not explicitly appear in (12),
the general behaviour of the implementable controller Cs ¼ W1CW2 is however still
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captured through the weights.). Expression (12) gives a lower bound on pointwise version of
generalized robust stability margin for the true plant; bOðW2P0W1;CÞ: This lower bound is
tight in a certain sense; see [6] for details. Note that the choice of n-gap-like cost for
identification is a logical result ofH1 loopshaping cost as the choice of control design criterion.
Outside the loopshaping design context, the identification algorithm presented still makes sense
as a numerical tractable method to develop black-box models of unstable multivariable plants
from frequency response data. However, in the light of (1), one expects that different
identification schemes would be appropriate for different control design objectives.

Here, an algorithm which minimizes a cost similar to (12) is outlined. Details of its numerical
implementation are discussed in the subsequent sections.

Given: PO as in (8) and the loopshaping specifications (2).

1. Initial Weight Synthesis: Find some stable, minimum phase diagonal weighting transfer
matrices W1;0;W2;0 such that the ‘shaped’ frequency response samples W2;0P0W1;0ð joiÞ
satisfy the loopshaping specifications (2) for all oi; i 2 ½1;m�:

2. Identification: Solve

min
P2S

dOðW2;0P0W1;0;PÞ ð13Þ

where S is an appropriate model set. Let l1 be the achieved minimum cost and let #PP1 2 S
be any model which achieves it.

3. Weight and Model Re-adjustment: Given #PP1; solve

min
W12W1

W22W2

max
i

kðW2P0W1;�ðW�1
1

%PP�W�1
2 Þ�Þð joiÞ ð14Þ

subject to (2) being satisfied. Here %PP ¼ �ðW1;0
#PP�
1 W2;0Þ

� and W1;W2 are appropriate model
sets such that W1;0 2 W1;W2;0 2 W2: Let W2;1;W1;1 be the weights obtained on solving (14) and
let l2 be the achieved minimum cost.

4. Robust Stabilization: Find the controller C which achieves bð #PP2;CÞ ¼ boptð #PP2Þ: Here, #PP2 ¼
�ðW�1

1;1
%PP�W�1

2;1 Þ
�: The final controller is given by Cs ¼ W1;1CW2;1:

5. If l2{bð #PP2;CÞ; then the plant model and the controller are considered adequate.
Otherwise, go to Step 2 for further iterations.

Note that Steps 3 and 4 together form the controller design stage, as the weights form an
integral part of the implementable controller Cs: The rationale behind (14) will be clear later
from Lemma 2 and discussion in Section 3.4. Compared with (12), it may be seen that the step
4 above maximizes the first term (over the set of stabilizing controllers for the model) and steps
1–3 approximately minimize the second term (over the set of models and the sets of weight-
ing transfer functions).

Assuming that global minimum exists (and is found) for each of the optimization problems
(13)–(14), a nice property of the above algorithm is non-increasing cost:

Lemma 2

Let l1 and l2 be the achieved cost in the optimizations (13) and (14), respectively. Then

l24l1
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Proof

Since, W1;0 2 W1;W2;0 2 W2;

l2 ¼ min
W12W1

W22W2

max
i

kðW2P0W1;�ðW�1
1

%PP�W�1
2 Þ�Þð joiÞ

4 max
i

kðW2;0P0W1;0;�ðW�1
1;0

%PP�W�1
2;0 Þ

�Þð joiÞ

¼ max
i

kðW2;0P0W1;0; #PP1Þð joiÞ ¼ l1

where the last step uses %PP ¼ �ðW1;0
#PP�
1 W2;0Þ

�: &

If l1 is deemed sufficiently small, step 3 is not required. On the other hand, if l2 is deemed to
be too large at the end of step 3, it is possible to iterate through steps 2 and 3 till the cost
becomes sufficiently small. Similarly, if boptð #PP2Þ is too small for the final model #PP2; it may be
necessary to relax the loopshaping specifications and return to step 1 again. Simulation
experience indicates that more than two iterations are rarely required.

