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a b s t r a c t

This paper introduces the class of Time-Domain Input–Output Negative Imaginary (TD-IONI) systems.
The new TD-IONI definition unifies the class of the existing Negative Imaginary (NI) systems, including
those that have imaginary-axis poles. A new dynamic dissipative framework is proposed to define
and characterise the TD-IONI systems. This framework does not impose any a priori conditions on
the system, such as asymptotic stability, minimality, full normal rank constraint, etc., which are
commonly used in the NI literature. Dynamic dissipativity of TD-IONI systems also leads to an LMI-
based state-space characterisation, which can be conveniently used to classify the strict/non-strict
TD-IONI properties of a given system. This paper also reveals the connections amongst the NI theory,
dynamic dissipativity and classical dissipativity. Subsequently, a frequency-domain dissipative supply
rate is also proposed to describe the whole class of TD-IONI systems, which is defined with respect to a
shifted imaginary axis to capture particularly the systems having poles on the imaginary axis. This trick
overcomes the limitation of earlier frequency-domain dissipative frameworks to capture systems with
imaginary-axis poles. Finally, the derived results are specialised for the Time-Domain Output (Strictly)
Negative Imaginary subclass since such systems exhibit useful closed-loop stability properties when
connected in a positive feedback loop. Several illustrative numerical examples are provided to make
the results intuitive and useful.

© 2024 Elsevier Ltd. All rights reserved.
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1. Introduction

Negative Imaginary (NI) systems theory has drawn atten-
ion from control theorists and practising engineers due to its
otential in solving a variety of real-world engineering prob-
ems such as vibration control of lightly-damped mechanical sys-
ems (Lanzon & Petersen, 2008; Xiong, Petersen, & Lanzon, 2010),
antilever beams (Bhikkaji, Moheimani, & Petersen, 2012), large
pace structures (Mabrok, Kallapur, Petersen, & Lanzon, 2014a),
obotic manipulators (Mabrok et al., 2014a); nano-positioning
pplications (Mabrok, Kallapur, Petersen, & Lanzon, 2014b;
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Nikooienejad & Moheimani, 2022); train platooning (Li, Wang,
Shan, Lanzon, & Petersen, 2021); control of various multi-agent
systems (Abara, Bhowmick, & Lanzon, 2023; Su, Bhowmick, &
Lanzon, 2023a, 2023b, 2023c), etc. NI theory has become ap-
pealing due to its simple robust stability condition that depends
on the loop gain only at the zero frequency. In a SISO setting,
an NI transfer function’s imaginary part remains non-positive
for all ω ≥ 0. Among the strict subclasses within the NI class,
Strictly NI (SNI Lanzon & Petersen, 2008), Strongly Strict NI
(SSNI Lanzon, Song, Patra, & Petersen, 2011) and Output Strictly
NI (OSNI Bhowmick, Bordoloi, & Lanzon, 2023; Bhowmick & Lan-
zon, 2019, 2020; Bhowmick & Patra, 2017; Lanzon & Bhowmick,
2023) appear quite often in the literature. SNI systems are defined
by the property ℑ{M(jω)} < 0 ∀ω ∈ (0, ∞) in the SISO
etting. SSNI systems form a particular subset within the SNI class
hat satisfies two additional frequency-domain conditions in the
eighbourhood of ω = 0 and ω = ∞. In contrast, a transfer

function M(s) is said to have OSNI property if the transformed
ystem F (s) = s[M(s) − M(∞)] is Output Strictly Passive.
NI literature has witnessed persistent progress both in the-

ory (Ferrante, Lanzon, & Ntogramatzidis, 2016, 2017; Ferrante &
Ntogramatzidis, 2013; Lanzon & Chen, 2017; Lanzon & Petersen,
2008; Liu, Lam, Zhu, & Kwok, 2019; Xiong, Lam, & Petersen, 2016)
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nd applications (Das, Pota, & Petersen, 2014, 2015; Mabrok
t al., 2014b; Nikooienejad & Moheimani, 2022) over the past
ourteen years since its inception. However, the connections be-
ween NI systems theory and classical dissipativity have not yet
een fully explored. For passive systems, a complete charac-
erisation already exists in the literature, which was built on
he Willems’s dissipative framework (Willems, 1972) and Hill–
oylan’s (Q , S, R)-dissipative framework (Hill & Moylan, 1976,

1977). In the NI literature, Patra and Lanzon (2011) took the
first step to define a frequency-domain dissipative supply rate for
characterising the systems with ‘mixed’ NI and finite-gain prop-
erties, taking inspiration from a similar framework used in Griggs,
Anderson, and Lanzon (2007) for defining ‘mixed’ passive and
finite-gain systems. The ideas of Patra and Lanzon (2011) were
later expanded in Das, Pota, and Petersen (2013), Das et al. (2014)
and Das et al. (2015) to describe the systems with ‘mixed’ NI, pas-
sive and finite-gain properties. However, Das et al. (2013, 2014,
2015) and Patra and Lanzon (2011) did not address the following
crucial issues: (i) how to define an appropriate and unifying
supply rate that will capture the full class of NI systems; (ii) how
to theoretically establish the dissipative property of an NI system;
(iii) how to define a compatible time-domain dissipative supply
rate; and (iv) how to establish the equivalence between the
conventional frequency-domain definitions of NI systems and the
proposed dissipative characterisation. Recently, Bhowmick and
Lanzon (2019) has proposed a new frequency-domain dissipative
framework for characterising the class of stable Output Negative
Imaginary1 (ONI) systems, including OSNI systems (introduced
in Bhowmick & Patra, 2017) as a strict subset. Of late, Bhowmick
and Lanzon (2020) and Lanzon and Bhowmick (2023) have shed
some light on defining a time-domain dissipative supply rate to
capture ONI systems allowing poles on the imaginary axis. Note
that time-domain dissipativity is more powerful than frequency-
domain dissipativity since the latter can handle only stable, LTI
systems. In contrast, the former applies to even marginally-stable
and nonlinear cases.

Drawn by the above facts and limitations, this paper defines
he notion of TD-IONI systems utilising a time-domain dissipa-
ive supply rate w(u, ū, ˙̄y) that involves the input to the system
u), a filtered version of the input (ū) and the time-derivative
f an auxiliary output of the system ( ˙̄y). The auxiliary output

¯ = y − Du has been used instead of the physical output y
o capture particularly bi-proper cases. The proposed approach
iffers from the classical dissipative framework (Willems, 1972)
n the sense that it contains a time-derivative term ˙̄y and an
dditional input ū, whereas in the classical approach, a supply
ate consists of only u and y. The IONI class encompasses the
xisting ONI/OSNI systems (Bhowmick & Lanzon, 2019, 2020;
howmick & Patra, 2017) and the entire class of NI systems
i.e. allowing poles on the imaginary axis) (Lanzon & Chen, 2017;
abrok et al., 2014a). A dynamic dissipative framework, termed
s (Σ , Q̄ )-dissipativity2 where Σ is a specific LTI operator and
¯ = Q̄⊤ is a real matrix of appropriate dimension, is developed
or characterising the TD-IONI systems (discussed in Section 3).
he dynamic dissipative framework also gives rise to a necessary
nd sufficient LMI condition to check the strict/non-strict TD-IONI
roperties of a given system. Unlike Das et al. (2013, 2014, 2015)
nd Patra and Lanzon (2011), this paper theoretically establishes
hat the TD-IONI systems are dissipative with respect to a partic-
lar supply rate w(u, ū, ˙̄y) by proving the existence of a positive

1 ONI systems are defined for finite-dimensional, square and causal systems.
SNI systems form a strict subset within the ONI class and may contain a pole
n the origin.
2 The notion of (Σ , Q̄ )-dissipativity specialises to (Q , S, R)-dissipativity in the

ense of Hill and Moylan (1976) when Σ is a linear and static operator.
2

semidefinite storage function (refer to Section 4). These findings
reveal the missing links amongst the TD-IONI (and NI as well) sys-
tems theory, dynamic dissipativity and the classical dissipativity
(in the sense of Willems, 1972). Interestingly, according to the
new definition, the TD-OSNI and TD-ISNI systems may contain a
simple pole at the origin [e.g. 1

s ,
s+4

s(s+2) ], in contrast to the earlier
notions wherein OSNI and ISNI properties can be defined only for
stable systems (Bhowmick & Lanzon, 2019; Das et al., 2013, 2014,
2015; Patra & Lanzon, 2011).

This paper also introduces a frequency-domain dissipative
framework (refer to Section 5) to characterise the TD-IONI sys-
tems allowing poles on the jω-axis. Note here that so far in the
NI literature (Bhowmick & Lanzon, 2019; Das et al., 2013, 2015;
Patra & Lanzon, 2011), the notion of frequency-domain dissipativ-
ity [i.e. (Q (ω), S(ω), R(ω))-dissipativity] has been used to describe
only stable systems since this supply rate relies on the Fourier
transformation and hence, cannot handle any transfer function or
signal not bounded on the jω-axis. To overcome this limitation,
we will introduce the notion of a ‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-
dissipativity’’ by exploiting the idea of the Fourier transform
with respect to a shifted jω-axis [i.e. the Fourier integral is now
evaluated on the (a + jω)-axis for a specific a > 0]. The ‘‘shifted
(Qa(ω), Sa(ω), Ra(ω))-dissipative’’ supply rate complies with the
proposed time-domain supply rate w(u, ū, ˙̄y). Moreover, when re-
stricted to stable systems, the proposed frequency-domain dissi-
pative characterisation resembles the existing frequency-domain
definitions of NI (Lanzon & Chen, 2017; Lanzon & Petersen, 2008)
and OSNI systems (Bhowmick & Lanzon, 2019; Bhowmick & Patra,
2017). Finally, an asymptotic stability result for an unforced pos-
itive feedback interconnection containing a TD-ONI system with-
out poles at the origin and a stable TD-OSNI (or an SNI) system is
derived (in Section 6) utilising the dissipative approach based on
the Lyapunov stability concept, which is entirely different from
the approaches adopted so far in the NI literature (Lanzon & Chen,
2017; Lanzon & Petersen, 2008; Xiong et al., 2010).

