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FLEXIBLE STRUCTURES WITH 
COLOCATED ACTUATORS AND SENSORS 

IAN R. PETERSEN and 
ALEXANDER LANZON

H
ighly resonant dynamics can severely degrade the performance of technologi-

cal systems. Structural modes in machines and robots, ground and aerospace 

vehicles, and precision instrumentation, such as atomic force microscopes and 

optical systems, can limit the ability of control systems to achieve the desired 

performance. Consequently, control systems must be designed to suppress the ef-

fects of these dynamics, or at least avoid exciting them beyond open-loop levels. Open-loop 

techniques for highly resonant systems, such as input shaping [1], as well as closed-loop 

techniques, such as damping augmentation [2], [3], can be used for this purpose.

Feedback Control of 
Negative-Imaginary Systems
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Structural dynamics are often difficult to model with 

high precision due to sensitivity to boundary conditions as 

well as aging and environmental effects. Therefore, active 

damping augmentation to counteract the effects of external 

commands and disturbances must account for parametric 

uncertainty and unmodeled dynamics. This problem is 

simplified to some extent by using force actuators com-

bined with colocated measurements of velocity, position, or 

acceleration, where colocated refers to the fact that the sen-

sors and actuators have the same location and the same 

direction. Colocated control with velocity measurements, 

called negative-velocity feedback, can be used to directly 

increase the effective damping, thereby facilitating the 

design of controllers that guarantee closed-loop stability in 

the presence of plant parameter variations and unmodeled 

dynamics [1], [4]. This guaranteed stability property can be 

established by using results on passive systems [5], [6]. 

However, the theoretical properties of negative-velocity 

feedback are based on the idealized assumption of coloca-

tion and require the availability of velocity sensors, which 

may be expensive. Also, the choice of measured variable 

may depend on whether the desired objective is shape con-

trol or damping augmentation. 

An alternative approach to negative-velocity feedback 

is positive-position feedback, where position sensors are 

used in place of velocity sensors. Although position sen-

sors can facilitate the objective of shape control, it is less 

obvious how they can be used for damping augmentation. 

Nevertheless, it is shown in [7] and [8] that a positive- 

position feedback controller can be designed to increase 

the damping of the modes of a flexible structure. Further-

more, this controller is robust against uncertainty in the 

modal frequencies as well as unmodeled plant dynamics. 

As shown in [7]–[10], the robustness properties of posi-

tive-position feedback are similar to those of negative- 

velocity feedback. 

This article investigates the robustness of positive-posi-

tion feedback control of flexible structures with colocated 

force actuators and position sensors. In particular, the 

theory of negative-imaginary systems [9], [10] is used to 

reveal the robustness properties of multi-input, multi-out-

put (MIMO) positive-position feedback  controllers and 

 related types of controllers for flexible structures [1], [11]–

[14]. The negative-imaginary property of linear systems 

can be extended to nonlinear systems through the notion of 

counterclockwise input-output dynamics [15], [16]. It is 

shown in [17] for the single-input, single-output (SISO) 

linear case that the results of [15] and [16] guarantee the 

stability of a positive-position feedback control system in 

the presence of unmodeled dynamics and parameter un-

certainties that maintain the negative-imaginary property 

of the plant. 

Positive-position feedback can be regarded as one of the 

last areas of classical control theory to be encompassed by 

modern control theory. In this article, positive-position 

feedback, negative-imaginary systems, and related control 

methodologies are brought together with the underlying 

systems theory. 

Table 1 summarizes notation used in this article, while 

Table 2 lists acronyms. 

FLEXIBLE STRUCTURE MODELING
In modeling an undamped flexible structure with a single 

actuator and a single sensor, modal analysis can be applied 

to the relevant partial differential equation [18], leading to 

the transfer function 

P (s ) 5 a
`

i51

f i(s)

s2 1 v i
2

, (1)

where each v i . 0 is a modal frequency, the functions fi(s)

are first-order polynomials, and v i 2 v j for i 2 j. In the 

case of a structure with a force actuator and colocated 

velocity sensor, the form of the numerator of (1) is deter-

mined by the passive nature of the flexible structure. Since 

the product u( t )y ( t )  of the force actuator input u( t )  and 

the velocity sensor output y ( t )  represents the power pro-

vided by the actuator to the structure at time t, conserva-

tion of energy implies 

E (t ) # E (0) 1 3
t

0

u(t )y (t )dt (2)

TABLE 1 Notation.

Ap Complex conjugate transpose of the complex 

matrix A.

AT Transpose of the matrix A.

A + 0 The matrix A is positive definite.

A # 0 The matrix A is positive semidefinite.

R[s] Real part of the complex number s.

I[s] Imaginary part of the complex number s.
IH[A] Hermitian-imaginary part 2

1
2

 j [A–Ap].

lmax(A) Maximum eigenvalue of the matrix A whose 

eigenvalues are all real.

smax(A) Maximum singular value of the matrix A.

CRHP Closed right half of the complex plane.

ORHP Open right half of the complex plane.

CLHP Closed left half of the complex plane.

OLHP Open left half of the complex plane.

TABLE 2 List of Acronyms.

SISO Single-input, single-output 

MIMO Multi-input, multi-output 

NI Negative-imaginary 

SNI Strictly negative-imaginary 

LMI Linear matrix inequality 

RLC Resistor, inductor, capacitor
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for all t $ 0, where E ( t ) $ 0 represents the energy stored 

in the system at time t, and E (0)  represents the initial 

energy stored in the system. In this case, the variables u( t )  

and y ( t )  are dual. The passivity condition (2) implies that 

the transfer function P (s )  is positive real according to the 

following definition [5]. 

Definition 1 [19], [20]

The square transfer function matrix P (s )  is positive real if 
the following conditions are satisfied: 

All of the poles of 1) P (s )  lie in the closed left half of the 

complex plane (CLHP). 

For all 2) s in the open right half of the complex plane 

(ORHP), 

 P (s ) 1 P* (s ) $ 0. (3)

If P (s )  is positive real, then it follows that [19], [20] 

 P ( jv) 1 P* ( jv) $ 0 (4)

for all v [ R such that s 5 jv is not a pole of P (s ) . If P (s )  is 

a SISO transfer function, then, for all v [ R such that s 5 jv 

is neither a pole nor a zero of P (s ) , (4) is equivalent to the 

phase condition /P ( jv )[ C2 p/2, p/2D.
Definition 2 [19]

The nonzero square transfer function matrix P (s )  is strictly 
positive real if there exists e . 0 such that the transfer func-

tion matrix P (s2 e )  is positive real. 

If P (s )  is strictly positive real, then it follows [19] that all 

of the poles of P (s )  lie in the open left half of the complex 

plane (OLHP) and 

 P ( jv ) 1 P* ( jv ) . 0 (5)

for all v [ R. If P(s) is a SISO transfer function, then (5) 

holds for all v [ R such that s 5 jv is neither a pole nor a 

zero of P (s )  if and only if the phase condition /P ( jv)[

(2p/2, p/2) holds for all v [ R such that s 5 jv is neither a 

pole nor a zero of P (s ) .

Now consider the positive-real transfer function from 

force actuation to velocity measurement given by 

 P (s ) 5 a  
`

i51

c i
2s

s2 1 kis 1 v i
2
 ,   (6)

where, for all i, ki . 0 is the viscous damping constant 

associated with the ith mode and v i . 0. The transfer 

function (6) satisfies the phase condition /P (jv)  

[ (2p/2, p/2) for all v . 0. However, (6) has a zero at the 

origin, and thus (5) is not satisfied for v 5 0. Hence, (6) is 

not strictly positive real.

Now consider a lightly damped flexible structure with 

m colocated sensor and actuator pairs. Let u1 ( t), c, um(t)  

denote the force actuator input signals, and let 

y1 (t) , c, ym(t)  denote the corresponding velocity sensor 

output signals. The actuator and sensor in the ith colocated 

actuator and sensor pair are dual when the product 

ui( t )yi( t )  is equal to the power provided to the structure 

by the ith actuator at time t. Now, we let 

 Y (s ) 5 P (s )U (s ) , 

where 

 U (s ) 5 £ U1 (s )

(
Um(s )

§ ,   Y (s) 5 £ Y1 (s )

(
Ym(s )

§ .

For i 5 1, 2, c, m, Ui(s )  and Yi(s )  are the Laplace trans-

forms of ui( t )  and yi( t ) , respectively, and P (s )  is the trans-

fer function matrix of the system. Then P (s )  is positive real 

and has the form 

 P (s ) 5 a
`

i51

 
s

s2 1 kis 1 v i
2

ci ci
T,  (7)

where, for all i, ki . 0, v i . 0, and ci is an m 3 1 vector. A 

review of positive-real and passivity theory is given in 

“What Is Positive-Real and Passivity Theory?” 