Note that the controller design and model identification stages in the above procedure are
interleaved, since the weights form part of the final controller Cs: Step 4 of this procedure is
standard and is described in many robust control textbooks, e.g. [30]. The choice of model sets
and numerical implementation in the first three steps is described in the subsequent sections.

3.2. Initial weight synthesis

Given a true plant P0; a controller Cinit stabilizing P0 and any stable minimum phase transfer
functions W1 and W2; recall that

HðP0;CinitÞ 2 H1 , HðW2P0W1;W
�1
1 CinitW

�1
2 Þ 2 H1

In the weight optimization procedure of [24], the aim is to find stable, minimum phase weights
W1 and W2 such that

1. bOðW2P0W1;W�1
1 CinitW

�1
2 Þ is maximized and

2. the ‘shaped’ plant PsðsÞ :¼ ðW2P0W1ÞðsÞ satisfies the loopshaping specifications (2).

An outline of the procedure for weight synthesis from Reference [24] is given here.

1. Let Gq denote the set of real diagonal q� q matrices. For ease of notation, let Poi
¼

P0ð joiÞ 2 C
p�q and let Coi

¼ Cinitð joiÞ: Without loss of generality, it is assumed that p5q:
The case when p5q can be handled using a dual problem; see [24]. Given PO as in (8) and
the loopshaping constraints (2), solve the following quasi-convex optimization problem at
each frequency oi; i ¼ 1; 2; . . . ;m:

inf
Xi2Gq;Yi2Gp

gi ð15Þ
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subject to

0 Poi

0 I

" #n
Xi 0

0 Yi

" #
0 Poi

0 I

" #

5 gi
I Poi

Coi
I

" #n
Xi 0

0 Yi

" #
I Poi

Coi
I

" #
ð16Þ

a2ðoiÞYi5Pn

oi
XiPoi

5b2ðoiÞYi ð17Þ

Xi > 0;Yi > 0 ð18Þ

Let #XXi; #YYi i ¼ 1; 2; . . . ;m be the solutions of the pointwise optimization problems (15)–(18) and
let #ggi be the optimum cost at each i: Let #gg ¼ maxi #ggi:

2. Construct diagonal transfer function matrices W1;0ðsÞ; W2;0ðsÞ that are units in RH1 by
fitting minimum phase stable transfer function to each magnitude function on the diagonal

of #YY
�1=2
i and #XX

�1=2
i ; respectively.

If W1;0 and W2;0 interpolate #YY
�1=2
i and #XX

�1=2
i exactly, it can be easily shown that (17) is

equivalent to

aðoiÞ5skððW2;0P0W1;0Þð joiÞÞ5bðoiÞ 8i 2 ½1;m� 8k 2 ½1; q�

and (16) is equivalent to

%ssðHðW2;0P0W1;0;W
�1
1;0CinitW

�1
2;0 ÞÞð joiÞ5

ffiffiffiffi
gi

p
8i 2 ½1;m� ð19Þ

Proof of this fact may be found in [24]. In practice, an approximate, low order fit
to #YY

�1=2
i and #XX

�1=2
i should still ensure that Ps ¼ W2;0P0W1;0 adheres to the loopshaping

specifications. While approximating #YY
�1=2
i and #XX

�1=2
i ; it must be kept in mind that Psð joÞ

should have a moderate roll-off rate around crossover frequency.
It is possible to include additional constraints on optimization (15) for better numeric

conditioning of Xi; Yi; see [24] for details.