Notation: The notations are standard throughout. R≥0 and R>0
denote respectively the sets of all non-negative and all positive
real numbers. C denotes the set of all complex numbers. The
set of all natural numbers (excluding 0) is denoted as N =

{1, 2, 3, . . .}. C− and C̄− denote respectively the open left-half
and the closed left-half of the complex plane. A⊤, A∗ and Ā
denote the transpose, the complex conjugate transpose and the
complex conjugate of a matrix A. A−∗ and A−⊤ represent short-
hand for

(
A−1

)∗ and
(
A−1

)⊤ respectively. λmax(A) denotes the
maximum eigenvalue of a matrix A that has only real eigenvalues.
RH m×n

∞
denotes the set of all real, rational, proper and asymp-

totically stable transfer function matrices of dimension (m × n).
For a real, rational transfer function matrix M(s), M(jω)∗ =

M(−jω)⊤. (A, B, C,D) gives a state-space realisation of a real,
rational, proper transfer function matrix M(s) = D+C(sI −A)−1B.
The space of all real-valued, absolutely square integrable, time-
domain functions is defined by Lm

2 = {f : R → Rm
: f (t) =

0 when t < 0,
∫

∞

0 f (t)⊤f (t) dt < ∞}, while the space of all real-
valued, locally square integrable, time-domain functions is de-
fined as Lm

2e = {f : R → Rm
: f (t) = 0 when t < 0,

∫ T
0 f (t)⊤f (t)

dt < ∞ ∀T ∈ [0, ∞)}. An energy supply rate function w(u, y)
is an abstraction of the energy inflow into a physical system
which is expressed by the mapping w : U × Y → R where
the input space U ∈ Lm

2e and the output space Y ∈ Lp
2e. w(u, y)

satisfies the property
∫ T
0 w(u, y) dt < ∞ for all admissible (u, y) ∈

U × Y and ∀T ∈ [0, ∞). In particular,
∫

∞

0 w(u, y) dt < ∞ when
(u, y) ∈ Lm

2 × Lp
2. A storage function V : Rn

→ R≥0 is said
to be a C1 storage function if it is continuously differentiable in
its argument over the entire domain. F [·] and L [·] represent

the Fourier and the Laplace transform operators respectively.
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Fig. 1. Interconnection of NI systems with positive feedback.

m
2 (jR) denotes the frequency-domain Lebesgue space (Green &
imebeer, 1995; Patra & Lanzon, 2011) under the inner product

f , g⟩ =
1
2π

∫
∞

−∞
f (jω)∗g(jω) dω < ∞ when f , g ∈ L m

2 (jR). For

signal f ∈ L m
2 (jR), the norm is given by ∥f ∥ =

√
⟨f , f ⟩ =

1
2π

∫
∞

−∞
f (jω)∗f (jω) dω < ∞. Following the notion of L m

2 (jR)

pace, another frequency-domain space L m
2 (a + jR) with a given

> 0 is defined under the inner product ⟨f , g⟩a =
1
2π

∫
∞

−∞
f (a+

ω)∗g(a+ jω) dω < ∞ for the signals that are not bounded on the
ω-axis but are bounded on the (a + jω)-axis for a specific a > 0.
Note that an energy supply rate can also be defined in frequency-
domain [i.e. (Q (ω), S(ω), R(ω))-dissipativity (Bhowmick & Lanzon,
2019; Griggs et al., 2007; Patra & Lanzon, 2011)] for stable LTI
systems and it remains equivalent to the corresponding time-
domain supply rate via Parseval’s theorem (Brogliato, Lozano,
Maschke, & Egeland, 2020). The symbol ⋆ stands for the time-
domain convolution operator. A ⊗ B represents the Kronecker
product of two real matrices A and B of any dimensions.

2. Essential preliminaries

In this section, we present essential technical preliminaries
which underpin the proofs of the main results.

2.1. Definitions of NI systems

We will now recall the definitions of NI and SNI systems.

Definition 1 (NI System (Lanzon & Chen, 2017; Mabrok et al.,
2014a)). Let M(s) be the real, rational and proper transfer func-
tion matrix of a finite-dimensional, square and causal system
with no poles in {s ∈ C : ℜ[s] > 0}. Then, M(s) is said to be
NI if

• j[M(jω) − M(jω)∗] ≥ 0 for all ω ∈ (0, ∞) except the values
of ω where s = jω is a pole of M(s);

• If s = jω0 with ω0 ∈ (0, ∞) is a pole of M(s), then it is
at most a simple pole and the residue matrix lims→jω0 (s −

jω0)jM(s) is Hermitian and positive semidefinite;
• If s = 0 is a pole ofM(s), then lims→0 skM(s) = 0 for all k ≥ 3

and lims→0 s2M(s) is Hermitian and positive semidefinite.

efinition 2 (SNI System Lanzon and Chen (2017), Lanzon and
etersen (2008)). Let M(s) be the real, rational and proper transfer
unction matrix of a finite-dimensional, square and causal system.
hen, M(s) is said to be SNI if M(s) has no poles in {s ∈ C : ℜ[s] ≥

} and j[M(jω) − M(jω)∗] > 0 for all ω ∈ (0, ∞).

We will now present the internal stability theorem for a
ositive feedback interconnection of an NI and an SNI system
hat removes all the previous restrictions on the gains of the
ystems at infinite frequency (which imposed strict properness
f the loop).
3

Theorem 1 (Lanzon and Chen (2017)). Let M(s) be an NI system
ithout poles at the origin and N(s) be an SNI system. Then, the
ositive feedback interconnection of M(s) and N(s), shown in Fig. 1,
s internally stable if and only if⎧⎪⎨⎪⎩

det[I − M(∞)N(∞)] ̸= 0,

λmax
[
(I − M(∞)N(∞))−1(M(∞)N(0) − I)

]
< 0,

λmax
[
(I − N(0)M(∞))−1(N(0)M(0) − I)

]
< 0.

(1)

.2. Dissipative systems notations and definition

The class of finite-dimensional, causal, LTI systems studied in
his paper are described by the state-space equations

:

{
ẋ = Ax + Bu, x(0) = x0;
y = Cx + Du. (2)

he admissible inputs are considered to be in the space Lm
2e such

hat the unique solution of the state trajectory x(t) exists forward
n time t ≥ 0 and x ∈ Ln

2e. Therefore, the output y(t) also
xists and y ∈ Lp

2e. We introduce the state transition function Φ ,
ssociated with M , being a mapping from R≥0 × R≥0 × Rn

× Rm

onto Rn. Here, Φ(t1, t0, x(t0), u(t)) denotes the state x(t1) ∈ Rn at
ime t1 when the system M starts from an initial state x(t0) ∈ Rn

t time t0 and an admissible input u(t) is applied on M for the
ime interval t ∈ [t0, t1].

We will now recall the notion of classical dissipativity of finite-
imensional, causal, dynamical systems, as introduced in Willems
1972).

efinition 3 (Dissipative Systems (Willems, 1972)). A dynamical
ystem M , given in (2), is said to be dissipative with respect to
n energy supply rate w(u, y) if there exists a function V : Rn

→

≥0, called the storage function, such that

(x(0)) +

∫ T

0
w (u, y) dt ≥ V (x (T )) (3)

or any T ∈ [0, ∞), any initial condition x(0) ∈ Rn and any
dmissible input u ∈ Lm

2e where x(T ) = Φ(T , 0, x(0), u(t)) and
w(u, y) has been evaluated along any trajectory of (2).

Inequality (3) is known as the ‘dissipation inequality’ in the
sense of Willems. If V : Rn

→ R≥0 is a differentiable storage
function, then the dissipation inequality (3) can be expressed in
the differential form as

w(u, y) ≥ V̇ (x). (4)

Note that for finite-dimensional LTI systems with a minimal state-
space realisation, the storage function V (x) can be characterised
by a quadratic form x⊤Px, without loss of generality, where P =

P⊤ > 0 (Willems, 1972), Khalil (1996). Moreover, in the LTI
setting, the storage function V (x) can always be assumed to be
a differentiable function of x (Hill & Moylan, 1976; Kottenstette,
McCourt, Xia, Gupta, & Antsaklis, 2014).

If the supply rate function in (4) takes the form w(u, y) =

y⊤Qy + 2y⊤Su + u⊤Ru where Q = Q⊤
∈ Rp×p, S ∈ Rp×m and

M = M⊤
∈ Rm×m, then (4) specialises to(

y⊤Qy + 2y⊤Su + u⊤Ru
)

≥ V̇ (x). (5)

So far we have discussed only time-domain dissipativity. How-
ever, dissipative characterisation can also be expressed in the
frequency-domain. The following definition articulates the no-
tion of frequency-domain (Q (ω), S(ω), R(ω))-dissipativity which
may be regarded as a frequency-domain counterpart of the Hill–

Moylan’s (Q , S, R)-dissipativity (Hill & Moylan, 1976).
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efinition 4 ((Q (ω), S(ω), R(ω))-Dissipativity (Griggs et al., 2007;
Patra & Lanzon, 2011)). Let M(s) ∈ RH

p×m
∞ be the transfer

function matrix of a finite-dimensional and causal system M with
the input–output relationship Y (s) = M(s)U(s). Then, M is said to
be (Q (ω), S(ω), R(ω))-dissipative with respect to the frequency-
dependent triplet (Q (ω), S(ω), R(ω)) where Q (ω) = Q (ω)⊤ ∈

Rp×p, S(ω) ∈ Cp×m and R(ω) = R(ω)⊤ ∈ Rm×m
∀ω ∈ R if

1
2π

∫
∞

−∞

[
Y (jω)∗Q (ω)Y (jω) + Y (jω)∗S(ω)U(jω)+

U(jω)∗S(ω)∗Y (jω) + U(jω)∗R(ω)U(jω)
]
dω ≥ 0 (6)

for all admissible U ∈ L m
2 (jR).

Note that for marginally-stable systems, the frequency-domain
integral in (6) does not remain bounded on the jω-axis and hence,
(Q (ω), S(ω), R(ω))-dissipative supply rate cannot be defined. To
overcome this limitation, in this paper, we introduce the notion
of a ‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-dissipativity’’ that relies on the
Fourier transformation evaluated with respect to a shifted jω-
axis, denoted as the (a+jω)-axis, where the parameter a is chosen
to be a positive constant such that a ≥ 0 and a > ℜ[λi(A)] ∀i. In
uch cases, inequality (6) takes the form (7), as introduced via the
ollowing definition.

efinition 5 (Shifted (Qa(ω), Sa(ω), Ra(ω))-Dissipativity). LetM(s) ∈
p×m be the transfer function matrix of a finite-dimensional
nd causal system M with the input–output relationship Y (s) =

(s)U(s). Then, M is said to be a ‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-
issipative’’ system with respect to the frequency-dependent
riplet Qa(ω) = Qa(ω)⊤ ∈ Rp×p, Sa(ω) ∈ Cp×m and Ra(ω) =

a(ω)⊤ ∈ Rm×m
∀ω ∈ R if

1
2π

∫
∞

−∞

[
Y (a + jω)∗Qa(ω)Y (a + jω) + Y (a + jω)∗

Sa(ω)U(a + jω) + U(a + jω)∗Sa(ω)∗Y (a + jω)

+ U(a + jω)∗Ra(ω)U(a + jω)
]
dω ≥ 0 (7)

for all admissible U(a + jω) ∈ L m
2 (jR), where U(a + jω) =

[e−atu(t)] and Y (a + jω) = F [e−aty(t)] on noting that ua =
−atu(t) ∈ Lm

2 and ya = e−aty(t) ∈ Lm
2 for all t ≥ 0, subject to

n appropriate choice of a > 0 and restricting the time-domain
nput signals u ∈ Lm

2 .

.3. Dynamic dissipativity theory

We will now set the notation and definition for dynamic
issipativity. A system M is said to be dynamically dissipative if
he system M , cascaded with another given dynamic system Σ ,
s dissipative (Chellaboina, Haddad, & Kamath, 2005). The concept
s depicted through Fig. 2.

efinition 6. A finite-dimensional, causal and square system M
s said to be dynamically dissipative, termed as (Σ, Q̄ )-dissipative
here Q̄ = Q̄⊤

∈ Rl̂×l̂ and the LTI operator Σ has a real, rational
ransfer function representation Σ(s), if the cascade combination
f M and Σ , designated as M̄ in Fig. 2, is dissipative with respect

o the supply rate z⊤Q̄ z, where z = Σ

(
y
u

)
is evaluated along

he trajectories of the combined system M̄ .

Let x = x(t) ∈ Rn and x̂ = x̂(t) ∈ Rn̂ denote respectively the
tates of M and Σ . We denote x̄ =

[
x⊤ x̂⊤

]⊤. Definition 6 implies
¯
hat for a (Σ,Q )-dissipative system with respect to a particular

4

Fig. 2. Cascaded interconnection of M and Σ .

