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a b s t r a c t

This paper proposes a new controller design methodology for stable and minimum-phase Negative
Imaginary (NI) systems relying on the classical Internal Model Control (IMC) principle. The closed-loop
stability of the proposed scheme depends only on the DC loop gain, which is theoretically justified by
the feedback stability results of the NI theory. The main objective is to design the Youla parameter
of an IMC scheme, which has been cast as a Negative Imaginary (NI) controller synthesis problem.
Two different methodologies have been proposed. A frequency-domain IMC design approach is first
presented, which depends on solving a constrained, linear, least-square estimation problem. Then, an
LMI-based methodology is developed, which can be solved by the commercially available SDP solver
packages. An in-depth simulation case study on the vibration attenuation problem of a lightweight
cantilever beam (a potential application of the NI theory) was carried out to demonstrate the usefulness
of the NI-based IMC design methodology. Finally, the simulation results were experimentally validated
on a custom-made vibration suppressor to confirm the feasibility of the proposed scheme.

© 2024 Elsevier Ltd. All rights reserved.
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1. Introduction

Negative Imaginary (NI) systems theory has flourished as
stand-alone robust stability analysis and controller synthesis

ramework over the past fifteen years since its inception in
008 (Lanzon & Petersen, 2008). In the simplest sense, a system
s called NI (resp. SNI) if the imaginary part of the system’s
ransfer function remains non-positive (resp. negative) for all

∈ (0, ∞). NI systems property is closely related to counter-
lockwise input–output dynamics in a nonlinear setting (Angeli,
006) and a class of dissipative systems defined with respect
o the system’s input and the time-derivative of the system’s
utput (Bhowmick & Lanzon, 2019, 2020, 2024; Bhowmick &
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Patra, 2017; Lanzon & Bhowmick, 2023). NI systems theory offers
a simple closed-loop stability condition that depends only on the
DC loop gain information [λmax[H(0)G(0)] < 1 w.r.t. Fig. 3] and
ence, the theory can be easily applied to practical systems for
hich an exact mathematical model is unavailable (Lanzon & Pe-
ersen, 2008; Petersen, 2016; Xiong, Petersen, & Lanzon, 2010). NI
heory finds potential applications in vibration control of highly-
esonant flexible structures (Lanzon & Petersen, 2008), robotic
anipulators (Mabrok, Kallapur, Petersen, & Lanzon, 2014), in
ano-positioning applications (Nikooienejad & Reza Moheimani,
022), in train platooning (Li, Wang, Shan, Lanzon, & Petersen,
021), in cooperative control of a variety of multi-agent sys-
ems (Hu, Lennox, & Arvin, 2022; Shi, Petersen, & Vladimirov,
023; Su, Bhowmick, & Lanzon, 2023a, 2023b, 2023c; Tran, Gar-
att, & Petersen, 2021), etc. Recently, NI theory has been ex-
ended to improper and non-rational systems (Ferrante, Lanzon, &
togramatzidis, 2016; Ferrante & Ntogramatzidis, 2013) and also
o discrete-time LTI systems (Ferrante, Lanzon, & Ntogramatzidis,
017; Liu & Xiong, 2017).
NI literature has been enriched by many significant findings on

I controller synthesis. The articles (Dey, Patra, & Sen, 2019; Song,
anzon, Patra, & Petersen, 2012a; Xiong, Lam, & Petersen, 2016)
aid significant contributions in designing static state feedback
nd static output feedback controllers utilising the NI frame-
ork. Song, Lanzon, Patra, and Petersen (2010, 2012b) took the

irst step to propose a dynamic stable-NI controller synthesis
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Fig. 1. Block diagram of the classical IMC scheme.

echnique that ensured both robust stability and performance
elying on a conversion between the Positive Real (PR) and
ounded Real (BR) frameworks. Liu, Ono, Li, and Wu (2017)
ntroduced an LMI-based dynamic output feedback NI controller
ynthesis methodology by converting the NI uncertainties into
he PR domain. Of late, Bhowmick and Patra (2020) and Ku-
awa, Bhowmick, and Lanzon (2019) solved the dynamic output
eedback NI controller synthesis problem exploiting the Strongly
trict NI (SSNI) (Lanzon, Song, Patra, & Petersen, 2011) and α-