3.3. Identification in the n-gap metric

A method for identification in n-gap metric was presented in [23]. An outline of the same is given
here. SISO case is discussed here for simplicity; extension to MIMO case is straightforward. Let
Sn denote the set of finite impulse response (FIR) models of degree less than n: Define a
candidate model set for approximation of coprime factors

S1;2 ¼ ff : f ¼ ½f1 f2�T; f1 2 Sn1 ; f2 2 Sn2g

Lastly, let Rn denote the set of real rational transfer functions of order less than n:

1. Let omax ¼ maxi oi: Take os ¼ 2p=Ts > 2omax
} and let

e jyi ¼
1þ joiTs=2

1� joiTs=2

}os should not be too large as compared to omax as this may place the poles and zeros of model too close to each other
and may cause numerical difficulties in optimization.
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Let Ps;oi
¼ W2;0ð joiÞPoi

W1;0ð joiÞ and define Fi ¼
Ps;oi ð1þPn

s;oi
Ps;oi Þ

�1=2

ð1þPn
s;oi

Ps;oi Þ
�1=2

� �
:Here, W1;0ðsÞ and

W2;0ðsÞ are stable, minimum phase weights obtained using the algorithm described in Sect-
ion 3.2.

2. Solve L2-gap approximation problem:

min
P2Rn

max
i

kðW2;0P0W1;0;PÞðe jyi Þ

¼ min
f 2S1;2

max
i

inf
Qi

%ssðFi � f ðe jyi ÞQiÞ ð20Þ

Note that, for a fixed #QQi 2 C; i ¼ 1; � � � ;m;

min
f 2S1;2

max
i

%ssðFi � f ðe jyi Þ #QQiÞ ð21Þ

is an LMI optimization in parameters of f : On the other hand, for a fixed #ff 2 S1;2; at
each yi;

inf
Qi

%ss Fi � #ff ðe jyi ÞQi

� 	
ð22Þ

is a linear least squares problem in Qi 2 C and has a (pointwise) closed-form solution.
Using these facts, (20) may be solved iteratively in f and Qi and the cost is non-increasing
through iterations; see [23] for details.

3. Let #ff ¼ ½f1 f2�T be the result of L2-gap approximation. Then the discrete time model is
given by #PPd ¼ f1f

�1
2 : Note that Q does not appear in #PPd : Hence it is not parameterized and

is evaluated only pointwise in (22). The continuous time model is obtained by bilinear
transformation:

#PPx ¼ #PPd
1þ sTs=2

1� sTs=2


 �

4. The procedure for approximation does not guarantee that the true ‘shaped’ plant and the
model will satisfy the winding number condition, i.e. a controller stabilizing the shaped
plant with an adequate stability margin may still fail to stabilize #PPx: A model #PP1 such that
IðW2;0P0W1;0; #PP1Þ ¼ 0 can be obtained from #PPx and any controller Cx stabilizing the
shaped plant by a procedure described in [23]. Note that this procedure is not specific to the
identification algorithm described so far; it may be used even if a model #PPx obtained by any
other identification method is de-stabilized by a controller that stabilizes the true plant. If
the true plant and #PPx are both stable or are both stabilized by the same controller, this
procedure is not required and #PP1 ¼ #PPx: See [23] for details of this procedure.

At the end of this identification procedure described above, a model #PP1 is obtained which is a
suboptimal solution to

inf
P2R

dOðW2;0P0W1;0;PÞ ð23Þ

It is instructive to compare this with (13).
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3.4. Weight and model re-adjustment

In Step 3 of our proposed algorithm (i.e. optimization problem (14)), the weights and the plant
model are adjusted simultaneously to reduce cost dOðW2P0W1;PÞ further, with the adjusted
weights still satisfying loopshaping constraints (2). Let #PP1 be the model and W1;0; W2;0 be the
weights obtained at the end of the 2nd step of the algorithm in Section 3.1. The solution to (14)
rests on the following lemma, which tells us exactly how to use the weight optimization
procedure discussed in the previous subsection to solve the chordal distance optimization given
in (14).

Lemma 3

Given %PP ¼ �ðW1;0
#PP�
1 W2;0Þ

� and frequency response samples P0ð joiÞ; suppose W1;1 2 W1 and
W2;1 2 W2 is any pair of diagonal transfer function matrices which is solution to

min
W12;W1

W22;W2

max
i

kðW2P0W1;�ðW�1
1

%PP�W�1
2 Þ�Þð joiÞ ð24Þ

subject to (2) being satisfied. Then W1;1 and W2;1 also solve

min
W12;W1

W22;W2

max
i

%ssðHðW2P0W1;W
�1
1

%PP�W�1
2 ÞÞð joiÞ ð25Þ

subject to (2) being satisfied. Here HðP;CÞ is as defined in (4).