¯ = Q̄⊤
∈ Rl̂×l̂ and Σ(s), there always exists a storage function

: Rn+n̂
→ R≥0 such that

V (x̄(0)) +

∫ T

0
z⊤Q̄ z dt ≥ V (x̄(T )) (8)

for all T ∈ [0, ∞) and all u ∈ Lm
2e. In general, for LTI systems,

the storage function V (x̄) can be assumed to be a C1 function of
x̄ ∈ Rn+n̂ and hence, (8) becomes equivalent to z⊤Q̄ z ≥ V̇ (x̄). Note
that in particular circumstances, Σ can also be a linear dynamical

operator, such as
d
dt

(·) or
∫
(·) dt .

. TD-IONI systems and their connections to dynamic dissipa-
ivity

At its inception, input and/or output negative imaginary sys-
em properties were defined only for stable LTI systems rely-
ng on the frequency-domain (Q (ω), S(ω), R(ω))-dissipative ap-
roach (Bhowmick & Lanzon, 2019; Das et al., 2013; Patra & Lan-
on, 2011). However, these definitions were not uniform across
he literature and moreover, the supply rates used in Das et al.
2013), Patra and Lanzon (2011) could not capture bi-proper
SNI systems. Drawn by these issues, very recently, Lanzon and
howmick (2023) has proposed a frequency-domain condition for
efining the class of stable IONI systems that involves a particular
and-pass filter function, mentioned in (10), for capturing the
requency-domain behaviour3 of an IONI (or NI) system in the
eighbourhood of ω = 0 and ω = ∞. The present paper is moti-
ated by the ideas developed in Lanzon and Bhowmick (2023) and
ntroduces the notion of Time-Domain Input–Output Negative
maginary (TD-IONI) systems, which is defined completely in the
ime-domain utilising the concept of dynamic dissipativity. The
efinition and characterisation of the proposed TD-IONI systems
o not impose any a priori conditions (such as stability, mini-
ality, full normal rank constraint, etc. — commonly used in the
I literature) on the system to be defined and thereby, pose no
ifficulty in acquiring systems containing poles on the imaginary
xis, even at the origin. Interestingly, it is found that the TD-IONI
lass captures the full set of the existing NI systems (Lanzon &
hen, 2017; Lanzon & Petersen, 2008; Xiong et al., 2010). Note
hat in this section, the admissible inputs u are considered to be
n the space Lm

2e along with sufficient smoothness properties such
hat a unique solution of the state trajectory x(t) exists forward in
ime t ≥ 0 and also, x ∈ Ln

2e. Hence, ˙̄y(t) = Cẋ(t) = CAx(t)+CBu(t)
oes also exist forward in time ∀t ≥ 0 and ˙̄y ∈ Lm

2e.

efinition 7 (TD-IONI(δ,ε,α,β) Systems). Let M be a finite-
imensional, causal and square system governed by the minimal
tate-space equations ẋ = Ax + Bu and y = Cx + Du with zero
nitial condition. Let the associated transfer function matrix be
(s) ∈ Rm×m. Define ȳ = y − Du and ū = L −1

[fs(s)Im] ⋆ u
here fs(s) ∈ RH ∞ is defined in (11). Let δ ≥ 0, ε ≥ 0, α ∈ N

3 Note that, in the SISO setting, the frequency-domain behaviour around
= 0 and ω = ∞ indicates respectively the departure rate and the arrival

rate of the Nyquist plot of a transfer function.
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Fig. 3. Relationship among the strict and non-strict subclasses within the
TD-IONI systems. M1,M2, . . . ,M9 denote the examples (given in Section 3.4)
orresponding to the major subsets of TD-IONI systems.

nd β ∈ N. Then, M is said to be a Time-Domain Input–Output
Negative Imaginary system with a level of output strictness δ ≥ 0,
evel of input strictness ε ≥ 0 and having arrival rate specified
y α ∈ N and departure rate specified by β ∈ N, denoted by
D-IONI(δ,ε,α,β), if∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ 0 (9)

or all admissible u ∈ Lm
2e and all T ∈ [0, ∞).

Inequality (9) is referred to as the ‘‘TD-IONI(δ,ε,α,β) inequal-
ty’’4 in this paper. TD-IONI(δ,ε,α,β) definition unifies all the ex-
sting versions of the input and/or output negative imaginary
ystems (Bhowmick & Lanzon, 2019, 2020; Bhowmick & Patra,
017; Das et al., 2014; Lanzon & Bhowmick, 2023; Patra & Lanzon,
011) and opens the door to accept the systems with poles on
he jω-axis, even at the origin. TD-IONI(δ,ε,α,β) systems have been
efined in the spirit of a new time-domain dissipative supply
ate w(u, ū, ˙̄y) [refer to Section 4 for details] instead of relying
on conventional frequency-domain definitions.

Classification of TD-IONI(δ,ε,α,β) systems: We will now describe
he strict and non-strict subclasses within the TD-IONI(δ,ε,α,β)
class on the basis of the values of the parameters δ, ε, α and β:

• NI if it belongs to {M(s) : M(s) is TD-IONI(δ,ε,α,β), δ ≥ 0, ε ≥

0, α ∈ N, β ∈ N};
• TD-ISNI if it belongs to {M(s) : M(s) is TD-IONI(δ,ε,α,β), δ ≥

0, ε > 0, α ∈ N, β ∈ N};
• TD-VSNI if it belongs to {M(s) : M(s) is TD-IONI(δ,ε,α,β), δ >

0, ε > 0, α ∈ N, β ∈ N};
• TD-OSNI if it belongs to {M(s) : M(s) is TD-IONI(δ,ε,α,β), δ >

0, ε ≥ 0, α ∈ N, β ∈ N}.

Fig. 3 illustrates the classification through a comprehensive Venn
diagram.

Remark 1. According to Definition 7, the sets of TD-OSNI and
TD-ISNI systems capture some systems that are not asymptot-
ically stable (e.g. 1

s ,
s+4

s(s+2) ). This attribute makes a significant
contrast with the earlier literature on the OSNI and ISNI systems
because these properties were originally defined only for stable
LTI systems (Bhowmick & Lanzon, 2019; Das et al., 2013, 2015;
Patra & Lanzon, 2011). It may be noted that Definition 7 can
conveniently capture the marginally-stable NI systems since the

4 The time-domain inequality condition (9) is also applicable to linear time-
arying and nonlinear input-affine IONI systems. However, this paper deals with
nly LTI TD-IONI systems (denoted by TD-IONI ).
(δ,ε,α,β)

5

time-domain approach does not need to impose an asymptotic
stability constraint on the system to be defined, contrary to the
conventional frequency-domain definitions. The Venn diagram
in Fig. 3 clearly shows the set-theoretic relationship among the
strict and non-strict, and the stable and marginally-stable subsets
within the TD-IONI class.

3.1. Analysis of the filter term used in Definition 7

The time-domain inequality condition introduced in Defini-
tion 7 for TD-IONI(δ,ε,α,β) systems involves an auxiliary input
(ū) that is a band-pass filtered version of the actual input u.
The transfer function of the filter f (s) comes from Lanzon and
Bhowmick (2023) and is given by

f (s) =
(−s)βsβ

1 + (−s)(α+β−1) s(α+β−1) (10)

where α ∈ N and β ∈ N. Note that ū = L −1
[fs(s)Im] ⋆ u where

fs(s) is stable and minimum-phase spectral factor of f (s). The next
lemma shows the spectral factorisation of the filter function f (s).

Lemma 1 (Lanzon and Bhowmick (2023)). Let f (s) be defined in
10). Then, f (s) can be spectral factorised as f (s) = f ∼

s (s)fs(s) where
s(s) ∈ RH ∞ is given by

s(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s
s + 1

when α = β = 1,

sβ∏(
α+β−1

2 −1
)

i=0

(
s2 + 2 sin

[
(2i + 1)π

2(α + β − 1)

]
s + 1

)
when α + β is odd,

sβ

(s + 1)
∏(

α+β
2 −2

)
i=0

(
s2 + 2 sin

[
(2i + 1)π

2(α + β − 1)

]
s + 1

)
when α + β is even and α + β > 2.

(11)

3.2. Characterisation of the TD-IONI systems in a dynamic dissipa-
tive framework

The idea of utilising the dynamic dissipativity theory to char-
acterise the class of TD-IONI systems has been found to be quite
useful because the dissipative supply rate for defining such sys-
tems requires the input to the system (u), a bandpass filtered ver-
sion of the input (ū) and the time-derivative of an auxiliary output
of the system ( ˙̄y). Owing to the presence of a time-derivative
erm and the additional dynamics associated with the input filter
(s)Im in the supply rate, the classical (Q , S, R)-dissipative frame-

work (Hill & Moylan, 1976, 1980), where Q , S and R are all real
and constant matrices, cannot directly capture TD-IONI(δ,ε,α,β)
systems. Interestingly, the time-derivative operator and the fil-
ter dynamics f (s)Im, defined in (10), can be embedded inside a

separate module ΣIONI producing a new output z =

⎡⎣ ˙̄y
ū
u

⎤⎦ =

IONI

(
ȳ
u

)
, as shown in Fig. 4. With this structural modifica-

ion, the overall cascaded system M̄ can still be characterised
sing the Willems’s dissipative framework with respect to the
nput u and the combined output z. This is the primary mo-
ivation behind adapting the dynamic dissipative approach for
haracterising TD-IONI systems. This strategy resembles
(δ,ε,α,β)
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Fig. 4. A dynamic dissipative framework for characterising the class of TD-IONI
ystems.

he dynamic dissipative framework proposed in Chellaboina et al.
2005).

In the proposed scheme (Fig. 4), the linear operator ΣIONI has
een designed to have a particular configuration represented by

he real, rational transfer function ΣIONI (s) =

[ sIm 0
0 fs(s)Im
0 Im

]
,

uch that the output of the cascaded system M̄ becomes z =

˙̄y⊤ ū⊤ u⊤
]⊤. The combined system M̄ shown in Fig. 4 has

he following state-space realisation:

¯ :

{
˙̄x = A x̄ + Bu, x̄(0) = x̄0;
z = C x̄ + Du, (12)

here A =

[
A 0
0 Im ⊗ Af

]
, B =

[
B

Im ⊗ Bf

]
, C =

CA 0
0 Im ⊗ Cf
0 0

]
, D =

[ CB
Im ⊗ Df

Im

]
and x̄ =

[
x
xs

]
. x ∈ Rn

nd xs ∈ Rn̂ denote respectively the states of the system M and
he spectral factor fs(s) ∈ RH ∞ of the bandpass filter f (s), as
efined in (11). Note that ȳ = y − Du and ū = L −1

[fs(s)Im] ⋆ u.
et fs(s) have a minimal state-space representation (Af , Bf , Cf ,Df ).
he admissible set of inputs u(t) belongs to the space Lm

2e with
ufficient smoothness properties such that the combined state
rajectory x̄(t) exists forward in time t ≥ 0 and x̄ ∈ Ln+n̂

2e . We
lso define the following shorthand notations C1 =

[
CA 0

]
,

2 =
[

0 Im ⊗ Cf
]
, D1 = CB and D2 = Im ⊗ Df , which will

e used in Theorem 2 and Lemma 2.

emark 2. It can be noted that the combined state-space
ealisation (A , B, C , D) retains minimality when (A, B, C,D) and
Af , Bf , Cf ,Df

)
are minimal and M(s) does not have any poles at

he origin. If M(s) has poles at the origin then it will give rise to
pole-zero cancellation at s = 0 between M(s) and ΣIONI (s) =

sIm 0
0 fs(s)Im
0 Im

]
. As a consequence, (A , B, C , D) loses its state

bservability via the PBH test (Zhou, Doyle, & Glover, 1996),
espite the pair (A, C) being completely observable. In such cases,
λiI − A

C

]
vi = 0 where vi ∈ Rn+n̂, vi ̸= 0 is the eigenvector of

corresponding to λi = 0.