NEGATIVE-IMAGINARY SYSTEMS
Mechanical structures with colocated force actuators and 

position sensors do not yield positive-real systems 

because the product of force and position is not equal to 

the power provided by the actuator [9], [10]. In this case, 

the transfer function matrix from the force actuator inputs 

u1 ( t ) , c, um( t )  to the position sensor outputs 

y1 ( t ) , c, ym( t )  is of the form 

 P (s ) 5 a
`

i51

 
1

s2 1 kis 1 v i
2
 ci ci

T,  (8)

where, for all i, ki . 0, v i . 0, and ci is an m 3 1 vector. 

Therefore, the Hermitian-imaginary part 

This article investigates the robustness of positive-position feedback control 

of flexible structures with colocated force actuators and position sensors.
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  SISO positive-real transfer function has a positive real part 

at all frequencies; a typical frequency response is depicted 

in Figure S1. The passivity theorem, which underpins much of 

the robust and adaptive control literature [S1], concerns the inter-

nal stability of the negative-feedback interconnection, as shown 

in Figure S2, of two positive-real transfer function matrices.

DEFINITION S1 [S2]

The feedback interconnection of two systems with transfer 

function matrices M (s) and N (s) as shown in Figure S2 is inter-

nally stable if the interconnection does not contain an algebraic 

loop and the transfer function matrix from exogenous signals to 

internal signals has no poles in CRHP.

The following result is the passivity theorem [5], [6, Sec. 6.5].

THEOREM S1

The negative-feedback interconnection of the positive-real 

transfer function matrix M (s) and the strictly positive-real 

transfer function matrix N (s) is internally stable.

The SISO positive-real transfer function M(s) satis-

fies /M( jv) [ 32p/2, p/24  for all v $ 0. Also, the SISO 

strictly positive-real transfer function N(s)  satisfies 

/N(jv)[ (2p/2, p/2) for all v $ 0. From /M(jv)[ 32p/2, p/24 
and /N(jv) [ (2p/2, p/2)  for all v $ 0, it follows that 

/M(jv)N(jv) 5/M(jv) 1/N(jv) [ (2p, p)  for all v $ 0, and 

hence the Nyquist plot of M(jv)N(jv)  cannot intersect the 

negative real axis. Consequently, the Nyquist plot of M(s)N(s) 

cannot encircle the Nyquist point s 5 21 1 j0, and internal 

stability of the negative-feedback interconnection of M(s) and 

N(s) follows from the Nyquist stability criterion as depicted 

in Figure S3.

The above concepts relating to positive-real systems and 

the passivity theorem generalize to MIMO linear time-invariant 

systems and also to a nonlinear and time-varying setting [5].

REFERENCES
[S1] I. W. Sandberg, “Some results on the theory of physical systems 

governed by nonlinear functional equations,” Bell Syst. Tech. J., vol. 44, 

pp. 871–898, 1965.

[S2] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control. 
 Upper Saddle River, NJ: Prentice-Hall, 1996.

What Is Positive-Real and Passivity Theory?
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FIGURE S1 The Nyquist plot of the positive-real transfer function 

M (s) 5 1/(s1 1). This plot illustrates the fact that, for a single-

input, single-output positive-real transfer function, the real part 

of its frequency response is positive for all frequencies. Conse-

quently, the Nyquist plot is contained in the closed right half of 

the complex plane.
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FIGURE S2 A negative-feedback interconnection. This figure 

shows the negative-feedback interconnection of the transfer func-

tions M(s) and N(s). The stability of this feedback interconnection 

can be guaranteed using the passivity theorem if M(s) and N(s) 

are positive real and either M(s) or N(s) is strictly positive real.
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FIGURE S3 The passivity theorem. This plot shows two single- 

input, single-output positive-real transfer functions M(s) and N(s), 

both of whose Nyquist plots are contained in the closed right half 

of the complex plane and one of which is contained in the open 

right half of the complex plane. Therefore, the Nyquist plot of the 

loop transfer function M(s) N(s) cannot intersect the negative real 

axis. Since the critical point s 5 21 1 / 0 cannot be encircled, it 

 follows from the Nyquist stability criterion that the negative-feed-

back interconnection of M(s) and N(s) must be internally stable.

A
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 IH 3P ( jv )45 2
1

2
j (P(jv) 2 P*(jv))

of the frequency response function matrix P ( jv)  satisfies 

 IH 3P ( jv)45 2va
`

i51

ki

(v i
2 2 v2)2 1 v2ki

2
ci ci

T # 0 (9)

for all v $ 0. That is, the frequency response function 

matrix for the transfer function matrix (8) has a negative-

semidefinite Hermitian-imaginary part for all v $ 0. We 

thus refer to the transfer function matrix P (s )  in (8) as neg-

ative imaginary. A formal definition follows. 

Definition 3

The square transfer function matrix P (s )  is negative-imagi-
nary (NI) if the following conditions are satisfied: 

1) All of the poles of P (s )  lie in the OLHP. 

2) For all v $ 0, 

 j 3P ( jv) 2 P*(jv)4 $ 0. (10)

A linear time-invariant system is NI if its transfer function 

matrix is NI. 

A discussion of negative-imaginary transfer functions 

arising in electrical circuits is given in “Applications to 

Electrical Circuits.” 

In the SISO case, a transfer function is negative imaginary 

if and only if it has no poles in the closed right half of the 

complex plane (CRHP) and its phase is in the interval 32 p,   0 4 
at all frequencies that do not correspond to imaginary-axis 

poles or zeros. Consequently, the positive-frequency Nyquist 

plot of a SISO negative-imaginary transfer function lies below 

the real axis as shown in Figure 1. Hence, a negative- imaginary 

transfer function can be viewed as a positive-real transfer 

function rotated clockwise by 90° in the Nyquist plane. 

Velocity sensors can be used in negative-velocity feed-

back control, whereas position sensors can be used in posi-

tive-position feedback [1], [7], [8], [11]–[14]. Indeed, 

positive-real theory and negative-imaginary theory [9], [10] 

achieve internal stability by a process referred to as phase 
stabilization, since instability is avoided by ensuring 

T
he properties of a flexible structure with colocated actua-

tors and sensors have counterparts in passive electrical 

circuits driven by voltage or current sources. Consider an RLC 

electrical circuit with m voltage or current sources. Assume 

that, for each voltage source input, the current flowing through 

the source is the corresponding output of the system. Also, 

assume that, for each current source input to the system, the 

voltage across the source is the corresponding output of the 

system. Let v1(t ), c, vm(t )  denote the voltage signals, and 

let i1(t ), c, im(t ) denote the current signals. These signals 

are dual in the sense that the product vk (t ) ik (t )  is equal to the 

power provided to the circuit by the k th source at time t. Then, 

let u(t) be the vector of voltage- or current-source inputs at 

time t, and let y(t) be the vector of voltage or current outputs 

at time t. Writing

 Y(s) 5 P(s)U(s),

where P(s )  is the transfer function matrix of the circuit, it fol-

lows that the total power provided to the circuit by the sources 

at time t is given by uT(t )y (t ). As in the case of a fl exible struc-

ture with colocated sensors and actuators, the transfer func-

tion matrix P(s )  is positive real.

Now suppose that each voltage source is connected in se-

ries with a capacitor and that the corresponding system output 

is the voltage across this capacitor divided by the capacitance. 

Also, suppose that each current source is connected in parallel 

with an inductor and that the corresponding system output is 

the inductor current divided by the inductance. This situation, 

which is illustrated in Figure S4, is analogous to the case of a 

flexible structure with colocated force actuation and position 

measurements since the current through a capacitor is equal 

to the capacitance multiplied by the derivative of the voltage 

across it. Also, the voltage across an inductor is equal to the 

inductance multiplied by the derivative of the current flowing 

through it. Hence each output variable is such that its deriva-

tive is a variable that is dual to the corresponding source vari-

able. Therefore, the transfer function matrix of the circuit P(s )  

satisfies the negative-imaginary condition 

 j (P( jv) 2 PT(2jv)) $ 0.

Applications to Electrical Circuits

FIGURE S4 A resistor, inductor, capacitor (RLC) electrical 

circuit, where each input is a voltage or current source. (a) 

Voltage source with series capacitor voltage and (b) current 

source with parallel inductor current. Also, each output cor-

responds to the voltage across a capacitor in series with a 

voltage source or the current through an inductor in parallel 

with a current source. This circuit is described by P (s), the 

transfer function matrix from the vector of inputs to the 

vector of outputs. The transfer function matrix P (s) is nega-

tive-imaginary. That is, the transfer function matrix P (s) has 

no poles in the closed right half of the complex plane and 

satisfies the condition j (P(jv)2 PT(2jv)) $ 0 for all v $ 0.

uk
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+

−

+
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Rest of
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 appropriate restrictions on the phase of the corresponding 

open-loop systems. Gain stabilization, which is based on the 

small-gain theorem [19], guarantees robust stability when 

the magnitude of the loop transfer function is less than 

unity at all frequencies. As in positive-real analysis, robust 

stability of negative-imaginary systems [9], [10] does not 

require the magnitude of the loop transfer function to be 

less than unity at all frequencies to guarantee stability. To 

present results on the robust stability of positive-position 

feedback and related control schemes, we now define 

MIMO strictly negative-imaginary systems.