Proof

The proof follows from the following relation from Reference [29]: Given P;C at any
frequency o;

1

%ssðHðP;CÞÞð joÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkðP;�C�Þð joÞÞ2

q
&

Let Coi
¼ %PP�ð joiÞ ¼ �ðW1;0

#PP�
1 W2;0Þð joiÞ: Consider the following problem at each

frequency oi; i ¼ 1; 2; . . . ;m:

inf
Xi2Gq;Yi2Gp

gi ð26Þ

subject to

0 Poi

0 I

" #n
Xi 0

0 Yi

" #
0 Poi

0 I

" #

5 gi
I Poi

Coi
I

" #n
Xi 0

0 Yi

" #
I Poi

Coi
I

" #
ð27Þ

a2ðoiÞYi5Pn

oi
XiPoi

5b2ðoiÞYi ð28Þ

Xi > 0;Yi > 0 ð29Þ
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Similar to (19), (27) can be shown to be equivalent to the constraint

%ssðHðW2P0W1;W
�1
1

%PP�W�1
2 ÞÞð joiÞ5

ffiffiffiffi
gi

p
8i 2 ½1;m�

with Xi ¼ Wn
2W2ð joiÞ; Yi ¼ W�1

1 W
�*
1 ð joiÞ: Thus optimization (26) subject to constraints (27)–

(29) is simultaneously affine in W�1
1 W

�*
1 ð joiÞ and Wn

2W2ð joiÞ: Hence (26) may be solved as an
LMI optimization problem in Xi;Yi at each oi and then minimum phase stable diagonal weights
could be fitted to X

1=2
i ; Y

�1=2
i ; as in Section 3.2. Alternatively, the matrix functions W�1

1 W
�*
1

and Wn
2W2 may be affinely parameterized such that the parameterization includes W�1

1;0W
�*
1;0

and Wn
2;0W2;0: This would ensure a non-increasing cost from (13) to (14), as stated in

Lemma 2.
Let W1;1 and W2;1 be the weights obtained by this procedure. Then W1;1 and W2;1 also solve

(24), as mentioned in Lemma 3. The final model is given by #PP2 ¼ �ðW�1
1;1

%PP�W�1
2;1 Þ

�: Note that,
in this step, both the weights and the model are adjusted to reduce the worst case chordal
distance between the weighted plant and the model, while the changed weights are such that the
weighted plant still satisfies (2). The fact that the worst case chordal distance is further reduced
(or at least not increased) in this step follows from Lemma 2.

If dOðW2;1P0W1;1; #PP2Þ is still deemed too large, the next logical step would be to
minimize

min
P2S

dOðW2;1P0W1;1;PÞ ð30Þ

using the procedure outlined in Section 3.3. Provided #PP2 2 S; solution of (30) will not increase
worst case chordal distance. Further iterations of steps 2 and 3 of the procedure in Section 3.1
are possible, though simulation experience indicates that any iterations beyond (30) will be
rarely required.

3.5. Effect of noise

So far in this discussion, noise-free frequency response samples of the true plant P0 are assumed
to be available. In practice, it is far more likely that noisy frequency response samples will be
available as a result of an identification experiment. In this case, the procedure outlined above
may be carried out using the noisy samples. Suppose, Pn;oi

represents a noisy frequency response
sample at frequency oi: Let #PP be the model and W1;1;W2;1 be the weights obtained using the
procedure detailed above (with P0ðoiÞ replaced with Pn;oi