Theorem 2, given below, will establish that TD-IONI sys-
ems are equivalent to a class of dynamically dissipative systems
efined with respect to ΣIONI (s) and Q̄ [termed as (ΣIONI , Q̄ )-
issipativity]. The theorem also offers a necessary and sufficient
MI condition to be satisfied by TD-IONI(δ,ε,α,β) systems. This
MI condition can be considered as a state-space characterisation
or such systems and is useful for checking the strict/non-strict
D-IONI(δ,ε,α,β) properties of a given LTI system.

heorem 2. Consider the cascaded systems interconnection M̄, as

hown in Fig. 4 and mathematically described in (12), where M is a

6

finite-dimensional, causal, square and initially relaxed system having
a minimal state-space realisation (A, B, C,D), λi[A] ∈ C̄−

∀i and
D = D⊤. Define ȳ = y − Du and ū = L −1

[fs(s)Im] ⋆ u where
fs(s) ∈ RH ∞ is defined in (11) and has a minimal state-space
representation (Af , Bf , Cf ,Df ). Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N.
Then, the following statements are equivalent:

I. M is (ΣIONI , Q̄ )-dissipative where ΣIONI has the real, ra-
tional transfer function matrix representation ΣIONI (s) =[ sIm 0

0 fs(s)Im
0 Im

]
and Q̄ =

[
−δIm 0 Im
0 −εIm 0
Im 0 0

]
;

II. there exists P = P⊤
≥ 0 such that∏

≥ 0 (13)

where

∏
= −

⎡⎢⎢⎢⎣
PA + A ⊤P +

δC ⊤

1 C1 + εC ⊤

2 C2

PB − C ⊤

1 +

δC ⊤

1 D1 + εC ⊤

2 D2

B⊤P − C1 +

δD⊤

1 C1 + εD⊤

2 C2

−D1 − D⊤

1 +

δD⊤

1 D1 + εD⊤

2 D2

⎤⎥⎥⎥⎦ ;

(14)

III. M is TD-IONI(δ,ε,α,β).

Note that the storage function in Part I and Part III can be chosen

as V (x̄) = x̄⊤P x̄, where x̄ =

[
x
xs

]
∈ Rn+n̂, with P = P⊤

≥ 0

obtained from Part II.

Proof. Let there exist δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N.
I ⇒ II: The proof proceeds through the following set of state-

ments:
M is (ΣIONI , Q̄ )-dissipative with respect to

ΣIONI (s) =

[ sIm 0
0 fs(s)Im
0 Im

]
and Q̄ =

[
−δIm 0 Im
0 −εIm 0
Im 0 0

]
⇔ there exists a C1 storage function V (x̄) = x̄⊤P x̄ with P =

P⊤
≥ 0 such that z⊤Q̄ z ≥ V̇ (x̄) where x̄ =

[
x
xs

]
[using

Definition 6]
⇔ there exists P = P⊤

≥ 0 such that

[
˙̄y⊤ ū⊤ u⊤

] [
−δIm 0 Im
0 −εIm 0
Im 0 0

]⎡⎣ ˙̄y
ū
u

⎤⎦
≥ ˙̄x⊤P x̄ + x̄⊤P ˙̄x

⇔ there exists P = P⊤
≥ 0 such that

[
x̄⊤ u⊤

]∏[
x̄
u

]
≥

0 where x̄ ∈ Rn+n̂ is evaluated along the trajectories of M̄
subject to any admissible input u ∈ Lm

2e [upon expanding
the term ˙̄y = CAx + CBu]

⇒ there exists P = P⊤
≥ 0 such that

∏
≥ 0 [following the

necessity part of the proof of Bhowmick and Lanzon (2019,
Theorem 2)].

I ⇐ II: We have the following arguments:

There exists P = P⊤
≥ 0 such that

∏
≥ 0

⇔ there exists P = P⊤
≥ 0 such that[

x̄⊤ u⊤
]∏[

x̄
u

]
≥ 0 for all

[
x̄
u

]
∈ Rn+n̂+m

⇔ there exists P = P⊤
≥ 0 such that
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2(CAx + CBu)⊤u − δ(CAx + CBu)⊤(CAx + CBu)

− εū⊤ū ≥ x̄⊤(PA + A ⊤P)x̄ + 2x̄⊤PBu

for all x̄ ∈ Rn+n̂ and all u ∈ Rm

⇒ there exists P = P⊤
≥ 0 such that a C1 storage

function V (x̄) = x̄⊤P x̄ satisfies z⊤Q̄ z ≥ V̇ (x̄) where

z =
[

˙̄y⊤ ū⊤ u⊤
]⊤ is evaluated along the trajec-

tories of M̄ subject to any admissible input u ∈ Lm
2e

⇔ M is
(
ΣIONI , Q̄

)
-dissipative

[via Definitions 3 and 6].

II ⇒ III: We have the following set of implications.

There exists P = P⊤
≥ 0 such that

∏
≥ 0

⇒ there exists P = P⊤
≥ 0 such that a C1 storage

function V (x̄) = x̄⊤P x̄ satisfies 2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y

− εū⊤ū ≥ V̇ (x̄) where ˙̄y, x̄ and ū are evaluated

along the trajectories of M̄ subject to any
admissible input u ∈ Lm

2e [following
the proof of the part (I ⇐ II) on noting that

z⊤Q̄ z = 2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū]

⇔ there exist a C1 storage function V (x̄) = x̄⊤P x̄

with P = P⊤
≥ 0 such that M̄ satisfies∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ V (x̄(T )) − V (x̄(0))

for all T ∈ [0, ∞) and any admissible u ∈ Lm
2e

⇒

∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ 0 for all T ∈ [0, ∞)

and any admissible u ∈ Lm
2e [since V (x̄(T )) ≥ 0

∀T ∈ [0, ∞) and V (x̄(0)) = V (0) = 0]
⇔ M is TD-IONI(δ,ε,α,β) [via Definition 7].

II ⇐ III: This part follows directly from Theorem 3 derived in
Section 4.

Combining all the above arguments, it can be assured that
Part I ⇔ Part II ⇔ Part III. This completes the proof. ■

3.3. TD-IONI(δ,ε,α,β) lemma

This subsection utilises the LMI condition given in Part II
of Theorem 2, referred to as TD-IONI(δ,ε,α,β) lemma from now
onwards, for checking the strict/non-strict properties of a given
TD-IONI(δ,ε,α,β) system depending on the definiteness of the so-
lution matrix P = P⊤

≥ 0, the values of the parameters δ ≥ 0,
ε ≥ 0, α ∈ N, β ∈ N and the type of stability (i.e. whether λi[A]

belong to C− or C̄− for all i) of the system under consideration.

Lemma 2 (TD-IONI(δ,ε,α,β) Lemma). Let M be a finite-dimensional,
causal, square and initially relaxed system having a minimal state-
space representation (A, B, C,D) where D = D⊤ and λi[A] ∈ C̄−

∀i.
Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Let (Af , Bf , Cf ,Df ) be a minimal
state-space representation of fs(s) ∈ RH ∞, as defined in (11).

Define

[
A B

C1 D1
C2 D2

]
=

⎡⎢⎣ A 0 B
0 Im ⊗ Af Im ⊗ Bf
CA 0 CB
0 Im ⊗ Cf Im ⊗ Df

⎤⎥⎦. Then, M is

D-IONI(δ,ε,α,β) if and only if there exists P = P⊤
≥ 0 such that∏

≥ 0, where
∏

was defined in (14).

Proof. The proof directly follows from Theorem 2. ■
7

3.4. Numerical examples

In this subsection, we will study several illustrative numer-
ical examples after presenting an LMI-based state-space char-
acterisation (i.e. the TD-IONI(δ,ε,α,β) lemma) for the full class of
TD-IONI(δ,ε,α,β) systems to classify the strict/non-strict
TD-IONI(δ,ε,α,β) properties, as portrayed in the Venn diagram in
Fig. 3. Note that the time-domain inequality (9) can also be used
to test the TD-IONI(δ,ε,α,β) properties of a given system. For conve-
nience, it is also possible to consider the strictness parameters (δ
and ε) separately, one at a time, as explained in the next lemma.
However, for higher-order and MIMO systems, it requires a lot
of manual effort. In such cases, the LMI condition (13) is the
best option for checking the TD-IONI(δ,ε,α,β) properties of a given
system based on its minimal state-space realisation.

Lemma 3. Let α ∈ N, β ∈ N, δ0 > 0 and ε0 > 0. Let
M(s) ∈ TD-IONI(δ0,0,α,β) and M(s) ∈ TD-IONI(0,ε0,α,β). Then, M(s) ∈

TD-IONI(δ,ε,α,β) for all δ ∈
[
0, 1

2δ0
]
and all ε ∈

[
0, 1

2ε0
]
.

roof. Since
∫ T
0 (2 ˙̄y⊤u−δ0 ˙̄y⊤ ˙̄y) dt ≥ 0 and

∫ T
0 (2 ˙̄y⊤u−ε0ū⊤ū) dt ≥

for all T ∈ [0, ∞) and all admissible u ∈ Lm
2e, it easily follows

hat
∫ T
0 2 ˙̄y⊤u dt =

∫ T
0

˙̄y⊤u dt +
∫ T
0

˙̄y⊤u dt ≥
1
2δ0

∫ T
0

˙̄y⊤ ˙̄y dt +

1
2ε0

∫ T
0 ū⊤ū dt ≥ δ

∫ T
0

˙̄y⊤ ˙̄y dt + ε
∫ T
0 ū⊤ū dt , for δ ∈ [0, 1

2δ0] and
∈ [0, 1

2ε0]. This completes the proof. ■

xample 1. Consider M1(s) =
1 − 2
2 + s

[
2 1
1 2

]
with a min-

imal
[

A B
C D

]
=

⎡⎢⎣ −2 0 4 0
0 −2 0 4
1.5 0.75 −2 −1
0.75 1.75 −1 −2

⎤⎥⎦. To test the

trict/non-strict TD-IONI(δ,ε,α,β) properties of M1, we apply the
TD-IONI(δ,ε,α,β) lemma and obtain a feasible solution P =

0.97 0.39 −0.45 −0.02
0.39 0.97 −0.02 −0.45

−0.45 −0.02 0.90 0.05
−0.02 −0.45 0.05 0.90

⎤⎥⎦ > 0 with δ = 0.1978

and ε = 0.3447 when the filter function fs(s) is constructed with
α = 1 and β = 1. This indicates that M1 is a TD-VSNI system with
α = 1 and β = 1. Hence, M1 belongs to the stable VSNI subset
(see the Venn diagram in Fig. 3).

Example 2. Let M2(s) =
2s2 + 10s + 22

s4 + 10s3 + 38s2 + 56s + 40
with a

inimal state-space realisation. M2 satisfies the TD-IONI(δ,ε,α,β)
emma (i.e. Lemma 2) with P =

2.61 2.05 2.59 0.56 −0.61 −0.45
2.05 3.02 3.44 1.32 −0.80 −0.80
2.58 3.44 6.21 2.71 −1.21 −1.54
0.56 1.32 2.71 2.92 −0.56 −1.65

−0.61 −0.80 −1.21 −0.56 0.61 0.45
−0.45 −0.80 −1.54 −1.65 0.45 1.32

⎤⎥⎥⎥⎥⎥⎦ > 0,

δ = 1.8593 and ε = 0.1829 when α = 2 and β = 1. This implies
that M2 is a stable TD-VSNI system with α = 2 and β = 1 (see
the Venn diagram in Fig. 3).