Definition 4

The square transfer function matrix P (s )  is strictly negative-
imaginary (SNI) if the following conditions are satisfied: 

1) All of the poles of P (s )  lie in the OLHP. 

2) For all v . 0, 

 j 3P ( jv) 2 P* ( jv) 4. 0.  (11)

A linear time-invariant system is SNI if its transfer func-

tion matrix is SNI. 

Lemma 1

If the m 3 m transfer function matrix P1 (s )  is NI, respec-

tively, SNI, and the m 3 m transfer function matrix P2 (s )  is 

NI, then 

 P (s ) 5 P1 (s ) 1 P2 (s )  (12)

is NI, respectively, SNI. 

Proof

This result follows directly from definitions 3 and 4. ■

Theorem 2

Consider the NI transfer function matrices M (s )  and N (s ) , 

and suppose that the positive-feedback interconnection 

shown in Figure 2 is internally stable. Then the corre-

sponding 2m 3 2m closed-loop transfer function matrix 

T (s ) 5  

  c M (s ) ( I 2 N (s)M (s))21 M (s) (I 2 N (s)M (s)) 21N (s)

N (s)( I 2 M (s)N (s))21M (s) N (s) ( I 2 M (s)N (s))21 d
 (13)

is NI. Furthermore, if, in addition, either M (s )  or N (s )  is 

SNI, then (13) is SNI. 

Proof

The internal stability of the positive feedback interconnec-

tion shown in Figure 2 implies that T (s)  is asymptotically 

stable. Given v $ 0, w1 [ Cm, and w2 [ Cm, define 

 cy1

y2

d 5 T ( jv) cw1

w2

d . 
Letting u1 5 w1 1 y2 and u2 5 w2 1 y1, it follows from the 

positive feedback interconnection that y1 5 M (jv)u1 and 

y2 5 N (jv)u2. Furthermore, using the fact that M (s )  and 

N (s )  are NI, it follows that 

FIGURE 2 A positive feedback interconnection. The transfer func-

tions M(s) and N(s) are interconnected by positive feedback. The 

stability of this feedback interconnection can be guaranteed by 

using, for example, Theorem 13. The relevant stability result depends 

on the properties of M(s) and N(s).

+
+

+
+

M (s)

N (s)

w1 u1

w2u2

y1

y2

FIGURE 1 Positive-frequency Nyquist plot of a negative-imaginary 

system. A single-input, single-output negative-imaginary transfer 

function has no poles in the closed right half of the complex plane  

and has a frequency response with negative imaginary part for all 

frequencies. Consequently, the Nyquist plot for v . 0 is contained 

in the lower half of the complex plane.

Re

Im

P(jω)

Velocity sensors can be used in negative-velocity feedback control, whereas 

position sensors can be used in positive-position feedback.
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 j 3w1
* w2

* 4 3T ( jv) 2 T*( jv)4 cw1

w2

d
 5 j 3w1

* w2
* 4 cy1

y2

d2 j 3y1
* y2

* 4 cw1

w2

d
 5 j 3u1

* 2 y2
* u2

* 2 y1
* 4 cy1

y2

d 2 j 3y1
* y2

* 4 cu1 2 y2

u2 2 y1

d
 5 j (u1

*y1 1 u2
*y2 ) 2 j (y1

*u1 1 y2
*u2 )

 5 j (u1
*M ( jv)u12 u1

*M ( jv)*u1)

 1 j (u2
*N ( jv )u2 2 u2

*N ( jv ) *u2 )

 $ 0.

Since v $ 0, w1 [ Cm, and w2 [ Cm are arbitrary, it fol-

lows that 

 j 3T (jv) 2 T (jv) * 4 $ 0

for all v $ 0 and hence, T (s )  is NI. The SNI result follows 

using similar arguments.  ■

Theorem 3

Consider the 2m 3 2m NI transfer function matrices 

 M (s ) 5 cM11 (s) M12 (s)

M21 (s) M22 (s)
d ,    N (s) 5 cN11 (s) N12 (s)

N21 (s) N22 (s)
d , 

and suppose that the feedback interconnection shown in 

Figure 3 is internally stable. Then the corresponding 

2m 3 2m closed-loop transfer function matrix 

T (s ) 5

 £M11 (s) 1 M12 (s) ( I 2 N11 (s)M22 (s)) 21N11 (s)M21 (s)

N21 (s) ( I 2 M22 (s)N11 (s)) 21M21 (s)

 
M12 (s) (I 2 N11 (s)M22 (s)) 21N12 (s)

N22 (s) 1 N21 (s) ( I 2 M22 (s)N11 (s)) 21M22 (s)N12 (s)
§

 (14)

is NI. Furthermore, if in addition, either M (s )  or N (s )  is 

SNI, then (14) is SNI. 

Proof

The internal stability of the feedback interconnection shown 

in Figure 3 implies that T (s )  is asymptotically stable. Given 

v $ 0, w1 [ Cm, and w2 [ Cm, define 

 cy1

y2

d 5 T (jv) cw1

w2

d .
Letting u1 and u2 be defined as in the equation at the bottom 

of the page, it follows from the feedback interconnection 

shown in Figure 3 that 

 cy1

u2

d 5 M (jv) cw1

u1

d ,  cu1

y2

d 5 N (jv) c u2

w2

d . (15)

Furthermore, using (15) and the fact that M (s )  and N (s )  

are NI, it follows that 

 j 3w1
* w2

* 4 3T (jv)2 T*(jv)4 cw1

w2

d
 5 j 3w1

* w2
* 4 cy1

y2

d 2 j 3y1
* y2

* 4 cw1

w2

d
 5 ja3w1

* u1
* 4 cy1

u2

d 2 3y1
* u2

* 4 cw1

u1

d b  

 1 ja3u2
* w2

* 4 cu1

y2

d 2 3u1
* y2

* 4 c u2

w2

db
 5 j a3w1

* u1
* 4 M ( jv) cw1

u1

d 2 3w1
* u1

* 4 M ( jv )* cw1

u1

db
 1 j a3u2

* w2
* 4 N (jv) c u2

w2

d 2 3u2
* w2

* 4 N(jv)* c u2

w2

db
 $ 0.

Since v $ 0, w1 [ Cm, and w2 [ Cm are arbitrary, it follows 

that 

 cu1

u2

d 5 c( I 2 N11 (s)M22 (s)) 21N11 (s)M21 (s) ( I 2 N11 (s)M22 (s)) 21N12 (s)

( I 2 M22 (s)N11 (s)) 21M21 (s) ( I 2 M22 (s)N11 (s)) 21M22 (s)N12 (s)
d c w1

w2

d , 

FIGURE 3 A Redheffer star product feedback interconnection. If 

this feedback interconnection is internally stable and the transfer 

function matrices M (s) and N (s) are negative imaginary, then 

T(s), the closed-loop transfer function matrix from 3w1
T  w2

T 4T  to 3y1
T  y2

T 4T, is negative imaginary. Furthermore, if, in addition, either 

M (s) or N (s) is strictly negative imaginary, then T(s) is strictly 

negative imaginary.

w1

w2

y1

y2

M (s)

N (s)

u1
u2
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 j 3T (jv) 2 T (jv) * 4 $ 0

for all v $ 0 and hence, T (s )  is NI. The SNI result follows 

using similar arguments.  ■

Underlying the stability properties of positive-position 

feedback is the observation that the transfer function 

matrix of a lightly damped flexible structure with colo-

cated force actuators and position sensors is NI. Indeed, 

note that all poles of 

 Pi(s) 5
1

s2 1 kis 1 v i
2
 ci ci

T

in the transfer function matrix (8) lie in the OLHP. Also, for 

all v $ 0, 

 j 3Pi( jv) 2Pi
*

 (jv)45IH(Pi( jv))

 5 
2kiv

(v i
22v2 ) 21ki

2v2
 ci ci

T $ 0.

Hence, it follows from Definition 3 that each Pi(s )  is NI. 

Therefore, it follows from Lemma 1 that the transfer func-

tion matrix (8) is NI. 

THE NEGATIVE-IMAGINARY LEMMA
The following theorem, which is proved in [10] and 

[21], provides a state-space characterization of NI sys-

tems in terms of a pair of linear matrix inequalities 

(LMIs). This result is analogous to the positive-real 

lemma [19], [20] and thus is referred to as the negative-
imaginary lemma.