SNI systems properties, respectively. However, these techniques
primarily rely on the four-block modelling scheme introduced
in Scherer, Gahinet, and Chilali (1997) and may face difficulties
in fitting a practical NI plant into the four-block framework for
synthesis purpose. Besides, very few attempts have been taken
so far to provide systematic design guidelines for implementing
such controllers in practice.

Motivation and objectives: Drawn by the advancements and
limitations of the existing NI controller synthesis techniques, this
paper utilises the classical Internal Model Control (IMC) (Garcia
& Morari, 1982; Morari & Zafiriou, 1989) framework (in Fig. 1)
to synthesise a dynamic controller for the class of stable and
minimum-phase NI plants. The primary control objective of an
IMC scheme is to design a stable Q (s), known as the Youla param-
eter, such that steady-state tracking is achieved and closed-loop
stability is maintained even in the presence of model mismatch
[i.e. when Gm(s) ̸= G(s)]. This paper proposes a positive feed-
back IMC scheme (refer to Fig. 4) where the controller C(s) =

(s)
[
I + Gm(s)Q (s)

]−1 is designed to be a stable-NI or SNI sys-
em complying with the relative degree of a given NI plant.
frequency-domain approach and a numerically tractable LMI-
ased technique will be presented for designing the NI-based
MC controller. The frequency-domain approach seeks to solve
constrained, linear, least-square estimation problem, while the
MI-based technique needs to choose a stable polynomial d(s)
uch that 1

d(s)Gm(s)−1 becomes strictly proper. We also provide a

et of detailed guidelines on how to choose the required poly-
omial d(s). The LMI-based design technique facilitates an easy
mplementation of the scheme with the help of Matlab-based SDP
olver packages. An in-depth simulation case study is carried out
in Section 4) on the vibration control problem of a lightweight
antilever beam (inspired by a real-world control problem of a
ibration suppressor shown in Fig. 2) to show the usefulness of
he NI-based IMC scheme. Finally, experimental validation results
re also provided in Section 4.4 to demonstrate the feasibility and
ffectiveness of the scheme in practice.

ontributions: Below, we mention the key contributions and
alient features of this work.

• This paper has developed a new internal model controller
(IMC) design methodology for stable and minimum-phase
NI systems. Unlike most of the literature on NI controller
synthesis, this paper does not only propose a synthesis
technique but also provides precise design guidelines for
practical implementation;
2

Fig. 2. A custom-made vibration suppressor for testing the NI-based IMC
synthesis algorithms.

• The LMI-based methodology offers a convenient, systematic
and easy-to-implement IMC synthesis technique due to the
commercially available (Matlab-based) SDP solver packages;

• Apart from the LMI-based IMC design methodology, a
frequency-domain design methodology is also proposed that
remains effective for SISO and decoupled MIMO NI plants;

• The paper has validated the NI-based IMC scheme on a
custom-made vibration suppressor (shown in Fig. 2), as
vibration control is one of the primary application areas
of the NI theory. The disturbance rejection capacity of the
controller and its robustness to model-mismatch were also
tested.

The paper also gives ideas on how to use a Subspace-based
system identification process in real time (via Matlab) while
enforcing a particular system property.

Notation and symbols: The notations and acronyms are standard
throughout. R and C denote respectively the sets of all real and
all complex numbers. Rm×n and Cm×n represent the sets of all
real and all complex matrices of dimensions (m × n). ℜ(·) and
ℑ(·) express the real and the imaginary parts respectively. A⊤,
A∗ and Ā denote the transpose, complex conjugate transpose
and complex conjugate of a matrix A. A−∗ and A−⊤ represent
shorthand for

(
A−1

)∗ and
(
A−1

)⊤ respectively. λmax(A) denotes
the maximum eigenvalue of a matrix A having only real eigenval-
ues. For a real, rational transfer function matrix M(s), M(jω)∗ =

M(−jω)⊤. RH m×n
∞

denotes the set of all real, rational, proper
and asymptotically stable transfer function matrices of dimension

(m × n).
[
A B
C D

]
gives a state-space realisation of a real, rational,

roper transfer function matrix M(s) = D + C(sI − A)−1B.