Example 3. Let M3(s) =
s2 + 8

s4 + s3 + 25s2 + 8s + 100
with a

inimal state-space realisation. Similar to the previous examples,
e apply the LMI condition (13) to check the strict/non-strict IONI
roperties of M3. We obtain i)

=

⎡⎢⎢⎢⎣
4.03 0.10 4.05 0.10 −0.02
0.10 4.59 0.16 3.45 −0.05
4.05 0.16 6.32 0.15 −0.02
0.10 3.45 0.15 3.44 −0.05

⎤⎥⎥⎥⎦ > 0 with
−0.02 −0.05 −0.02 −0.05 0.01
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= 1.0459 and ε = 0 when (α = 1, β = 1) and ii)

=

⎡⎢⎢⎢⎢⎢⎣
4.17 0.26 4.26 0.23 −0.08 −0.04
0.26 4.88 0.40 3.73 −0.13 −0.10
4.26 0.40 6.64 0.36 −0.13 −0.06
0.23 3.73 0.36 3.71 −0.12 −0.09

−0.08 −0.13 −0.13 −0.12 0.04 0.02
−0.04 −0.10 −0.06 −0.09 0.02 0.02

⎤⎥⎥⎥⎥⎥⎦ >

with δ = 0.8299 and ε = 0 when (α = 2, β = 1).
he end result signifies that M3 is a stable TD-OSNI system
i.e. TD-IONI(δ>0,ε=0,α∈N,β∈N) system) that is not TD-VSNI.

xample 4. Consider M4(s) =
4000(s + 4)
s2 + 8s + 32

with a minimal

A B
C D

]
=

[ 0 1 0
−1 −2 1
1 2 0

]
. LMI (13) gives a feasible solu-

ion set P =

⎡⎢⎣ 15.14 3.36 1.65 4.36
3.36 2.15 −1.25 −1.54
1.65 −1.25 9.98 10.00
4.36 −1.54 10.00 12.34

⎤⎥⎦ > 0, δ = 0

nd ε = 0.8086 to this system when α = 1 and β = 2. However,
t is verified that (13) does not give a feasible P > 0 with both
> 0 and ε > 0 for any valid combinations of (α, β). This implies
hat M4 is a stable TD-ISNI system but not TD-VSNI.

xample 5. Take M5(s) =
2s2 + s + 1

(s + 1)(2s + 1)(s2 + 2s + 5)
having a

inimal state-space representation

A B
C D

]
=

⎡⎢⎢⎢⎣
−3.5 −2.125 −1.063 −0.625 0.5
4 0 0 0 0
0 2 0 0 0
0 0 0.5 0 0
0 0.5 0.125 0.25 0

⎤⎥⎥⎥⎦.

e apply the TD-IONI(δ,ε,α,β) lemma to this system subject to
he most popular combinations of the input filter parameters
α = 1, β = 1), (α = 2, β = 1) and (α = 1, β = 2). But,
none of them offered a feasible P ≥ 0 enforcing δ > 0 and/or
ε > 0. However,M5 satisfies the LMI condition, given in (13), with

P =

⎡⎢⎢⎢⎣
43.76 25.35 30.07 24.85 −19.88
25.35 17.97 19.17 16.16 −12.43
30.07 19.17 22.74 18.79 −14.91
24.85 16.16 18.79 15.84 −12.43

−19.88 −12.43 −14.91 −12.43 9.94

⎤⎥⎥⎥⎦ > 0,

δ = 0 and ε = 0 when (α = 1, β = 1). Same results were
obtained for the other two combinations (α = 2, β = 1) and
(α = 1, β = 2) [although the P matrices in these cases were
numerically different]. These observations underpin that M5 is a
non-strict stable NI system (i.e. TD-IONI(δ=0,ε=0,α∈N,β∈N)).

Example 6. Following the same type of analysis as done in

Examples 1–5, we find that a single integrator system M6(s) =
1
s

satisfies Lemma 2 with P =

[
0.00 0.00
0.99 1.17

]
≥ 0, δ = 0.6728

and ε = 0.5485 when (α = 1, β = 1). Similarly, the system

M7(s) =
s + 4

s(s + 2)
satisfies the TD-IONI(δ,ε,α,β) lemma with P =

10.07 0.00 −14.34
0.00 0.00 0.00

−14.34 0.00 24.76

]
≥ 0, δ = 0.1462 and ε = 0.6263

hen (α = 1, β = 1). Same observation was made when (α =

, β = 1) and (α = 1, β = 2). Hence, we can conclude that both
6 and M7 belong to a subset of TD-VSNI systems that allows a
imple pole at s = 0.

xample 7. Finally, we choose two other types of TD-IONI sys-

ems: a double integrator M8(s) =
1

and a lossless NI system

s2

8

M9(s) =
1

s2 + 1
. We verify that both M8 and M9 fall within the

non-strict TD-IONI systems having poles on the jω axis, including
the origin.

4. Connections between the TD-IONI systems property and
classical dissipativity

In this section, we will establish that for an initially relaxed
TD-IONI(δ,ε,α,β) system with a controllable state-space, there al-
ways exists a positive semidefinite storage function V (x̄) such that
the cascaded system M̄ (in Fig. 4) satisfies the dissipation inequal-
ity (3) with a particular time-domain supply rate w(u, ū, ˙̄y) =

2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū for some δ ≥ 0 and ε ≥ 0. Here ȳ =

y − M(∞)u is defined as an auxiliary output of M and ū is a
filtered auxiliary input chosen as the inverse Laplace of Ū(s) =

[fs(s)Im]U(s) where U(s) = L [u(t)] and fs(s) ∈ RH ∞ is defined
n (11).

heorem 3. Let M be a finite-dimensional, causal, square and ini-
ially relaxed system governed by the minimal state-space equations
˙ = Ax + Bu and y = Cx + Du, where D = D⊤ and λi[A] ∈ C̄−

∀i.
et the associated transfer function matrix be M(s) ∈ Rm×m. Define

¯ = y−Du and ū = L −1
[fs(s)Im]⋆u where fs(s) ∈ RH ∞ is defined

n (11). Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Then, the cascaded
ystem M̄ (comprised of M and ΣIONI ) in Fig. 4 is dissipative with
espect to the supply rate w(u, ū, ˙̄y) = 2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū if and
nly if M is a TD-IONI(δ,ε,α,β) system.

roof. In this proof, we will consider the combined state tra-

ectory x̄ =

[
x
xs

]
∈ Rn+n̂ where x ∈ Rn and xs ∈ Rn̂

enote respectively the states of the systemM and the input filter
unction fs(s). Note that xs is required to be included because the
ilter dynamics is directly involved in the dissipation inequality.

(Sufficiency:) To show that the combined system M̄ in Fig. 4
s dissipative with respect to the supply rate w(u, ū, ˙̄y) = 2 ˙̄y⊤u−
˙̄y⊤ ˙̄y − εū⊤ū, we have to establish that there exists a storage
unction V : Rn+n̂

→ R≥0 with V (0) = 0 such that M̄ satisfies
he dissipation inequality (3). Since the state-space is assumed to
e completely controllable, there exists an admissible input u(t)
efined as

(t) =

{ 0 when t < t−1,

ũ(t) when t−1 ≤ t ≤ 0,
0 when t > 0,

hich steers the system from x̄(t−1) = 0 to any x̄(0) ∈ Rn+n̂. In
his proof, let y(t) be the output of M and define ȳ = y−Du where
= M(∞) = D⊤. Now,∫ 0

t−1

w(u, ū, ˙̄y) dt =

∫ 0

t−1

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt

=

∫ T

t−1

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt + δ

∫ T

0

˙̄y⊤ ˙̄y dt

+ ε

∫ T

0
ū⊤ū dt ∀T ∈ [0, ∞)

[since M is causal and time-invariant]

≥

∫ T

t−1

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ∀T ∈ [0, ∞)

[since δ ≥ 0 and ε ≥ 0]

=

∫ T̄

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dτ ≥ 0 ∀T̄ ∈ [0, ∞)
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v
t
t

(

⇔

⇒

ia Definition 4 and applying a change of the time variable τ =

− t−1 where −∞ < t−1 ≤ 0 and denoting T̄ = T −

−1. Hence, for arbitrary t−1 ≤ 0 and x̄(t−1) = 0 we have,∫ 0
t−1

w(u, ū, ˙̄y) dt ≥ 0. We now construct the required supply

function as Vr (x̄) = inf x̄∗= 0→ x̄
u(·), t−1≤0

∫ 0
t−1

w(u, ū, ˙̄y) dt ≥ 0 follow-

ing Morris and Juang (1994), where origin is the point of mini-
mum storage (i.e., x̄∗

= 0). Therefore, Vr (x̄) can be considered as
a suitable storage function candidate for M̄ (comprised of M and
ΣIONI ).

It remains to be shown that Vr (x̄) satisfies the dissipation
inequality (3). Note that in taking the system from x̄ = 0 at
t = 0 to x̄1 ∈ Rn+n̂ at t = t1, we could first take it to
x̄0 ∈ Rn+n̂ at time t0 while minimising the energy, and then
take it to x̄1 at time t1 along the path for which the dissipation
inequality is to be evaluated. This is possible since M̄ is a time-
invariant system. As Vr (x̄1) represents the infimum amount of
energy required to reach x̄1 at t = t1 from x̄ = 0 at t = 0, energy
required to reach the same destination x̄1 from the same starting
point x̄ = 0 via any other path will be greater than or equal to
Vr (x̄1). Therefore, Vr (x̄0)+

∫ t1
t0

w(u, ū, ˙̄y) dt ≥ Vr (x̄1) follows. It can
hence be concluded that the cascaded interconnection M̄ in Fig. 4,
comprised of the TD-IONI(δ,ε,α,β) system M and the LTI operator
ΣIONI , is dissipative with respect to the supply rate w(u, ū, ˙̄y) =

2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū.
(Necessity:) Let M̄ be dissipative with respect to the supply

rate w(u, ū, ˙̄y) = 2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū. Hence, there exists
a storage function V : Rn+n̂

→ R≥0 with V (0) = 0 such
that V (x̄(0)) +

∫ T
0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ V (x̄(T )) for all

T ∈ [0, ∞) and all u ∈ Lm
2e. The preceding inequality implies∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ 0 for all T ∈ [0, ∞) and all

admissible u ∈ Lm
2e, which confirms that the system M in Fig. 4 is

TD-IONI(δ,ε,α,β) via Definition 7.
The Necessity and the Sufficiency parts together complete the

proof. ■

Relying on Theorem 3, we can recommend a time-domain
dissipation inequality (in Willems’s framework (Willems, 1972))
for defining TD-IONI(δ,ε,α,β) systems involving a storage function
V : Rn+n̂

→ R≥0 satisfying

V (x̄(0)) +

∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ V (x̄(T )) (15)

for all T ∈ [0, ∞) and all admissible u ∈ Lm
2e, and where x̄ =[

x
xs

]
denotes the combined state trajectory of the cascaded

system M̄ shown in Fig. 4.