Theorem 4

Consider the minimal state-space system 

 x
#

5 Ax 1 Bu,  (16)

 y 5 Cx 1 Du,  (17)

where A [ Rn3n, B [ Rn3m, C [ Rm3n, and D [ Rm3m. The 

system (16), (17) is NI if and only if A has no eigenvalues on 

the imaginary axis, D is symmetric, and there exists a pos-

itive-definite matrix Y [ Rn3n satisfying 

 AY 1 YAT # 0,  (18)

 B 1 AYCT 5 0. (19)

In Theorem 4 it follows from the Lyapunov inequal-

ity (18), the positive definiteness of Y, and the assumption 

that A has no eigenvalues on the imaginary axis that the 

matrix A is asymptotically stable [22, Corollary 11.8.1]. 

Corollary 5

Consider the minimal state-space system (16), (17), where 

A [ Rn3n, B [ Rn3m, C [ Rm3n, and D [ Rm3m. The system 

(16), (17) is SNI if and only if the following conditions 

are satisfied: 

1) A has no eigenvalues on the imaginary axis. 

2) D is symmetric. 

3) There exists a positive-definite matrix Y [ Rn3n such 

that (18) and (19) are satisfied. 

4) The transfer function matrix M (s) 5 C (sI 2 A) 21

B 1 D is such that M (s) 2 MT(2s )  has no transmis-

sion zeros on the imaginary axis except possibly at 

s 5 0.

Proof

Assuming conditions 1)–3), it follows from Theorem 4 

that (16), (17) is NI. Now suppose that (16), (17) is not 

SNI. Then using definitions 3 and 4, it follows that there 

exist v . 0 and a nonzero vector u [ Cm such that 

 ju* 3M (jv) 2 M* (jv) 4u 5 0.

Thus, M (s) 2 MT(2s)  has a transmission zero at s 5 jv, 

which contradicts condition 4). Hence (16), (17) is SNI. 

Conversely, suppose that (16), (17) is SNI. Then, (16), (17) 

is NI, and Theorem 4 implies that conditions 1)–3) are satis-

fied. Also, it follows from Definition 4 that 

 j 3M ( jv) 2 M* ( jv) 4. 0

for all v . 0. Therefore M (s) 2 MT(2s)  has no transmis-

sion zeros on the imaginary axis except possibly at s 5 0, 

and thus condition 4) is satisfied.  ■

To illustrate Theorem 4 and Corollary 5, consider the 

system 

 x
#

5 2 x 1 u,  (20)

 y 5 x (21)

with transfer function 

 M (s ) 5
1

s 1 1
. (22)

The positive-frequency Nyquist plot of (22) given in 

Figure 4 shows that (20), (21) is both SNI and strictly posi-

tive real. 

Positive-position feedback can be regarded as one of the last areas of 

classical control theory to be encompassed by modern control theory.
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Applying Theorem 4 with A 5 21, B 5 1, C 5 1, and 

D 5 0, condition (19) can be satisfied by choosing 

Y 5 2B/(AC ) 5 1 . 0. Then, AY 1 YAT 5 22 , 0. It now 

follows from Theorem 4 that (20), (21) is NI. Also, note that 

 M (s) 2 MT(2s) 5
1

s 1 1
2

1

2s 1 1
5

2s
s2 2 1

has no zeros on the imaginary axis except at s 5 0. It then 

follows from Corollary 5 that (20), (21) is SNI. 

Now consider the transfer function 

 M (s ) 5
2s2 1 s 1 1

(s2 1 2s 1 5) (s 1 1) (2s 1 1)
. (23)

The positive-frequency Nyquist plot of M ( jv )  in Figure 

5 shows that I 3M (jv)4 # 0 for all v $ 0, and thus M (s )  is 

NI. However, Figure 5 shows that there exists v . 0 

such that I 3M ( jv) 45 0, and thus M (s )  is not SNI. Now 

consider the minimal realization (16), (17) of (23) given 

by 

  A 5 ≥23.5 28.5 28.5 22.5

1 0 0 0

0 1 0 0

0 0 1 0

¥ ,     B 5 ≥ 2.5

23

1

0

¥ ,  (24)

  C 5 30 0 0 1 4,       D 5 0. (25)

To construct a matrix Y satisfying the assumptions of The-

orem 4, note that the assumptions of Theorem 4 are equiva-

lent to the requirement that the matrix A have no 

eigenvalues on the imaginary axis and 

c AY 1 YAT B 1 AYCT

BT 1 CYAT 0
d # 0,     Y . 0.

Using LMI software [23], we obtain 

Y 5 ≥ 100.375 236.75 2.5 3

236.75 18.5 23 21

2.5 23 1 0

3 21 0 0.2

¥ . 0.

Therefore Theorem 4 implies that (16), (17), (24), (25) is NI. 

Now to determine whether (16), (17), (24), (25) is SNI, 

note that 

 M (s) 2 MT(2s) 5
2s2 1 s 1 1

(s2 1 2s 1 5) (s 1 1) (2s 1 1)

 2
2s2 2 s 1 1

(s2 2 2s 1 5) (2s 1 1) (22s 1 1)

 5
224(s2 1 1)2

4s8 1 19s6 1 71s4 2 119s2 1 25
, 

has a double zero at s 5 j. Consequently, (16), (17), (24), (25) 

is not SNI. 

TWO STRICT NEGATIVE-IMAGINARY LEMMAS
The following theorems give sufficient conditions for the 

SNI property. 

Theorem 6

Consider the minimal state-space system (16), (17), where 

A [ Rn3n, B [ Rn3m, C [ Rm3n, and D [ Rm3m. Suppose 

the following conditions are satisfied: 

1) All eigenvalues of A are in OLHP. 

2) D is symmetric.

FIGURE 4 Positive-frequency Nyquist plot of the transfer function 

M (s) 5 1/(s 1 1). The imaginary part of M(jv)  is negative for all 

v . 0, and thus M (s) is strictly negative imaginary.
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FIGURE 5 Positive-frequency Nyquist plot of the transfer function 

M(s) 5 (2s2 1 s 1 1 )/ ((s2 1 2s 1 5 )(s 1 1)(2s 1 1) ). This Nyquist 

plot shows that the imaginary part of M(jv)  is negative for all 

v $ 0 except v 5 0 and v 5 1, where the imaginary part of M(jv)  

is zero. Thus M(s)  is negative imaginary, but not strictly negative 

imaginary.
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3) There exist a positive-definite matrix Y| [ Rn3n and 

positive numbers a, e such that 2a is not an eigen-

value of A and the matrices 

 A|5 cA 0

0 2aI
d ,   B|5 c B

eI
d ,   C|5 3C 2I 4 (26)

satisfy 

 A|Y|1 Y|A|T # 0

and 

 B|1 A|Y|C|T 5 0.

Then (16), (17) is SNI. 

The proof of Theorem 6 requires the following lemma. 

Lemma 7

Let e . 0 and a . 0. Then the transfer function matrix 

 M (s ) 5
e

s 1 a
 I (27)

is SNI. 

Proof

Let the transfer function matrix (27) have minimal state-

space realization 

 x
#

5 2ax 1 eu, (28)

 y 5 x. (29)

Theorem 4 and Corollary 5 can be applied to (28), (29) with 

A 5 2aI, B 5 eI, C 5 I, and D 5 0. Setting Y 5 (e/a ) I . 0, 

it follows that AY 1 YAT 5 22eI , 0 and B 1 AYCT 5

eI 2 (ae/a )  I 5 0. Hence, Theorem 4 implies that (28), (29) 

is NI. Furthermore, 

 M (s) 2 MT(2s) 5
e

s 1 a
 I2

e

2s 1 a
 I

 5
2es

s2 2 a2
 I.

Thus, M (s) 2 MT(2s)  has no purely imaginary transmis-

sion zeros except possibly at s 5 0. Hence, it follows from 

Corollary 5 that (28), (29) is SNI.  ■ 

Proof of Theorem 6

Let M̂ (s )  be the transfer function matrix of (16), (17). 

Since s 5 2a is not a pole of M̂ (s ) , a minimal state-space 

realization of the transfer function matrix M1 (s ) 5  

M̂ (s) 2 eI/(s 1 a) is 

 x
#
1 5 Ax1 1 Bu, 

 x
#
2 5 2 ax2 1 eu, 

 y 5 Cx1 2 x2 1 Du.

Let 

 A|5 cA 0

0 2aI
d ,   B|5 c B

eI
d ,   C|5 3C 2I 4,    D| 5 D.

Assuming conditions 1)–3), it follows from Theorem 4 that 

M1 (s ) is NI. Then Lemmas 1 and 7 imply that M̂ (s) 5  

M1 (s) 1 eI/(s 1 a) is SNI.  ■

To illustrate Theorem 6, we consider lightly damped 

flexible structures with force actuators and position sensors. 