2. Background and problem formulation

In this section, we present essential technical preliminaries
which underpin the proofs of the main results of the paper, and
the problem formulation.

2.1. Briefs of NI theory

We begin with the definitions of real, rational and proper NI,
SNI and SSNI systems.

Definition 1 (NI System Lanzon & Chen, 2017; Mabrok et al., 2014).
Let G(s) be the real, rational and proper transfer function matrix
of a finite-dimensional, square and causal system G. Then, G(s) is
said to be NI without poles at the origin if

(i) G(s) has no poles in {s ∈ C : ℜ[s] > 0 and s = 0};
(ii) j[G(jω) − G(jω)∗] ≥ 0 for all ω ∈ (0, ∞) except the values

of ω where s = jω is a pole of G(s);
(iii) If s = jω0 with ω0 ∈ (0, ∞) is a pole of G(s), then it is

at most a simple pole and the residue matrix lims→jω0 (s −

jω )jG(s) is Hermitian and positive semidefinite.
0
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Fig. 3. A positive feedback interconnection of NI systems.

The following lemma, referred to as the NI Lemma, provides a
state-space characterisation for NI systems without poles at the
origin.

Lemma 1 (NI Lemma Xiong et al., 2010). Let G(s) be the real,
rational and proper transfer function matrix of a finite-dimensional,
square and causal system G having a minimal state-space realisation[
A B
C D

]
. Then, G(s) is NI without poles at the origin if and only if

et(A) ̸= 0, D = D⊤ and there exists a real matrix Y = Y⊤ > 0
such that

AY + YA⊤
≤ 0 and B + AYC⊤

= 0. (1)

Definition 2 (SNI System Lanzon & Petersen, 2008). Let G(s) be
the real, rational and proper transfer function matrix of a finite-
dimensional, square and causal system G. Then, G(s) is said to be
SNI if G(s) has no poles in {s ∈ C : ℜ[s] ≥ 0} and j[G(jω) −

G(jω)∗] > 0 for all ω ∈ (0, ∞).

Strongly Strict Negative Imaginary (SSNI) systems form a strict
subset within the SNI class that satisfy two additional frequency-
domain criteria in the neighbourhood of ω = 0 and ω =

∞.

Definition 3 (SSNI System Lanzon et al., 2011). Let G(s) be the
real, rational and proper transfer function matrix of a finite-
dimensional, square and causal system G. Then, G(s) is said to be
Strongly Strict Negative Imaginary (SSNI) if

• G(s) is SNI;

• limω→0 j
1
ω

[G(jω) − G(jω)∗] > 0;

• limω→∞ jω [G(jω) − G(jω)∗] > 0.

Below, we present a slightly modified version of the SSNI
lemma (Lanzon et al., 2011) by exploiting (Kurawa et al., 2019,
Lemma 2).

Lemma 2 (SSNI Lemma Kurawa et al., 2019; Lanzon et al., 2011).
Let G(s) ∈ RH m×m

∞
be the real, rational and proper transfer function

matrix of a finite-dimensional, square and causal system G, having

a state-space realisation
[
A B
C D

]
. Suppose rank[B] = rank[C] = m

and the pair (A, C) is observable. Then, G(s) is SSNI if and only if
D = D⊤ and there exists a real matrix Y = Y⊤ > 0 such that
AY + YA⊤ < 0 and B + AYC⊤

= 0.

We now recall the closed-loop stability condition for a stable
NI system interconnected with an SNI system via positive feed-
back. Please see Lanzon and Chen (2017) for extended closed-loop
stability results of NI-SNI interconnections.