Remark 3. Theorems 2 and 3 establish the equivalence among
the TD-IONI(δ,ε,α,β) systems property, the TD-IONI(δ,ε,α,β) lemma,(
ΣIONI , Q̄

)
-dissipativity and time-domain dissipativity with re-

spect to the supply rate w(u, ū, ˙̄y), where ȳ = y − Du and
ū = L −1

[fs(s)Im] ⋆ u with fs(s) ∈ RH ∞ being defined in (11).
We can now readily conclude that a finite-dimensional, causal,
square and initially relaxed system M having a minimal state-
space realisation is TD-IONI(δ,ε,α,β) ⇔ there exists P = P⊤

≥ 0
such that

∏
≥ 0 [given in (13)] ⇔ the cascade combination M̄ in

Fig. 4, comprised of M and ΣIONI , is
(
ΣIONI , Q̄

)
-dissipative where

ΣIONI (s) =

[ sIm 0
0 fs(s)Im
0 Im

]
and Q̄ =

[
−δIm 0 Im
0 −εIm 0
Im 0 0

]
⇔

the same M̄ in Fig. 4 is time-domain dissipative (in Willems’s
framework (Willems, 1972)) with respect to the supply rate
w(u, ū, ˙̄y) = 2 ˙̄y⊤u− δ ˙̄y⊤ ˙̄y− ε ū⊤ū and a specific storage function

¯ ¯⊤ ¯
∏

V (x) = x Px with P ≥ 0 being the solution of ≥ 0.

9

5. Frequency-domain dissipative characterisation of the
TD-IONI systems

This section presents another significant contribution of this
paper. It develops a frequency-domain dissipative framework for
characterising the full class of the TD-IONI(δ,ε,α,β) systems in
contrast to the related earlier results reported in Bhowmick and
Lanzon (2019), Das et al. (2013, 2014, 2015) and Patra and Lan-
zon (2011) where (Q (ω), S(ω), R(ω))-dissipativity was used only
for stable IONI systems. (Q (ω), S(ω), R(ω))-dissipativity cannot
capture the marginally-stable systems because the frequency-
domain dissipation inequality involves frequency-domain inte-
grals having limits from −∞ to ∞ and hence, restricts the system
transfer function to be stable and the admissible inputs to be L2-
bounded (i.e. all finite-energy signals). Another discrepancy arises
between the time-domain and the frequency-domain dissipative
approaches due to the fact that while the former allows L2e
signals, the latter allows only L2 (equivalent to L2(jR)) signals.

To circumvent the aforementioned limitations and discrepan-
cies, in this section, we develop the idea of ‘‘shifted (Qa(ω), Sa(ω),
Ra(ω))-dissipativity’’ (discussed at the end of Section 2.2 on page
4) instead of the conventional (Q (ω), S(ω), R(ω))-dissipativity.
Furthermore, to make both the time-domain and frequency-
domain dissipative frameworks compatible, we choose to restrict
the time-domain input space to L2. Theorem 4 proves that the
class of TD-IONI systems including the ones that contain poles on
the jω-axis for ω ∈ R, satisfies the ‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-
dissipative’’ property where Qa(ω) = Qa(ω)⊤ ∈ Rm×m, Sa(ω) ∈

Cm×m, Ra(ω) = Ra(ω)⊤ ∈ Rm×m
∀ω ∈ R and the parameter

a is chosen such that a > 0 when the system has at least one
pole (or a pole-pair) on the jω-axis, otherwise a = 0 (i.e. when
M(s) ∈ RH ∞).

Theorem 4. Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Let M(s) ∈ Rm×m

be the transfer function matrix of an initially relaxed TD-IONI(δ,ε,α,β)
system M having a minimal state-space representation (A, B, C,D)
with D = M(∞) = D⊤. Choose a > 0 when maxi ℜ{λi[A]} = 0,
or else a = 0. Then, M is ‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-dissipative’’
with Qa(ω) = −δ (a2+ω2)Im, Sa(ω) = (a− jω)Im+δ (a2+ω2)D and
Ra(ω) = −a(D + D⊤) − δ (a2 + ω2)D⊤D − ε{fs(a − jω)fs(a + jω)}Im
∀ω ∈ R where fs(s) ∈ RH ∞ is defined in (11).

Proof. We begin the proof on noting that y = L −1
[M(s)] ⋆ u,

ȳ = y − Du where D = M(∞) = D⊤ and ū = L −1
[fs(s)Im] ⋆ u

with u ∈ Lm
2 and fs(s) ∈ RH ∞ be defined as in (11). The

proof proceeds through a sequence of mathematical arguments
in which improper frequency-domain integrals having limits from
−∞ to ∞ are considered being inspired by similar instances as
reported in Griggs et al. (2007) and Patra and Lanzon (2011).

Case I. LetM(s) contain pole(s) on the jω-axis for ω ∈ R. In this
part of the proof, Y (a+jω), Ȳ (a+jω), U(a+jω) denote respectively
the Fourier Transform of the real-valued time-domain signals
e−aty(t), e−at ȳ(t), e−atu(t) for all t ≥ 0 and for a specific a > 0
Oppenheim, Willsky, & Nawab, 1997).

M is TD-IONI(δ,ε,α,β)

there exists V : Rn+n̂
→ R≥0 with V (0) = 0 such that∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − ε ū⊤ū

)
dt ≥ V (x̄(T )) − V (x̄(0))

for all T ∈ [0, ∞) and all admissible inputs u ∈ Lm
2

[utilising Theorem 3]∫ T

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − ε ū⊤ū

)
dt ≥ 0 for all T ∈ [0, ∞)

m
and all admissible inputs u ∈ L2
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⇔

⇔

⇔

⇔

⇒

n

)-

ε

t
e
e

f
b
u
a
i

T
a
D
s
d

R

[since V (x̄(T )) ≥ 0 for all T ∈ [0, ∞) and V (0) = 0]

⇒

∫
∞

0
e−2at (2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − ε ū⊤ū

)
dt ≥ 0

for all admissible inputs u ∈ Lm
2 [choosing

a > 0 when max
i

ℜ{λi[A]} = 0; or else a = 0.]

⇔

∫
∞

0

[
2(e−at ˙̄y)⊤(e−atu) − δ (e−at ˙̄y)⊤(e−at ˙̄y) − ε (e−at ū)⊤

(e−at ū)
]
dt ≥ 0 for all admissible inputs u ∈ Lm

2

⇔
1
2π

∫
∞

−∞

(a − jω)Ȳ (a + jω)∗U(a + jω) dω +

1
2π

∫
∞

−∞

(a + jω)U(a + jω)∗Ȳ (a + jω) dω −

1
2π

∫
∞

−∞

δ (a2 + ω2)Ȳ (a + jω)∗Ȳ (a + jω) dω −

1
2π

∫
∞

−∞

ε Ū(a + jω)∗Ū(a + jω) dω ≥ 0

for all admissible U ∈ L m
2 (a + jR)

[using the result (a + jω)Y (a + jω) = F [e−at ẏ(t)] for a
specific a > 0 such that Y (a + jω) exists
∀ω ∈ R (Oppenheim et al., 1997)]
1
2π

∫
∞

−∞

(a − jω)
[ [

Y (a + jω)∗ − U(a + jω)∗D⊤
]
×

U(a + jω)
]
dω +

1
2π

∫
∞

−∞

(a + jω)
[
U(a + jω)∗

[Y (a + jω) − DU(a + jω)]
]
dω −

1
2π

∫
∞

−∞

[
δ (a2+

ω2) {Y (a + jω)∗ − U(a + jω)∗D⊤
}{Y (a + jω)−

DU(a + jω)}
]
dω −

1
2π

∫
∞

−∞

[
ε U(a + jω)∗

{fs(a − jω)fs(a + jω)}Im U(a + jω)
]
dω ≥ 0

for all admissible U ∈ L m
2 (a + jR)∫

∞

−∞

[
(a − jω)Y (a + jω)∗U(a + jω) + (a − jω)

U(a + jω)∗Y (a + jω) − aU(a + jω)∗(D + D⊤)

U(a + jω) − δ (a2 + ω2)Y (a + jω)∗Y (a + jω)+

δ (a2 + ω2)U(a + jω)∗D⊤Y (a + jω) + δ (a2 + ω2)

Y (a + jω)∗DU(a + jω) − δ (a2 + ω2)U(a + jω)∗

D⊤DU(a + jω) − εU(a + jω)∗{fs(a − jω)

fs(a + jω)}Im U(a + jω)
]

dω ≥ 0

for all admissible U ∈ L m
2 (a + jR)

1
2π

∫
∞

−∞

[
Y (a + jω)∗ U(a + jω)∗

]
×⎡⎢⎢⎢⎢⎢⎣

−δ (a2 + ω2)Im
(a − jω)Im+

δ (a2 + ω2)D

(a + jω)Im+

δ (a2 + ω2)D⊤

−a(D + D⊤)
−δ (a2 + ω2)D⊤D

−ε{fs(a − jω)
fs(a + jω)}Im

⎤⎥⎥⎥⎥⎥⎦×

[
Y (a + jω)

]
dω ≥ 0
U(a + jω)

10
for all admissible U ∈ L m
2 (a + jR)

1
2π

∫
∞

−∞

[
Y (a + jω)∗ U(a + jω)∗

] [
Qa(ω) Sa(ω)
Sa(ω)∗ Ra(ω)

]
×[

Y (a + jω)
U(a + jω)

]
dω ≥ 0

for all admissible U ∈ L m
2 (a + jR) denoting Qa(jω)

= −δ (a2 + ω2)Im, Sa(jω) = (a − jω)Im + δ (a2+

ω2)D and Ra(jω) = −a(D + D⊤) − δ (a2 + ω2)×

D⊤D − ε{fs(a − jω)fs(a + jω)}Im.

Case II. Let M(s) ∈ RH m×m
∞

. Then,

M is stable TD-IONI(δ,ε,α,β)

1
2π

∫
∞

−∞

[
Y (jω)∗ U(jω)∗

] [
Q (ω) S(ω)
S(ω)∗ R(ω)

][
Y (jω)
U(jω)

]
dω ≥ 0 for all admissible U ∈ L m

2 (jR) and

denoting Q (ω) = −δω2Im, S(ω) = −jωIm + δ ω2D

and R(ω) = −δ ω2D⊤D − ε

(
ω2β

1 + ω2(α+β−1)

)
Im

∀ω ∈ R [follows directly from Case I on setting a = 0].

Case I and Case II together complete the proof. ■

5.1. Frequency-domain dissipativity of stable TD-IONI systems: A
ecessary and sufficient result

For stable systems, the proposed idea of ‘‘shifted (Qa(ω), Sa(ω),
Ra(ω))-dissipativity’’ boils down to the conventional (Q (ω), S(ω),
R(ω))-dissipativity. This subsection shows that for stable
TD-IONI(δ,ε,α,β) systems, the notion of ‘‘shifted (Qa(ω), Sa(ω), Ra(ω)
dissipativity’’ is not only a sufficient-type result, implied by the
time-domain dissipative supply rate w(u, ū, ˙̄y) = 2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y −

ū⊤ū, but it is also a necessary and sufficient property. To prove
his claim, we will specialise the time-domain dissipation in-
quality (15) for stable IONI(δ,ε,α,β) systems as follows: there
xists a storage function V : Rn+n̂

→ R≥0 such that

V (x̄(0)) +

∫
∞

0

(
2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − εū⊤ū

)
dt ≥ V (x̄(∞)) (16)

or all admissible u ∈ Lm
2 , since ˙̄y = Cẋ = CAx + CBu now

elongs to the space Lm
2 as x ∈ Ln

2 subject to u ∈ Lm
2 and since

¯ ∈ Lm
2 . Note also that x̄(∞) exists and is finite, since both M(s)

nd fs(s) belong to RH ∞. Therefore, V (x̄(∞)) does also exists and
s a finite quantity.

heorem 5. Let M(s) ∈ RH m×m
∞

be the transfer function matrix of
finite-dimensional, causal and initially relaxed system M. Define
= M(∞). Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Then, M is a

table TD-IONI(δ,ε,α,β) system if and only if M is (Q (ω), S(ω), R(ω))-
issipative with Q (ω) = −δω2Im, S(ω) = −jωIm + δω2D and

(ω) = −δω2D⊤D − ε

(
ω2β

1 + ω2(α+β−1)

)
Im ∀ω ∈ R.