An integral resonant controller [13], [14] has the form 

 C (s ) 5 3sI 1 GF 421G,  (30)

where G and F are positive-definite matrices. In the SISO 

case [13], integral resonant controllers are derived by first 

adding a direct feedthough to a resonant system with a 

colocated force actuator and position sensor. Then, applica-

tion of integral feedback leads to damping of the resonant 

poles. Combining the direct feedthrough with the integral 

feedback leads to a SISO controller of the form (30). In [14], 

this class of SISO controllers is generalized to MIMO con-

trollers of the form (30). 

Integral resonant controllers provide integral force feed-

back [1], which refers to control that uses position actua-

tors, force sensors, and integral feedback. In [1], integral 

feedback is modified by moving the integrator pole slightly 

to the left in the complex plane to alleviate actuator satura-

tion. A SISO controller transfer function of the form (30) 

results from this process. 

Theorem 8

The transfer function matrix (30) with G positive definite 

and F positive definite is SNI. 

Proof

Consider the minimal state-space realization of (30) 

given by 

 x
#

5 2 GFx 1 Gu, 

 y 5 x.

Let e . 0 and a . 0 be such that 2a is not an eigenvalue 

of 2GF. The corresponding matrices in (26) are 

 A
|

5 c 2GF 0

0 2aI
d ,   B|5 c G

eI
d ,   C|5 3 I 2I 4,   D| 5 0.

An alternative approach to negative-velocity feedback is positive-position 

feedback, where position sensors are used in place of velocity sensors.
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Also, let 

 Y
|

5 cF21 0

0 0
d 1 e ≥ a1

a
1 1b I a1

a
1 1b I

a1

a
1 1b I I

¥ .

Thus, 

 B|1 A|Y|C|T 5 0. (31)

Furthermore, note that 

 cF21 0

0 0
d

is positive semidefinite, and 

 ≥ a1

a
1 1b I a1

a
1 1b I

a1

a
1 1b I I

¥
is positive definite. Hence, Y

|
. 0. 

Using the definitions of A
|

 and Y
|

, it follows that 

 A|Y|1 Y|A|T 5 c2G 0

0 0
d

   1 e ≥2a1

a
1 1b (GF 1 FG ) 2a1

a
1 1b (GF 1 aI )

2a1

a
1 1b (GF 1 aI )T 22(a 1 1) I

¥ .

Furthermore, the matrix 

 cG 0

0 0
d

is positive semidefinite. For every nonzero vector of the 

form x 5 30  x2
T 4T, we have 

c 0

x2

d T

 ≥ a1

a
1 1b (GF 1 FG ) a1

a
1 1b (GF 1 aI )

a1

a
1 1b (GF 1 aI )T 2(a 1 1) I

¥ 3

 c 0

x2

d . 0.

Hence, it follows using Finsler’s theorem (see “What Is Fin-

sler’s Theorem?”), Lemma S2, that there exists t . 0 such that 

 ≥ a1

a
1 1b (GF 1 FG ) a1

a
1 1b (GF 1 aI )

a1

a
1 1b (GF 1 aI )T 2(a 1 1) I

¥ 1

 t cG 0

0 0
d $ 0

for all t $ t. Let ê 5 t21 . 0. Consequently, choosing e # ê 

implies 

 A|Y
|

1 Y
|

A
|T # 0. (32)

Combining (31) and (32), it follows that conditions 1)–3) of 

Theorem 6 are satisfied, and, therefore, the transfer func-

tion (30) is SNI.  ■

Theorem 9

Consider the minimal state-space system (16), (17), where 

A [ Rn3n, B [ Rn3m, C [ Rm3n, and D [ Rm3m. Suppose 

the following conditions are satisfied: 

1) All of the eigenvalues of A are in OLHP. 

2) D is symmetric. 

3) There exist a positive-definite matrix Y| [ Rn3n and 

positive numbers e, a, and b such that a 2 b, 2a, 2b 

are not eigenvalues of A, and the matrices 

 A|5 £A 0 0

0 2aI 0

0 0 2bI
§ ,   B

|
5 £ B

eI
eI
§ ,   C|5 3C 2I 2I 4

satisfy 

 A|Y|1 Y|A
|T # 0

F
insler’s theorem, which is used in the proof of Lemma 8, 

is summarized in the following lemma [S3].

LEMMA S2

Let M and N be real symmetric matrices such that M is posi-

tive semidefi nite and xTNx $ 0 for all real x such that Mx 5 0. 

Then there exists t . 0 such that N 1 tM $ 0 for all t $ t.

To illustrate Finsler’s theorem, let M 5 c1 0

0 0
d  and 

N 5 c 21 0

0 1
d . All nonzero x such that Mx 5 0 are given 

by x 5 c0
a
d , where a[ R is nonzero. Then xTNx 5 a2 . 0. It 

now follows from Finsler’s theorem that there exists t . 0 

such that N 1 tM 5 ct 2 1 0

0 1
d $ 0 for all t $ t. In this ex-

ample, t 5 1.

REFERENCE
[S3] F. Uhlig, “A recurring theorem about pairs of quadratic forms 

and extensions: A survey,” Linear Algebra Its Applicat., vol. 25, pp. 

219–237, 1979. 

What Is Finsler’s Theorem?
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and 

 B|1 A|Y|C|T 5 0.

Then (16), (17) is SNI. 

The proof of Theorem 6 requires the following lemmas. 

Lemma 10

Let e . 0, a . 0, and b . 0. Then the transfer function 

 M (s ) 5
e

(s 1 a ) (s 1 b)
 (33)

is SNI.

Proof

The transfer function (33) has a minimal state-space real-

ization 

 x
#

5 Ax 1 Bu,  (34)

 y 5 Cx,  (35)

where

 A 5 c 2a 0

0 2b
d ,   B 5 ce

e
d ,   C 5 31 1 4.

Applying Theorem 4 and Corollary 5 to (34), (35), and 

 setting 

 Y 5 ≥ e

a
0

0
e

b

¥ . 0, 

it follows that AY 1 YAT 5 22eI , 0 and B 1 AYCT 5 0. 

Hence, Theorem 4 implies that (34), (35) is NI. Furthermore, 

for (34), (35), M (s) 2 MT(2s)  is given by 

 M (s) 2 MT(2s) 5
e

(s 1 a) (s 1 b)
2

e

(2s 1 a) (2s 1 b)

 5
2e (a 1 b)s

s2 (a 1 b)2 2 (s2 1 ab) 2
  .

Since M (s) 2 MT(2s)  has no imaginary transmission zeros 

except at s 5 0, it follows from Corollary 5 that (34), (35) is 

SNI. ■

Lemma 11

If M (s )  is an SISO SNI transfer function, then the transfer 

function matrix M (s ) I is SNI. 

Proof

This result follows directly from Definition 4. ■

Proof of Theorem 9

Let M̂ (s )  be the transfer function matrix of (16), (17). 

Since neither s 5 2a nor s 5 2b is a pole of M̂ (s ) , a 

minimal state-space realization of M1 (s) 5 M̂ (s)2 

(e/(s 1 a )  (s 1 b)) I is 

 x
#
1 5 Ax1 1 Bu, 

 x
#
2 5 2 ax2 1 eu, 

 x
#
3 5 2 bx3 1 eu, 

 y 5 Cx1 2 x2 2 x3 1 Du.

Let

 A
|

5 £A 0 0

0 2aI 0

0 0 2bI
§ ,   B|5 £ B

eI
eI
§ ,   

 C|5 3C 2I 2I 4 ,    D
|

5D.

Assuming conditions 1)–3), it follows from Theorem 4 that 

M1 (s )  is NI. Finally, Lemmas 1, 10, and 11 imply that 

M̂ (s) 5 M1 (s) 1 (e /(s 1 a)  (s 1 b))I is SNI.  ■

ROBUST STABILITY OF 
NEGATIVE-IMAGINARY CONTROL SYSTEMS
We now present a result given by Theorem 13 below that guar-

antees the robustness and stability of control systems involv-

ing the positive-feedback interconnection of an NI system and 

an SNI system. This positive-feedback interconnection is illus-

trated in Figure 2. The result is analogous to the passivity 

theorem given in “What Is Positive-Real and Passivity 

Theory?” concerning the negative-feedback interconnection of 

a positive-real system and a strictly positive-real system. 