Theorem 1 (Lanzon & Chen, 2017; Lanzon & Petersen, 2008). Let
G(s) ∈ RH m×m

∞
be an NI system and H(s) ∈ RH m×m

∞
be an SNI

ystem. Let either G(∞) = 0, or else G(∞)H(∞) = 0 and H(∞) ≥

. Then, the positive feedback interconnection of G(s) and H(s) shown
n Fig. 3 is asymptotically stable if and only if λ [H(0)G(0)] < 1.
max

3

Fig. 4. Equivalent block diagram of the classical IMC scheme shown in Fig. 1.

2.2. IMC principle in brief

The classical IMC scheme has been adopted in this paper
from Morari and Zafiriou (1989) and is shown in Fig. 1. An IMC
problem seeks to design a stable Q (s), known as the Youla param-
eter (Morari & Zafiriou, 1989), such that the closed-loop scheme
shown in Fig. 1 has good nominal performance and remains
closed-loop stable even when G(s) ̸= Gm(s). Conventionally, an
IMC scheme works with negative feedback. However, in this
paper, we have considered a positive feedback IMC scheme to
fit into the NI framework. The performance of an IMC scheme
highly relies on the accuracy of the model Gm(s) of the plant
G(s) to be controlled. We do not presume any structure of the
model Gm(s) and thus, the model can be obtained via any system
dentification technique or it can be derived mathematically. For
xample, we used Matlab system identification toolbox to obtain
model of the plant from the experimental observation [detailed

n Section 4].
Fig. 1 can equivalently be drawn as in Fig. 4 where the red-

otted block plays the role of the internal model controller C(s) =

(s) [I + Gm(s)Q (s)]−1.
The Youla parameter is often designed as Q (s) = Gm(s)−1F (s),

here F (s) behaves as a low-pass filter to be determined. The
ilter dynamics significantly influences shaping the steady-state
racking or regulatory response of an IMC scheme.

.3. Problem formulation

Given a stable and minimum-phase NI (including SNI) plant
(s) and a reasonably accurate model Gm(s) that closely replicates
he plant behaviour, design an SNI/SSNI controller C(s) such that
he positive feedback IMC scheme shown in Fig. 4 [which is
quivalent to Fig. 1] remains asymptotically stable and facilitates
faithful steady-state tracking.

. Controller design methodologies for stable NI and SNI sys-
ems using the IMC principle

This section presents the main theoretical contributions of
his paper. Our objective is to develop an internal model control
cheme for stable NI or SNI systems relying on the DC loop gain
ondition of NI stability theory (Theorem 1). The proposed idea
uilds on the classical IMC framework shown in Fig. 4 and offers
frequency-domain and an LMI-based design methodology to

ynthesise a stabilising NI/SNI/SSNI controller.

.1. A frequency-domain design approach

Before presenting the frequency-domain design technique for
n NI (resp. SNI) controller, we want to recall the standard
olynomial factorisation in terms of its even and odd terms. A
requency-domain polynomial P(s) can be factored as

(s) = P0 + P2s2 + . . .  +s (P1 + P3s2 + . . . )  

Peven(s2) Podd(s2)
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uch that if P(jω) = Pr (ω) + jPi(ω), then Pr (ω) = Peven(−ω2) and
Pi(ω) = ωPodd(−ω2) for all ω ∈ R. Using this factorisation, the

plant model Gm(s) can be decomposed as Gm(jω) =
Nm(jω)
Dm(jω)

=

Nmr (ω) + jNmi(ω)
Dmr (ω) + jDmi(ω)

.