Proof. First note that M(s) belongs to the stable TD-IONI(δ,ε,α,β)
class implies that M(s) is stable NI according to Definition 1,
which in turn implies D = M(∞) = D⊤ (Lanzon & Petersen,
2008). Let fs(s) be defined as in (11), y = L −1

[M(s)]⋆u, ȳ = y−Du
and ū = L −1

[fs(s)Im] ⋆ u with u ∈ Lm
2 . Then,

M(s) is stable TD-IONI(δ,ε,α,β)

⇔

∫
∞ (

2 ˙̄y⊤u − δ ˙̄y⊤ ˙̄y − ε ū⊤ū
)
dt ≥ 0 ∀u ∈ Lm

2

0
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[via (16) and since V (x̄(∞)) = V (0) as x̄(∞) = 0]

⇔
1
2π

∫
∞

−∞

[
(jωȲ (jω))∗U(jω) + U(jω)∗(jωȲ (jω))−

δ (jωȲ (jω))∗(jωȲ (jω)) − ε Ū(jω)∗Ū(jω)
]
dω ≥ 0

∀U ∈ L m
2 (jR)

[by applying Parseval’s theorem (Brogliato et al., 2020)]

⇔
1
2π

∫
∞

−∞

[
Y (jω)∗(−δω2Im)Y (jω) + Y (jω)∗( − jωIm+

δω2D)U(jω) + U(jω)∗(jωIm + δω2D⊤)Y (jω) + U(jω)∗{
−δω2D⊤D − ε

(
ω2β

1 + ω2(α+β−1)

)
Im

}
U(jω) dω ≥ 0

∀U ∈ L m
2 (jR) [substituting Ȳ (jω) = Y (jω) − DU(jω)

and Ū(jω) = (fs(jω)Im)U(jω)]

⇔
1
2π

∫
∞

−∞

[
Y (jω)∗Q (ω)Y (jω) + Y (jω)∗S(ω)U(jω)+

U(jω)∗S(ω)∗Y (jω) + U(jω)∗R(ω)U(jω)
]
dω ≥ 0

∀U ∈ L m
2 (jR)

⇔ M is (Q (ω), S(ω), R(ω))-dissipative.

This completes the proof. ■

Remark 4. The ‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-dissipativity’’ can-
not explicitly recover the point-wise frequency-domain condition

jω[M(jω) − M(jω)∗] − δ ω2M̄(jω)∗M̄(jω) − ε

(
ω2β

1+ω2(α+β−1)

)
Im ≥

∀ω ∈ R because the frequencies at which M(jω) does not exist
annot be simply discarded from within the frequency-domain
ntegration having the range from −∞ to +∞. This issue has
een there in the NI literature right from the beginning, but it was
ot explored and investigated earlier. To bypass this limitation of
he frequency-domain definition, in the current paper, we have
roposed a stand-alone time-domain definition for IONI systems
ithout relying on the classical point-wise frequency-domain

nequality. However, for asymptotically stable IONI systems, it re-
overs the frequency-domain definition — as discussed in Case II
f Theorem 4.

. Asymptotic stability of a TD-ONI systems interconnection
ithout poles at the origin

In this section, we restrict the class of TD-IONI(δ,ε,α,β) systems
nto the TD-ONI5 (i.e. TD-IONI(δ≥0,ε=0,α,β)) subset without poles
t the origin, since such systems exhibit interesting closed-loop
tability properties when connected in a positive feedback loop.
heorem 6 will derive the internal asymptotic stability conditions
or a positive feedback interconnection (see Fig. 1) of a TD-ONI
ystem M without poles at the origin and a stable TD-OSNI
ystem N . Let M and N be described by the following state-space
quations:

:

{
ẋ1 = A1x1 + B1u1, x1,0 = x1(0);

y1 = C1x1 + D1u1;

nd

:

{
ẋ2 = A2x2 + B2u2, x2,0 = x2(0);

y2 = C2x2 + D2u2;

5 Note that for TD-ONI systems, that is TD-IONI(δ≥0,ε=0,α,β) , the parameters
and β become irrelevant since ε = 0 has been imposed. Accordingly, the

D-OSNI subset is also characterised with ε = 0 in this section.
11
here D1 = D⊤

1 , D2 = D⊤

2 , det[A1] ̸= 0 and A2 is Hurwitz. Now,
by specialising the dissipative characterisation of TD-IONI(δ,ε,α,β)
systems to TD-ONI systems without poles at the origin, we can
say that there exist two positive definite storage functions V1(x1)
nd V2(x2) such that M satisfies
˙̄y⊤

1 u1 − δ1 ˙̄y⊤

1
˙̄y1 ≥ V̇1(x1) (17)

or some δ1 ≥ 0 and N satisfies
˙̄y⊤

2 u2 − δ2 ˙̄y⊤

2
˙̄y2 ≥ V̇2(x2) (18)

or some δ2 > 0.
The following technical lemma is an essential prerequisite to

rove the internal asymptotic stability of an unforced TD-ONI
nterconnection without poles at the origin. Lemma 4 provides
he criteria to be imposed on the TD-ONI systems under consid-
ration to ensure that the feedback interconnection (Fig. 1) does
ot have any pole on the jω-axis for any ω ∈ (0, ∞).

emma 4 (Lanzon and Bhowmick (2023)). Let M(s) be a (not
ecessarily stable) TD-ONI system without poles at the origin and
(s) be a stable TD-OSNI system. Let [I−M(s)N(s)] have full normal
ank. Let Ω = {ω ∈ (0, ∞) : s = jω is not a pole of M(s)} and[
N(jω0) − N(jω0)∗

]
> 0 ∀ω0 ∈ (0, ∞)\Ω. (19)

inally, let there exist no ω ∈ Ω such that det[M(jω)−M(jω)∗] = 0
nd det[N(jω) − N(jω)∗] = 0. Then, [I − M(s)N(s)] does not have
ny transmission zero on the jω-axis for any ω ∈ (0, ∞).

Theorem 6 derives a set of sufficient conditions to ensure the
losed-loop asymptotic stability of the origin of an unforced pos-
tive feedback interconnection (see Fig. 1) of two TD-ONI systems
ithout any poles at the origin. In contrast to the conventional
pproach for proving the closed-loop stability results of inter-
onnected NI and SNI/OSNI systems, as followed in Lanzon and
howmick (2023), Lanzon and Chen (2017), Lanzon and Petersen
2008) and Xiong et al. (2010), this paper utilises a completely
ifferent approach relying on the dissipative characterisation of
he TD-ONI systems and the Lyapunov stability concept. Theo-
em 6 covers the stability proof for an NI-OSNI interconnection
refer to Case I of the proof of Theorem 6) as well as an NI-SNI
nterconnection (refer to Case II). In the context of proving the
tability of an NI-SNI interconnection using Lyapunov approach,
e want to refer to the proof of Ghallab, Mabrok, and Petersen
2017, Theorem 1), which followed a similar approach to us but
ome of the steps were conceptually incorrect [in (12), given in
age 3427 of Ghallab et al. (2017), V (0) = V (x0) = V (x(t = 0)) =

0 is taken to show ỹ2 = 0; however V (x0) cannot be zero since the
proof needs non-zero initial condition]. Our proof corrects that
part. Besides, the proposed theorem (Theorem 6) also removes
the restrictions D2 ≥ 0 and D1D2 = 0 used in Ghallab et al.
(2017, Theorem 1) to prove the closed-loop stability of an NI-
SNI interconnection. It therefore has the advantage of capturing
two bi-proper systems (for which D1D2 ̸= 0) together in an
interconnection.

Before presenting the theorem, we provide another technical
lemma that will be used in showing the positive definiteness of
the matrix T in (20) [appearing in the step (22)] required to
establish the positive definiteness of the closed-loop Lyapunov
function Vcl(x1, x2) in the proof of Theorem 6.

Lemma 5. Let M(s) and N(s) have minimal state-space realisations
(A1, B1, C1,D1) and (A2, B2, C2,D2) respectively, where D1 = D⊤

1 ,
D2 = D⊤

2 , det[A1] ̸= 0 and A2 is Hurwitz. Let also P1 = P⊤

1 > 0 and
P2 = P⊤

2 > 0. Denote V = I − D2D1 and U = I − D1D2. Then, the
matrix

T =

[
P1 − C⊤

1 D2U−1C1 −C⊤

1 V−1C2
⊤ −1 ⊤ −1

]
> 0 (20)
−C2 U C1 P2 − C2 U D1C2
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f and only if⎧⎨⎩
det[I − M(∞)N(∞)] ̸= 0,
λmax

[
(I − M(∞)N(∞))−1(M(∞)N(0) − I)

]
< 0,

λmax
[
(I − N(0)M(∞))−1(N(0)M(0) − I)

]
< 0.

(21)

Proof. The proof proceeds along a sequence of if and only if
matrix manipulations, as shown in the proof of Lanzon and Chen
(2017, Theorem 9), which took the inspiration from Lanzon and
Petersen (2008, Theorem 5). ■

Theorem 6. Let M(s) be a (not necessarily stable) TD-ONI system
without poles at the origin and N(s) be a stable TD-OSNI or an SNI
system. Let Ω = {ω ∈ (0, ∞) : s = jω is not a pole of M(s)} and
[N(jω0) − N(jω0)∗] > 0 ∀ω0 ∈ (0, ∞)\Ω . Suppose there exists
no ω ∈ Ω such that det[M(jω) − M(jω)∗] = 0 and det[N(jω) −

(jω)∗] = 0. Suppose further that (21) holds. Then, the unforced
ositive feedback interconnection of M(s) and N(s), shown in Fig. 1,

is internally asymptotically stable.

Proof. Let there exist two storage functions V1 = x⊤

1 P1x1 with
P1 = P⊤

1 > 0 and V2 = x⊤

2 P2x2 with P2 = P⊤

2 > 0 such that M
and N satisfy (17) and (18) respectively. Let M and N have min-
imal state-space realisations (A1, B1, C1,D1) and (A2, B2, C2,D2),
respectively, where D1 = D⊤

1 , D2 = D⊤

2 , det[A1] ̸= 0 and A2
s Hurwitz. In the following proof, we will use the shorthand

= I − D2D1 and U = I − D1D2.

Case I — When M(s) has poles on the imaginary axis and N(s) is
table TD-OSNI:
Suppose M(s) has K ∈ N non-repeated pole-pairs on the jω-

xis. The assumption j [N(jω0) − N(jω0)∗] > 0 ∀ω0 ∈ (0, ∞)\Ω
implies det[N(jω0)] ̸= 0 via Lemma 4 which in turn implies that
for all ω0 ∈ (0, ∞)\Ω , s = jω0 is not a transmission zero of
N(s). This hence prevents any pole-zero cancellation of M(s)N(s)
at s = jω0 for all ω0 ∈ (0, ∞)\Ω since N(s) has no poles nor
transmission zeros at s = jω0 for all ω0 ∈ (0, ∞)\Ω . For the rest
of the frequencies ω ∈ Ω , no pole-zero cancellation occurs since
N(s) ∈ RH m×m

∞
and M(s) does not have any pole at s = jω for all

ω ∈ Ω . Furthermore, for all {s ∈ C : ℜ[s] > 0}∪ {0}, no pole-zero
cancellation can occur in M(s)N(s) as N(s) ∈ RH ∞ and M(s) has
no poles in {s ∈ C : ℜ[s] > 0} ∪ {0}. Hence, M(s)N(s) has no
pole-zero cancellation in the entire closed right-half plane.