Theorem 13 guarantees the internal stability of the pos-

itive-feedback interconnection of two systems through 

phase stabilization, as opposed to gain stabilization in the 

small-gain theorem. In phase stabilization the gains of the 

systems can be arbitrarily large, but the phase of the loop 

transfer function needs to be such that the critical Nyquist 

point is not encircled by the Nyquist plot. In the passivity 

theorem given in “What Is Positive-Real and Passivity 

Theory?,” negative feedback is used, and thus the Nyquist 

point is at s 5211 j0.  Then the cascade of two positive-

real systems gives a loop transfer function whose phase is 

in the interval (2p,  p ) . Hence, the Nyquist plot excludes 

the negative real axis. In NI systems, positive feedback 

Integral resonant controllers provide integral force feedback, which refers to 

control that uses position actuators, force sensors, and integral feedback.
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interconnection is used and thus the Nyquist point is 

s 5 1 1 j0. This alternative Nyquist point is required since 

an NI system has a phase lag in the interval (2p, 0)  and 

thus two NI systems in cascade have a phase lag in the 

interval (22p, 0) . That is, the Nyquist plot excludes the 

positive-real axis. 

The following lemma is required to state the result given 

in Theorem 13. 

Lemma 12

Let M (s)  be an NI transfer function matrix. Then M (`)  

and M (0)  are symmetric, and 

 M (0) 2 M ( ` ) $ 0. (36)

Also, let N (s)  be an SNI transfer function matrix. Then 

N (`)  and N (0)  are symmetric, and 

 N (0) 2 N (`) . 0. (37)

If, in addition, N (`)  is positive semidefinite, then N (0)  is 

positive definite and all of the eigenvalues of the matrix 

M (0)N (0)  are real. 

Proof

See [10]. ■

Theorem 13

Consider the NI transfer function matrix M (s )  and the 

SNI transfer function matrix N (s ) , and suppose that 

M (`)N (`) 5 0 and N (`) $ 0. Then, the positive-feed-

back interconnection of M (s )  and N (s )  is internally 

stable if and only if 

 l max(M (0)N (0)), 1.  (38)

Proof

See [10]. ■ 

In the MIMO case, the proof of Theorem 13 given in 

[10] uses Theorem 4. In the SISO case, the sufficiency 

part of Theorem 13 follows directly from Nyquist argu-

ments and thus has an intuitive interpretation. For 

example, consider 

 M (s ) 5
1

s 1 1
,  (39)

whose positive-frequency Nyquist plot is shown in Figure 4. 

Also consider 

 N (s ) 5
2s2 1 s 1 1

(s2 1 2s 1 5) (s 1 1) (2s 1 1)
,  (40)

whose positive-frequency Nyquist plot is shown in Figure 

5. Figure 4 shows that N (s )  is SNI, whereas Figure 5 

shows that M (s )  is NI but not SNI. The positive-frequency 

Nyquist plot of the corresponding loop transfer function 

L(s ) 5 N (s )M (s )  is shown in Figure 6. Since both N (s )  

and M (s )  have no poles in the CRHP and the Nyquist 

plot of L(s )  does not encircle the critical point s 5 1 1 j0, 

it follows that the positive-feedback interconnection of 

M (s )  and N (s )  is internally stable. A similar Nyquist 

argument is mentioned in [8] as a justification for the sta-

bility of SISO positive-position feedback systems. Fur-

thermore, a condition equivalent to (38) is required in the 

result of [16]. 

Consider M (s )  and N (s )  as in Theorem 13 in the SISO 

case. Since N (s )  is SNI, it follows that /N (jv) [ (2p, 0)  

for all v . 0. Furthermore, since M (s )  is NI, it follows that 

/M (jv) [ 32p, 04 for all v $ 0 such that M ( jv ) 2 0. 

Hence, L(s ) 5 M (s )N (s )  satisfies /L(jv) [ (22p, 0)  for 

all v . 0 such that L(jv) 2 0. Thus the Nyquist plot of 

L(jv)  can intersect the positive-real axis only at v 5 0 since 

FIGURE 6 Positive-frequency Nyquist plot of the loop transfer func-

tion L(s) 5 N(s)M(s) corresponding to the positive-feedback inter-

connection of M(s ) 5 1/ (s 1 1 )  and N(s) 5 (2s2 1 s 1 1 )/ 
( (s2 1 2s 1 5)(s 11)(2s 1 1) ). Here M(s) is strictly negative imag-

inary, and N(s) is negative imaginary. Since M(s) and N(s) both 

have no poles in the closed right half of the complex plane and the 

Nyquist plot does not encircle the critical point s 5 1 1 j0, it fol-

lows from the Nyquist stability criterion that the positive feedback 

interconnection of M(s) and N(s) is internally stable.
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This article describes properties of a class of systems termed NI systems 

using ideas from classical control theory.
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at infinite frequency M (`)N (`) 5 0. Thus, the Nyquist plot 

of L(jv)  does not encircle the critical point s 5 1 1 j0 if 

M (0)N (0) , 1. Hence, in the SISO case, the sufficiency 

part of Theorem 13 follows from the Nyquist test. 

A discussion on how rigid-body modes can be handled 

using Theorem 13 is given in “How Are Rigid-Body Modes 

Handled?” 

NEGATIVE-IMAGINARY FEEDBACK CONTROLLERS
We now apply Theorem 13 to NI feedback control systems 

in the case where one of the blocks in the feedback connec-

tion shown in Figure 2 corresponds to the plant, while the 

other block corresponds to the controller. This situation is 

shown in Figure 7. 

Since flexible structures with colocated force actuators 

and position sensors are typically SNI, Theorem 13 implies 

that NI controllers guarantee closed-loop internal stability if 

the dc gain condition (38) is satisfied. Indeed, many schemes 

considered for controlling flexible structures rely on con-

trollers that are NI. These schemes include positive-position 

feedback [1], [7], [8], [24], resonant feedback control [11], 

[12], and integral resonant control [13], [14]. We now con-

sider each of these control schemes in more detail. 

Positive-Position Feedback
In the SISO case, a positive-position feedback controller is a 

controller of the form 

 C (s) 5 a
M

i51

ki

s2 1 2ziv is 1 v i
2
 ,  (41)

where v i . 0, zi . 0, and ki . 0 for i 5 1, 2, c, M. Using 

Nyquist arguments, the SISO transfer function 

C (s ) 5 k/ (s2 1 2zvs 1 v 2 ) , where v, z, k . 0, is SNI. Con-

sequently, it follows from Lemma 1 that (41) is SNI. Fur-

thermore, this result can be extended to the MIMO case to 

show that the transfer function matrix 

 C (s ) 5 KT(s2I 1 Ds 1 V ) 21K,  (42)

O
utput feedback control methods rely on output signal in-

formation measured through sensors to asymptotically 

stabilize all the internal states of a system. In the case of a sys-

tem that has unobservable modes that are not asymptotically 

stable, output feedback control cannot asymptotically stabilize 

the system. Systems with rigid-body modes, which are charac-

terized by a zero natural frequency, are an example of systems 

that cannot be asymptotically stabilized by velocity feedback 

alone, and position feedback is essential [S4, pp. 333–336]. 

Under velocity feedback alone, systems with rigid-body modes 

can come to rest at a position other than the origin of the state 

space. The unobservability of the position states correspond-

ing to the rigid-body modes from the velocity outputs are the 

cause of this problem [S4, pp. 333–336].

As a result of this problem, rigid-body modes need spe-

cial consideration in passivity approaches. Typically a position 

feedback is applied before using the passivity theorem, which 

is given in “What Is Positive-Real and Passivity Theory?” Posi-

tion feedback is applied in an inner loop before applying ve-

locity feedback on the outer loop. This technique converts the 

rigid-body modes into vibrational modes, which renders the 

corresponding position states observable from the velocity 

outputs of the system.

Now consider positive-position control of systems with 

rigid-body modes. The definitions of NI and SNI systems 

given in definitions 3 and 4 require that NI and SNI sys-

tems have no poles at the origin. Hence, theorems 4 and 13 

cannot directly handle rigid-body modes. However, a similar 

technique to velocity feedback involving a position-feed-

back inner loop can be used on NI systems that have rigid-

body modes. This position feedback inner loop is used to 

convert the rigid-body modes into vibrational modes. Then 

the result of [21], which generalizes Theorem 13 to allow for 

modes on the imaginary axis except at the origin, can be ap-

plied to guarantee internal stability of the overall feedback 

system. Thus, the resulting inner feedback loop consists 

of unity feedback and proportional feedforward control to 

convert the rigid-body modes to vibrational modes. Then, 

positive-position feedback is applied in the outer loop. An 

advantage in this case relative to velocity feedback is that a 

position sensor output is already available.

REFERENCE
[S4] L. Meirovitch, Dynamics and Control of Structures. New York: 

 Wiley, 1990.

How Are Rigid-Body Modes Handled?

FIGURE 7 Negative-imaginary feedback control system. If the plant 

transfer function matrix P(s) is strictly negative imaginary and the 

controller transfer function matrix C (s) is negative imaginary, then 

the closed-loop system is internally stable if and only if the dc gain 

condition l max 3P(0)C(0)4 , 1 is satisfied.
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where D . 0 and V . 0, is SNI [9]. A MIMO positive- 

position feedback controller is a controller of the form (42), 

while a positive-position feedback system is a control system 

for a flexible structure with colocated force actuators and 

position sensors with a controller of the form (42) [1], [7], 

[8], [24].