Lemma 3 offers a sufficient-type frequency-domain condition
for designing a SNI (resp. stable NI) controller C(s) for a SISO,
inimum-phase, stable NI (resp. SNI) plant G(s) having relative
egree 0, 1 or 2 following the positive feedback IMC scheme
hown in Fig. 4. It also facilitates perfect steady-state tracking
hen Gm(0) = G(0), as discussed in Remark 2.

emma 3. Let G(s) be a SISO, minimum-phase stable NI (resp. SNI)
lant having relative degree 0, 1 or 2 and Gm(s) be a stable NI (resp.
NI) model of the plant. Let Nm(s) and Dm(s) be the polynomials such

hat Gm(s) =
Nm(s)
Dm(s) . Let F (s) =

k
s2 + bs + k

be the desired nominal

losed-loop transfer function with k, b > 0. Then, the controller

(s) =
kDm(s)

Nm(s)(s2 + bs + 2k)
is SNI (resp. stable NI) and stabilises the

ositive feedback IMC scheme shown in Fig. 4 if Gm(0) ≥ G(0) > 0
and

2k2
[
Dmr (ω)Nmi(ω) − Dmi(ω)Nmr (ω)

]
+ ωkb

[
Dmr (ω)

Nmr (ω) + Dmi(ω)Nmi(ω)
]
+ ω2k

[
Dmi(ω)Nmr (ω)−

Dmr (ω)Nmi(ω)
]

> 0 (resp. ≥ 0) ∀ω ∈ (0, ∞). (2)

Furthermore if r(∞) is a finite constant, y(∞) =

(
G(0)
Gm(0)

)
2−

(
G(0)
Gm(0)

) r(∞) is

lso finite. y(t) and r(t) denote respectively the output and reference
nput signals.

roof. We begin this proof by recalling the transfer function
ecomposition Gm(jω) =

Nm(jω)
Dm(jω) =

Nmr (ω)+jNmi(ω)
Dmr (ω)+jDmi(ω) . The filter transfer

function is considered as F (s) =
k

s2 + bs + k
. Then, the controller

ransfer function can be expressed as:

(jω) =
k(Dmr (ω) + jDmi(ω))

(Nmr (ω) + jNmi(ω))(−ω2 + jωb + 2k)
. (3)

o show that C(s) satisfies the SNI (resp. stable NI) property, we
rite[
C(jω) − C(jω)∗

]
=

α(ω)
β(ω)

(4)

where α(ω) = 4k2
[
Dmr (ω)Nmi(ω) − Dmi(ω)Nmr (ω)

]
+ 2ωkb[

Dmr (ω)Nmr (ω) + Dmi(ω)Nmi(ω)
]

+ 2ω2k
[

Dmi(ω) Nmr (ω) −

Dmr (ω)Nmi(ω)
]
and β(ω) = ω2b2N2

mr (ω)+
[
ω2Nmr (ω)−2kNmr (ω)

]2
+ ω2b2N2

mi(ω) +
[
ω2Nmi(ω) − 2kNmi(ω)

]2. Now, β(ω) > 0 ∀ ω ∈

(0, ∞) as it has all squared terms with positive signs and α(ω) is
restricted to be positive (resp. non-negative) for all ω ∈ (0, ∞) via
(2). Hence, C(s) is SNI (resp. stable NI) via design with C(0) > 0 as
Gm(0) > 0. C(s) also stabilises the stable NI (resp. SNI) plant G(s)
in a positive feedback loop satisfying the DC loop gain condition
C(0)G(0) ≤ C(0)Gm(0) =

kDm(0)
2kNm(0) ×

Nm(0)
Dm(0) =

1
2 < 1. It can also be

eadily shown that y(∞) =

(
G(0)
Gm(0)

)
2−

(
G(0)
Gm(0)

) r(∞) when r(∞) is a finite

onstant. This completes the proof. ■

Although Lemma 3 has been derived for SISO systems, it can
e readily extended to MIMO systems having a diagonal transfer
unction matrix.
4

Remark 1. The frequency-domain design methodology remains
effective for SISO and a class of MIMO systems having a de-
coupled (or diagonal) transfer function matrix. However, this
methodology may not be straightforward for general MIMO sys-
tems (i.e., other than the decoupled ones) since the procedure
involves a lengthy hand-driven calculations. For such systems, the
LMI-based design technique is pretty more convenient and useful.