) and let C be the designed controller.
Then it is easy to show that

bOðW2;1P0W1;1;CÞ5bOð #PP;CÞ � kðW2;1ð joiÞPn;oi
W1;1ð joiÞ; #PPð joiÞÞ � e

where e ¼ kððW2;1P0W1;1Þð joiÞ;W2;1ð joiÞPn;oi
W1;1ð joiÞÞ

The term kðW2;1ð joiÞPn;oi
W1;1ð joiÞ; #PPð joiÞÞ may be minimized using the algorithm in Section

3.1. The size of e needs to be controlled at identification experiment stage. If e is small (or
equivalently, the effect of noise around the crossover frequencies of the shaped plant is small),
the possible deterioration of robustness margin due to noise is small.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:629–644

P. DATE AND A. LANZON640



4. SIMULATION EXAMPLE

Consider an unstable continuous time plant

P0ðsÞ ¼

1

sþ 2

1

s

1

s� 1

3

s2 þ sþ 1

2
664

3
775

Frequency response samples (matrices) of this plant at 50 frequencies, logarithmically spaced
between 0.1 and 100 rad=s are used for estimation and weight selection. For choosing weights,
the loopshaping specifications (2) were

skðPsð joiÞÞ510 8oi40:3 rad=s; k ¼ 1; 2

skðPsð joiÞÞ40:1 8oi530 rad=s; k ¼ 1; 2

Given an initial stabilizing controller, weights W1;1 of degree 4; W2;1 of degree 6 and a model
#PP2 of order 9 is obtained using the first 3 steps of the algorithm in Section 3.1. MATLAB’s LMI
toolbox is used for identification step and its fitmag command is used for fitting weighting
transfer functions. This yields maxi kðW2;1P0W1;1; #PPÞð joiÞ ¼ 0:0550: Then (30) is solved to
obtain a model #PP3 of order 9 which yields a further reduction in worst case chordal distance.
The final maxi kðW2;1P0W1;1; #PP3Þð joiÞ ¼ 0:0464 and dnðW2;1P0W1;1; #PP3Þ ¼ 0:0476: Also,
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Figure 1. Singular value plots}true plant and loopshaping specifications.
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boptð #PP3Þ ¼ 0:292 and the controller Cfinal which achieves boptð #PP3Þ yields bðW2;1P0W1;1;CfinalÞ ¼
0:248:

In Figure 1, the singular values of unshaped (original plant) are shown by dotted line, the
loopshaping specifications are shown by dashed line while the achieved loopshape is shown
by solid line. In Figure 2, the singular values of shaped plant are shown by solid line and
the singular values of the model are shown by dashed line. It is seen that the minimization of
worst case chordal distance in the identification step automatically yields a good fit around
cross-over frequencies of singular values while (possibly) sacrificing accuracy of fit around very
high and very low gains. This is a direct result of the definition of chordal distance stated in
Section 3.3.

The n-gap metric identification step in the proposed procedure is somewhat time-consuming
and converges slowly. However, this step is reasonably structured, automated and requires little
manual input. Furthermore, since this identification is assumed to be offline, time required for
computation should not be a huge problem. The important contribution of this algorithm is that
it automates black-box modelling and control design for multivariable and possibly unstable
plants, including those with poles on the imaginary axis. It is also worth mentioning here that a
good worst case chordal distance fit is not necessarily reflected in a convergence of the parameter
values in parameterized multivariable systems. Hence, simply checking whether the parameter
values converged does not make much sense. Since these numbers throw no extra light on the
procedure, they are omitted here for clarity.
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Figure 2. Singular value plots}weighted plant and model.
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5. CONCLUSION

A structured algorithm for identification and control using H1 loopshaping is presented. The
implementation of the final controller design stage in the algorithm is available in commercial
software. The earlier steps of weight synthesis, identification and weight/model adjustment are
based on LMI optimization and can as such be implemented easily using any LMI solver. A
simulation example demonstrates the use of this algorithm. It is believed that this algorithm has
a potential to reduce substantially the time normally required to identify a model from data and
then to synthesise a controller which yields satisfactory closed-loop performance with the true
system.
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