The Nyquist proof of Theorem 13 justifies the use of 

positive-position feedback in the SISO case. That is, since 

the positive-position feedback controller (41) is SNI, its 

phase is in the interval (2p,  0)  for all v . 0. Furthermore, 

since the flexible structure plant is NI, its phase is in the 

interval 32p,  04  for all v $ 0 such that jv  is not a zero. 

Hence, the phase of the loop transfer function is in the 

interval (22p, 0)  for all v . 0 such that jv  is not a zero. 

This fact, together with the strict properness of the con-

troller (41), implies that the Nyquist plot of the loop trans-

fer function can intersect the positive-real axis at only the 

frequency v 5 0. Thus, the Nyquist plot of the loop trans-

fer function does not encircle the critical point s 5 1 1 j0 if 

the dc value of the loop transfer function is strictly less 

than unity. 

Resonant Control
We now consider the exactly proper SISO SNI controller 

 C (s) 5 a
M

i51

2kis
2

s2 1 2ziv is 1 v i
2
 ,  (43)

where v i . 0, zi . 0, and ki . 0 for i 5 1, 2, c, M. The 

controller (43) can be implemented as the positive- 

position feedback controller (41) using an acceleration 

sensor rather than a position sensor. Alternatively, (43) 

can be implemented as the positive-real feedback 

 controller 

 C (s) 5 a
M

i51

kis

s2 1 2ziv is 1 v i
2
, 

where v i . 0, zi . 0, and ki . 0 for i 5 1, 2, c, M, using a 

velocity sensor rather than a position sensor. To see that 

(43) defines an NI controller, we rewrite (43) as 

C (s) 5 2s2C| (s), where C| (s)  is a SISO positive-position 

feedback controller of the form defined in (41). If s 5 jv and 

v . 0, then 2s2 5 v2 . 0. Therefore, since C| (s)  is SNI, C (s )  

is SNI. 

Next consider the SISO SNI controller 

 C (s) 5 a  
M

i51

2kis (s 1 2zi v i)

s2 1 2zi v i s 1 v i
2
 ,  (44)

where v i . 0, zi . 0, and ki . 0 for i 5 1, 2, c, M. Appli-

cation of (44) is described in [11] and [12]. By writing 

 
2kis (s 1 2zi vi)

s2 1 2ziv is 1 v i
2

5 2ki 1
kiv i

2

s2 1 2zi v is 1 v i
2
 (45)

for each i, it follows that the controller (44) is SNI. This 

result follows from the fact that the first term on the right 

side of (45) has zero imaginary part, and the second term 

on the right side of (45) is SNI as in the case of the positive-

position feedback controller (41). Using these facts, it fol-

lows from Lemma 1 that the controller (44) is SNI. 

The SNI controllers (43) and (44) can be extended to the 

MIMO case to obtain the MIMO SNI controller 

 C (s) 5 a
M

i51

2s2

s2 1 2zi v is 1 v i
2
aiai

T (46)

and 

 C (s ) 5 a
M

i51

2 s (s 1 2ziv i)

s2 1 2ziv is 1 v i
2
bibi

T,  (47)

where ai and bi are m 3 1 vectors [24]. Control systems 

for flexible structures with colocated force actuators and 

position sensors using controllers of the form (46), (47) are 

resonant control systems [11], [12]. 

Integral Resonant Control
Theorem 8 shows that MIMO transfer function matrices of 

the form 

 C (s ) 5 3sI 1 GF 421G

are SNI. Here, G is a positive-definite matrix and F is a 

positive-definite matrix. The use of a controller of this form 

when applied to a flexible structure with force actuators 

and position sensors is referred to as integral resonant con-
trol, or integral force control [1], [13], [14]. 

To illustrate Theorem 13 and integral resonant control, 

consider a SISO integral resonant control system where the 

plant is a flexible structure with colocated force actuation 

and position measurement. The plant is assumed to have 

the transfer function 

 P (s ) 5 a  
10

k51

1

s2 1 2s 1 104k2
. (48)

Now consider this system controlled with the SISO inte-

gral resonant controller 

 C (s ) 5
G

s 1 GF
,  (49)

where G . 0 and F . 0. It follows from Theorem 8 that (49) 

is SNI. Using Theorem 13, it follows that the closed-loop 

system is internally stable if the dc gain condition (38) is 

satisfied. The dc value of the plant transfer function is 

P (0) 5 a
10

k51
1/104 k2 5 1.5498 3 1024, while the dc value 
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of the controller transfer function is C (0) 5 1/F. By 

 choosing F 5 1.2 3 P (0) 5 1.8597 3 1024, the condition 

l max 3P (0)C (0)4 , 1 is satisfied. To choose the parameter 

G . 0, Figure 8 shows the root locus of the closed-loop 

poles for the feedback control system with plant P (s )  given 

by (48) and controller C (s )  given by (49) as the parameter 

G . 0 is varied. From this root locus diagram, the parame-

ter G is chosen as G 5 9.6584 3 105 to maximize the damp-

ing of the first resonant mode. 

The damping of the resonant modes arising from the inte-

gral resonant feedback controller (49) is illustrated in Figure 9, 

which shows the open-loop frequency response of the plant 

from the actuator input to the sensor output. Also shown is 

the closed-loop frequency response from the command input 

to the sensor output when the integral resonant feedback 

controller C (s ) 5  (9.6584 3 105) / (s 1 179.6379) is applied 

as in Figure 7. 

State-Feedback Controller Synthesis
An alternative approach to the direct use of Theorem 13 

for establishing the closed-loop stability of a feedback con-

trol system is to design the controller to be robust against 

only a specific uncertainty structure as shown in Fig-

ure 10. In this case, it follows from Theorem 13 that if the 

plant uncertainty is known to be SNI, and if the feedback 

controller is constructed so that the nominal closed-loop 

system is NI and the dc gain condition is satisfied, then 

the resulting closed-loop uncertain system is guaranteed 

to be robustly stable [10]. We now present some further 

results on this problem when full state measurements are 

available using an LMI approach. The assumption of full 

state measurements means that there is a sensor available 

to measure each of the quantities that define a state vari-

able in the state-space model of the nominal plant shown 

in Figure 10. 

Consider the feedback control system in Figure 10 in the 

case that full state feedback is available. In this case, Theo-

rem 4 can be used to synthesize a state-feedback control 

law such that the resulting closed-loop system is NI. Indeed, 

suppose the uncertain system shown in Figure 10 is 

described by the state equations 

 x
#

5 Ax 1 B1w 1 B2u,  (50)

 z 5 C1x,  (51)

 w 5 D (s )z,  (52)

where the uncertainty transfer function matrix D (s )  is 

assumed to be SNI with l max(D (0)) # 1 and D ( ` ) $ 0. 

Applying the state-feedback control law u 5 Kx yields the 

closed-loop uncertain system 

 x
#

5 (A 1 B2K )x 1 B1w,  (53)

 z 5 C1x,  (54)

 w 5 D (s )z. (55)

The corresponding nominal closed-loop transfer function 

matrix is 

 G cl (s ) 5 C1 (sI 2 A 2 B2K ) 21B1. (56)

Theorem 14

Consider the uncertain system (50)–(52) and suppose there 

exist matrices Y . 0, M, and a scalar e . 0 such that 
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FIGURE 9 Open- and closed-loop frequency responses for a 

lightly damped flexible structure with an integral resonant feed-

back  controller. Here the plant transfer function is 

P(s) 5 a
10

k51
1/ (s2 1 2s 1 104k 2) , and the frequency response is 

taken from the command input to the sensor output. The closed 

loop uses the integral resonant feedback controller 

C(s) 5 G/ (s 1 GF) . The parameter G 5 9.6584 3 105 rad-N/

(s-m) is chosen to provide adequate damping of the low-fre-

quency resonant modes, and the parameter F is fixed at F 5 

1.8597 3 10–4 m/N.

FIGURE 8 Root locus of the closed-loop poles of a control 

system consisting of a flexible structure plant and an integral 

resonant controller. Here, the plant transfer function is 

P(s) 5a
10

k51
1/ (s2 1 2s 1 104k 2) , and the integral resonant con-

troller transfer function is C(s) 5 G/ (s 1 GF) . In this control 

system, both the plant and the controller are strictly negative 

imaginary. The root locus is obtained by varying the parameter 

G . 0 with F 5 1.8597 3 10–4 m/N.
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£AY 1 YAT 1 B2M 1 MTB2
T 1 eI B1 1 AYC1

T 1 B2MC1
T

B1
T 1 C1YAT 1 C1M

TB2
T

0
§# 0,  

 (57)

 C1YC1
T 2 I , 0,  (58)

 Y . 0. (59) 

Then the state-feedback control law u 5 MY21x is robustly 

stabilizing for the uncertain system (50)–(52).