Remark 2. It can be readily shown that a SISO IMC controller C(s)
designed via Lemma 3 achieves faithful steady-state tracking even
in the case of a model mismatch as long as the DC gains of the
plant and its model remain the same [i.e. G(0) = Gm(0)]. This is an
advantage of the proposed scheme because in practice, it is nearly
impossible to identify a perfect model of the plant; however, the
steady-state gain G(0) can be measured with a high degree of
accuracy. From Fig. 4, the closed-loop transfer function is given by
T (s) =

G(s)C(s)
1−G(s)C(s) where C(s) =

Q (s)
1+Gm(s)Q (s) and Q (s) = Gm(s)−1F (s).

ence, T (0) =
G(0)Gm(0)−1F (0)

[1+F (0)−G(0)Gm(0)−1F (0)] = F (0) and F (0) = +1 on

noting that Gm(0) = G(0).

Remark 3. The frequency-domain approach offers complete
freedom in choosing the filter dynamics F (s) by solving a sim-
ple constrained least-square estimation problem (illustrated in
Section 4.2.1 via a case study). As the closed-loop response y(t)
of the IMC scheme (Fig. 4) is predominantly governed by the
filter, the frequency-domain design approach can be conveniently
used to meet the desired transient performance criteria. How-
ever, this method may not be effective for MIMO systems (other
than the decoupled ones) since the procedure involves a lengthy
hand-driven calculations.

Remark 4. Since the controller C(s) in Lemma 3 inverts the
nominal plant model Gm(s) in its construction, it is sensible to
ensure that Gm(s) does not have lightly damped poles and zeros
even when the actual plant G(s) has lightly damped poles and
zeros.

3.2. An LMI-based design approach

Here, we present the LMI-based synthesis technique.

Theorem 2. Let G(s) ∈ RH m×m
∞

be a minimum-phase NI plant
and Gm(s) ∈ RH m×m

∞
be a minimum-phase NI-model of the plant

with Gm(0) ≥ G(0) > 0. Let d(s) be a stable polynomial such that
H(s) =

1
d(s)Gm(s)−1 is strictly proper. Let H(s) have a minimal state-

space realisation
[
AH BH
CH 0

]
with a full-rank CH matrix. Suppose

there exist real matrices Ā, B̄, C̄ , D̄, Y = Y⊤ and X = X⊤ of
ppropriate dimensions such that[

Φ11
(
Ā⊤

+ AH
)(

Ā⊤
+ AH

)⊤
Φ22

]
< 0, (5a)[

Φ13

B̄ + ĀC⊤

H

]
= 0, (5b)⎡⎢⎣ Φ11

(
Ā⊤

+ AH
)

YC⊤

H(
Ā⊤

+ AH
)⊤

Φ22 C⊤

H

CHY CH −Im

⎤⎥⎦ ≤ 0, (5c)

[
Y In
In X

]
> 0 and (5d)

m(0)
1
2
[
CHYC⊤

H

]
Gm(0)

1
2 < Im, (5e)
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ith the following shorthand⎧⎪⎨⎪⎩
Φ11 = AHY + YA⊤

H + BH C̄ + C̄⊤B⊤

H ,

Φ13 = BH D̄ + AHYC⊤

H + BH C̄C⊤

H ,

Φ22 = XAH + A⊤

HX .

(6)

Construct an auxiliary system Σ(s) as Σ(s) = DΣ + CΣ

(
sI −

AΣ

)−1BΣ where⎧⎪⎪⎪⎨⎪⎪⎪⎩
DΣ = D̄,

CΣ = C̄N−⊤,

BΣ = M−1(B̄ − XBH D̄),

AΣ = M−1(Ā − XAHY − XBH C̄
)
N−⊤,

(7)

and M and N are square and non-singular solutions of the algebraic
equation NM⊤

= In − YX. Then, the controller C(s) = H(s)Σ(s) is
SSNI and asymptotically stabilises the positive feedback IMC scheme
shown in Fig. 4.