Now, a specific storage function Vcl(x1, x2) is defined for the
closed-loop system and expanded as shown below:

Vcl(x1, x2)

= V1(x1) + V2(x2) − y⊤

1 y2 − ȳ⊤

1 ȳ2 + y⊤

1 D2D1y2
= x⊤

1 P1x1 + x⊤

2 P2x2 − y⊤

1 Vy2 − ȳ⊤

1 ȳ2

= x⊤

1 P1x1 + x⊤

2 P2x2−
[
x⊤

1 C
⊤

1 U−⊤C2x2+

x⊤

2 C
⊤

2 D⊤

1 U
−⊤C2x2 + x⊤

1 C
⊤

1 U−⊤D2C1x1+

x⊤

2 C
⊤

2 D⊤

1 U
−⊤D2C1x2

]
−x⊤

1 C
⊤

1 C2x2

= x⊤

1 P1x1 + x⊤

2 P2x2 − x⊤

1 C
⊤

1 U−⊤C2x2−

x⊤

2 C
⊤

2 D⊤

1 U
−⊤C2x2 − x⊤

1 C
⊤

1 U−⊤D2C1x1−

x⊤

1 C
⊤

1 [I + D⊤

2 U
−1D1]C2x2

= x⊤

1 P1x1 + x⊤

2 P2x2 − x⊤

1 C
⊤

1 U−⊤C2x2−

x⊤

2 C
⊤

2 D⊤

1 U
−⊤C2x2 − x⊤

1 C
⊤

1 U−⊤D2C1x1−

x⊤

1 C
⊤

1

[
(I − D2D1)−1(I − D2D1)+

D2(I − D1D2)−1D1
]
C2x2

= x⊤P x + x⊤P x − x⊤C⊤U−⊤C x −
1 1 1 2 2 2 1 1 2 2

12
x⊤

2 C
⊤

2 D⊤

1 U
−⊤C2x2 − x⊤

1 C
⊤

1 U−⊤D2C1x1−

x⊤

1 C
⊤

1 V−1C2x2
[since D2(I − D1D2)−1D1 = (I − D1D2)−1D2D1]

=
[

x⊤

1 x⊤

2

] [
P1 − C⊤

1 D2U−1C1 −C⊤

1 V−1C2

−C⊤

2 U−1C1 P2 − C⊤

2 U−1D1C2

]
×[

x1
x2

]
> 0 ∀

[
x1
x2

]
̸= 0 (22)

due to satisfying (21) and relying on Lemma 5. Therefore, Vcl(x1, x2
ualifies to be a Lyapunov function for the closed-loop system.
he time-derivative of Vcl(x1, x2) is computed below:

V̇cl(x1, x2)

= V̇1(x1) + V̇2(x2) − ẏ⊤

1 y2 − y⊤

1 ẏ2 − ˙̄y⊤

1 ȳ2−

ȳ⊤

1
˙̄y2 + ẏ⊤

1 D2D1y2 + y⊤

1 D2D1ẏ2

= V̇1(x1) + V̇2(x2)−
(

˙̄y⊤

1 u1 + ẏ⊤

2 D1y2 + ˙̄y⊤

2 u2 + ẏ⊤

1 D2y1

+ ˙̄y⊤

1 u1 − ẏ⊤

1 D2y1 + ẏ⊤

2 D1D2y1 + ˙̄y⊤

2 u2 − ẏ⊤

2 D1y2

+ ẏ⊤

1 D2D1y2

)
+ẏ⊤

1 D2D1y2 + ẏ⊤

2 D1D2y1

V̇1(x1) + V̇2(x2) − 2 ˙̄y⊤

1 u1 − 2 ˙̄y⊤

2 u2(
V̇1(x1) − 2 ˙̄y⊤

1 u1
)
+

(
V̇2(x2) − 2 ˙̄y⊤

2 u2
)

≤ − δ1 ˙̄y⊤

1
˙̄y1 − δ2 ˙̄y⊤

2
˙̄y2 [via (17) and (18)]. (23)

herefore V̇cl(x1, x2) ≤ 0 since δ1 ≥ 0 and δ2 > 0. This implies
oundedness of the states x1(t) and x2(t) for all t ≥ 0. In order to
stablish the asymptotic convergence of x1(t) and x2(t) towards
he origin, we will show that no poles of the closed-loop system
ie on the jω-axis, which means that the closed-loop system
atrix

cl =

[
A1 B1C2
0 A2

]
+

[
B1D2
B2

]
(I − D1D2)

−1 [
C1 D1C2

]
s Hurwitz. Lemma 4 is then invoked to ensure that [I−M(s)N(s)]−1

oes not contain any pole on the jω-axis for any ω ∈ (0, ∞).
ubsequently, the condition det[N(0)M(0)− I] ̸= 0, implied from
21), ensures that [I−M(s)N(s)]−1 does not have any pole at s = 0
ia (Zhou et al., 1996, Lemma 3.38) on noting that [I −M(s)N(s)]
oes not have any pole at s = 0. Combining all the preceding
rguments, it can be concluded that the unforced closed-loop
ystem is internally asymptotically stable.

ase II — When M(s) has poles on the imaginary axis and N(s) is
NI:
Note that for the SNI systems that are also TD-OSNI, the proof

emains the same as in Case I. For the rest of the SNI systems, we
roceed as follows. Since SNI systems are asymptotically stable
nd cannot contain any purely imaginary zeros for ω ∈ (0, ∞),
o pole-zero cancellation of the loop transfer function M(s)N(s)
an occur in the entire closed right-half plane. The Lyapunov
nequality, derived in (23), still holds when N(s) is SNI and implies
˙cl(x1, x2) ≤ 0 since δ1 = δ2 = 0. This implies the boundedness of
he states. Then, Lanzon and Chen (2017, Lemma 6) is exploited
o prove that [I − M(s)N(s)]−1 does not contain any pole on the
ω-axis for any ω ∈ (0, ∞). Finally, the set of conditions (21)
uarantees that [I −M(s)N(s)]−1 does not have any pole at s = 0,
s explained in the last part of Case I. These arguments jointly
stablish that the unforced positive feedback interconnection of
TD-ONI system without poles at the origin and an SNI system

s internally asymptotically stable.

ase III — When M(s) is stable TD-ONI and N(s) is either stable
D-OSNI or SNI:
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Since in this case, both M(s) and N(s) belong to RH m×m
∞

, no
pole-zero cancellation of the loop transfer function M(s)N(s) can
ccur in the entire closed right-half plane. The rest of the proof
ollows from Case I and Case II and it re-establishes the suffi-
iency parts of proofs of Bhowmick and Patra (2017, Theorem 1)
nd Lanzon and Chen (2017, Theorem 5) respectively.
Case I, Case II and Case III complement each other to prove

he theorem. ■

The following corollary is an immediate consequence of Theo-
em 6 under the additional constraints on the gains of the systems
t infinite frequency. It offers an appealing and more elegant ‘DC
oop gain’ condition for checking the internal stability of a TD-ONI
nterconnection without poles at the origin.

orollary 1. Let M(s) be a (not necessarily stable) TD-ONI system
ithout poles at the origin and N(s) be a stable TD-OSNI or an SNI
ystem. Let Ω = {ω ∈ (0, ∞) : s = jω is not a pole of M(s)}
nd j [N(jω0) − N(jω0)∗] > 0 ∀ω0 ∈ (0, ∞)\Ω . Suppose there
xists no ω ∈ Ω such that det[M(jω) − M(jω)∗] = 0 and
et[N(jω) − N(jω)∗] = 0. Suppose further that either N(∞) ≥ 0
nd M(∞)N(∞) = 0, or else M(∞) = 0, and λmax

[
N(0)M(0)

]
< 1.

hen, the unforced positive feedback interconnection of M(s) and
(s), shown in Fig. 1], is asymptotically stable.

roof. The proof readily follows from Theorem 6 subject to the
dditional constraints that either N(∞) ≥ 0 and M(∞)N(∞) = 0,
r else M(∞) = 0. ■

xample 8. Consider a positive feedback interconnection of

(s) =
s2 + 4s + 12

5(s + 2)(s2 + 4)

[
5 −2

−2 5

]
being a TD-ONI system

ithout poles at the origin and

(s) =
0.25s2 + 3.75

s4 + 0.25s3 + 25s2 + 3.75s + 83.33

[
2 −1

−1 2

]
being

stable TD-OSNI system. It is checked that both [M(s) − M(s)∗]
nd [N(s)− N(s)∗] have full normal rank, M(s)N(s) does not have
ny pole-zero cancellation in the entire closed right-half plane,
[N(jω) − N(jω)∗] > 0 at ω = 2 rad/s, j [M(jω) − M(jω)∗] > 0 at

ω =
√
15 rad/s and there does not exist any ωz ∈ (0, ∞) such

hat det[M(ωz) − M(ωz)∗] = 0 and det[N(ωz) − N(ωz)∗] = 0.
Thus, M(s) and N(s) satisfy all the assumptions of Theorem 6.
Finally, we test the DC loop gain condition λmax[N(0)M(0)] =

λmax

[
0.2295 −0.1485

−0.1485 0.2295

]
= 0.3780 < 1. Therefore, the

nforced positive feedback interconnection of M(s) and N(s) is
uaranteed to be asymptotically stable via Theorem 6.

. Conclusions

This paper introduces the notion of Time-Domain Input–Output
egative Imaginary systems [denoted by TD-IONI(δ,ε,α,β)], which
nifies all the existing versions of the input and/or output neg-
tive imaginary systems, including those with poles on the jω-

axis (Bhowmick & Lanzon, 2019, 2020; Bhowmick & Patra, 2017;
Das et al., 2014; Patra & Lanzon, 2011). TD-IONI(δ,ε,α,β) sys-
tems have been defined in the spirit of a new time-domain
dissipative supply rate w(u, ū, ˙̄y) instead of relying on conven-
ional frequency-domain definitions. A new dynamic-dissipative
ramework, termed as (ΣIONI , Q̄ )-dissipativity, is developed for
haracterising and classifying the TD-IONI(δ,ε,α,β) systems, that
eads to a necessary and sufficient LMI condition (referred to
s the TD-IONI(δ,ε,α,β) lemma). The proposed lemma does not
mpose any a priori restrictions (such as stability, minimality,
ull normal rank constraint, etc. — commonly used in the NI
iterature) on the system and thereby, it captures the earlier re-
ults. This paper explores the fundamental relationship amongst
13
TD-IONI(δ,ε,α,β) systems, dynamic dissipativity and classical dis-
ipativity (in the sense of Willems, 1972). Subsequently, a new
requency-domain dissipative supply rate, termed as the ‘‘shifted
Qa(ω), Sa(ω), Ra(ω))-dissipativity’’, is proposed to characterise
he whole class of the TD-IONI(δ,ε,α,β) systems (i.e. allowing jω-
axis poles) in contrast to the conventional (Q (ω), S(ω), R(ω))-
dissipativity, which applies to only stable IONI/ONI systems
(Bhowmick & Lanzon, 2019; Das et al., 2014; Patra & Lanzon,
2011). It is also shown that for stable TD-IONI(δ,ε,α,β) systems, the
‘‘shifted (Qa(ω), Sa(ω), Ra(ω))-dissipativity’’ reduces to (Q (ω), S(ω)
R(ω))-dissipativity. Finally, the paper offers a closed-loop sta-
bility theorem for an unforced positive feedback interconnec-
tion containing a TD-ONI system (without poles at the origin)
and a stable TD-OSNI or an SNI system. In a future scope, the
(Qa(ω), Sa(ω), Ra(ω))-dissipative framework proposed here can be
further explored to establish a strong link between NI theory
and IQC theory relying on the ideas given in Khong, Lovisari, and
Rantzer (2016).
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