Proof

Suppose the LMIs (57), (59) are satisfied and let 

 K 5 MY21.

Then, (57) implies 

(A1B2K)Y1Y (A1B2K)T 5 AY1YAT 1B2M1MTBT
2 1 eI # 0,

 (60)

 B1 1 (A 1 B2K )YC1
T 5 B1 1 AYC1

T 1 B2MC1
T 5 0. (61)

It follows from (60) that A 1 B2K has no eigenvalues on the 

imaginary axis. Furthermore, Theorem 4 implies that the 

closed-loop transfer function G cl (s )  (56) is NI. 

We now show that the feedback system defined by (53)–

(55), corresponding to the state feedback control law 

u 5 MY21x, satisfies the assumptions of Theorem 13. Since 

G cl (s )  is strictly proper, it follows that G cl ( ` ) 5 0 and 

hence D ( ` )G cl ( ` ) 5 0. Also, it follows from (61) that 

 G cl (0) 5 2C1 (A 1 B2K )21B1 5 C1YC1
T.

Therefore, the LMI (58) implies G cl (0) , I and, since G cl (s )  

is negative imaginary, it follows from Lemma 12 that 

G cl (0) $ G cl ( ` ) . Moreover, G cl ( ` ) 5 0 and thus 

G cl (0) $ 0. Hence, l max(G cl (0)) 5 s max(G cl (0)) , and con-

sequently l max(G cl (0))  , 1. Also, the assumptions on D (s )  

in (50)–(52) imply that D ( ` ) $ 0 and l max(D (0)) # 1. 

From these conditions, it follows that l max(D (0)  

G cl (0)) , 1. 

Thus, we have D ( ` )G cl ( ` ) 5 0, D ( ` ) $ 0, and 

l max(D (0)G cl (0)) , 1. Therefore, the assumptions of Theo-

rem 13 are satisfied. Now Theorem 13 implies that the 

closed-loop system (50)–(52) with the state-feedback con-

troller u 5 MY21x is robustly stable.  ■ 

An LMI State-Feedback Synthesis Example
To illustrate Theorem 14, consider the system shown in 

Figure 11, which includes a flexible structure. The force 

applied to the flexible structure is denoted by x2, and the 

deflection of the structure at the same location is denoted 

y. The transfer function from x2 to y is denoted G (s ) . The 

flexible structure has a colocated force actuator and posi-

tion sensor and the transfer function G (s )  is assumed to 

be SNI. It is desired to construct a state-feedback control-

ler for this system, which is robust against unmodeled 

flexible dynamics. Indeed, to apply the method of Theo-

rem 14 to this example, the transfer function G (s )  is 

replaced by a constant unity gain, and the resulting error 

is the SNI transfer function D (s ) 5 G (s )2 1. The transfer 

function D (s )  is treated as an uncertainty in the system 

as shown in Figure 12. A state-space realization of this 

uncertain system is 

 £ x
#
1

x
#
2

x
#
3

§ 5 £21 0 0

1 21 1

0 1 21

§ £ x1

x2

x3

§ 1 £ 0

0

1

§w 1 £22

1

0

§u,

 z 5 30 1 0 4 £ x1

x2

x3

§ ,  w 5 D (s)z.

Then, Theorem 14 can be applied with 

+
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G (s)

+
+−2

s + 1
1

s + 1

1
s + 1

yu x1 x2

x3

FIGURE 11 Control of a flexible structure system using a state-feed-

back linear matrix inequality (LMI) approach to robust controller 

design. This system includes the unknown flexible structure transfer 

function G(s). In this system, the force applied to the structure is 

labeled x2, and the deflection of the structure at the same location is 

labeled y. A state-feedback controller is to be designed for this 

system by replacing the flexible structure transfer function G(s) by a 

unity gain and treating the resulting error D(s) 5 G(s) 2 1 as a strictly 

negative-imaginary uncertainty. The state-feedback controller gain 

matrix can be obtained by solving an LMI feasibility problem.

Controller

Nominal
Plant

w z

u y

w zNominal
Closed Loop

Gcl(s)

Δ(s) Δ(s)

FIGURE 10 A feedback control system. The plant uncertainty D(s)  

is strictly negative imaginary and satisfies the dc gain condition 

s max (D(0)) , m and D(`) $ 0. If the controller is chosen so that the 

nominal closed-loop transfer function matrix G cl(s)  is strictly 

proper, negative imaginary, and satisfies the dc gain condition 

s max (G cl(0)) # 1/m, then the closed-loop system is robustly stable 

for all strictly negative imaginary uncertainty D(s)  satisfying 

s max (D(0)) , m and D(`) $ 0.
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 A 5 £21 0 0

1 21 1

0 1 21

§ ,    B1 5 £ 0

0

1

§ ,   B2 5 £22

1

0

§ ,

 C1 5 30 1 0 4.
To apply Theorem 14, we choose e 5 1026. Then the LMIs 

(57)–(59) are solved using LMI software [23] to find the 

matrices Y and M as 

 Y 5 £ 3.9594 3 109 22.0008 23.9594 3 109

22.0008 0.72850 1.7293

23.9594 3 109 1.7293 3.9594 3 109

§ . 0, 

 M 5 322.8122 1.0000 2.62604.
Therefore, using Theorem 14, the required state-feedback 

gain matrix K can be constructed as 

 K 5 MY21 5 30.22927 1.4581 0.22927 4.
The Bode plot of the corresponding closed-loop transfer 

function from w to z, given by (56) is shown in Figure 13. 

From this Bode plot, it is seen that G cl (s )  is SNI since 

 /G cl (jv) [ (2p, 0)

for all v . 0. Also, the Bode plot of Figure 13 shows that 

the magnitude of the dc value of G cl (s )  is less than unity. 

Since the uncertainty transfer function D (s )  in this exam-

ple is SNI, it follows from Theorem 13 that if |D (0)| # 1, 

then the closed-loop system is internally stable. 

In the above example, the nominal system is obtained 

by replacing the flexible structure transfer function G (s )  

by a fixed unity gain. This gain can be regarded as an 

approximation of the dc value of the flexible structure 

transfer function G (0) . If the dc value of the flexible 

structure transfer function is known to be exactly unity, 

then it follows that D (0) 5 G (0) 21 5 0. In this case, the 

dc gain condition in Theorem 13 is automatically satis-

fied, and there is no need to require the LMI condition 

(58) in constructing the state-feedback controller. How-

ever, the current approach means that the dc value of the 

flexible structure transfer function does not have to be 

known exactly, and the control system is robust against 

uncertainty in G (0) . 

CONCLUSIONS
This article describes properties of a class of systems 

termed NI systems using ideas from classical control 

theory. Connections to positive-real and passive systems 

are also given. It is also shown that the class of NI systems 

yields a robust stability analysis result, which broadly 

speaking can be captured by saying that if one system is 

negative imaginary and the other system is strictly nega-

tive imaginary, then a necessary and sufficient condition 

for internal stability of the positive-feedback interconnec-

tion of the two systems is that the dc loop gain is less than 

unity. This result provides a natural framework for the 

analysis of robust stability of lightly damped flexible 

structures with unmodeled dynamics. This result also 

captures, in a systematic framework, graphical design 

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10−2 10−1 100 101 102
−180

−135

−90

−45

0

P
ha

se
 (

°)

Frequency (rad/s)

FIGURE 13 Bode plot of the closed-loop transfer function G cl(s)  

from the uncertainty input w to the uncertainty output z. This 

closed-loop system is obtained from the system shown in Figure 

12 using a full-state-feedback controller obtained from Theorem 

14. The fact that /G cl (jv) [ (2p, 0)  for all v . 0 implies that this 

transfer function is strictly negative imaginary. Also, since G cl(s)  

has no poles in CRHP and |G cl(0) | , 1, it follows that the closed-

loop uncertain system is internally stable for all uncertainties D(s)  

that are strictly negative imaginary and satisfy |D(0) | , 1. The 

magnitude Bode plot shows that |G cl(0) | , 1.
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1
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FIGURE 12 Control of an uncertain system using full-state-feed-

back control. The uncertain system is constructed from the 

system shown in Figure 11 by replacing the flexible structure 

transfer function G(s)  by 1 1 D(s), where D(s)  is an uncertain but 

strictly negative-imaginary transfer function. The signal z is 

treated as an uncertainty output, and the signal w is treated as an 

uncertainty input.
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methods adopted in the 1980s by engineers related to 

 positive-position feedback and similar techniques. This 

 article further provides a full-state-feedback controller 

synthesis technique that achieves an NI closed-loop 

system. The use of this theory is similar to the use of 

 passivity theory, and hence extends and complements 

existing passivity results [5], [6]. 
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