Proof. We begin the proof on noting that C(s) = Q (s)
[
I +

m(s)Q (s)
]−1 where the Youla parameter matrix Q (s) is parame-

rised as Q (s) = Gm(s)−1F (s). F (s) plays the role of a low-
pass filter, which is to be determined. We first choose a stable
polynomial d(s) such that 1

d(s)Gm(s)−1 is strictly proper. Accord-
ingly, Q (s) = Gm(s)−1F (s) is modified to Q (s) =

1
d(s)Gm(s)−1F̄ (s)

here F̄ (s) = d(s)F (s) is assumed proper through an appropriate
hoice of F (s). Now, F̄ (s) is to be determined instead of F (s).
enote H(s) =

1
d(s)Gm(s)−1 and let H(s) have a minimal state-

space
[
AH BH
CH 0

]
. We then obtain the expression of the controller

(s) = Q (s)
[
I + Gm(s)Q (s)

]−1
= H(s)

(
F̄ (s)

[
I + F (s)

]−1
)

substi-

tuting Q (s) = H(s)F̄ (s). Denote Σ(s) = F̄ (s)
[
I + F (s)

]−1 and let

Σ(s) have a minimal state-space realisation
[
AΣ BΣ

CΣ DΣ

]
. We then

erive the state-space representation of the controller C(s) =

(s)Σ(s) as
[
Ac Bc
Cc Dc

]
=

[ AH BHCΣ BHDΣ

0 AΣ BΣ

CH 0 0

]
. We are now

ready to derive the proof of this theorem, which has been divided
into two main parts for easy understanding.

Part I: To show that C(s) is SSNI

The designed controller C(s) =

[
Ac Bc
Cc Dc

]
is SSNI if there

xists a real matrix Y = Y ⊤ > 0 of appropriate dimension such
hat{
AcY + Y A⊤

c < 0, and

Bc + AcY C⊤

c = 0,
(8)

via Lemma 2 and the pair (Ac, Cc) remains observable. However,
the conditions in (8) are not in an LMI form as the terms AcY and
AcY C⊤

c contain products of the unknown matrix variables. There-
fore, a linearising change in the controller variables is required to
transform (8) into an LMI form.

Linearisation process (i.e. conversion to LMI form): As a first
step towards the linearisation process, we partition Y and Y −1

elow following the technique proposed in (Scherer et al., 1997).

=

(
Y N
N⊤

•

)
and Y −1

=

(
X M
M⊤

•

)
(9)

where Y = Y⊤
∈ Rn×n, X = X⊤

∈ Rn×n and the symbol
• represents the matrices that are not explicitly used in the
 b

5

linearisation process. Note Y −1 exists since Y > 0. Note also
that X , Y , M , N are not independent LMI variables but must
satisfy NM⊤

= In − YX (Scherer et al., 1997). Since M and N are
square and non-singular (Scherer et al., 1997), the following block
matrices

Π1 =

(
In X
0 M⊤

)
and Π2 =

(
Y In
N⊤ 0

)
(10)

are also non-singular. Π1 and Π2 are related through the expres-
sion Y Π1 = Π2, which has been obtained from the fundamental
relationship Y Y −1

= I (Scherer et al., 1997). The positive

definiteness of the Lyapunov candidate matrix Y =

(
Y N
N⊤

•

)
is guaranteed by (5d) via the congruence transformation shown
below:

Π⊤

1 Y Π1 =

(
Y In
In X

)
> 0. (11)

Applying another congruence transformation on (8) with the help
of diag{Π1, I}, we obtain{

Π⊤

1

(
AcY + Y A⊤

c

)
Π1 < 0, and

Π⊤

1

(
Bc + AcY C⊤

c

)
= 0.

(12)

Then, inserting a new set of matrix variables⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ā = MAΣN⊤

+ XAHY + XBHCΣN⊤,

B̄ = MBΣ + XBHDΣ ,

C̄ = CΣN⊤, and

D̄ = DΣ ,

(13)

into (12), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
Φ11

(
Ā⊤

+ AH
)(

Ā⊤
+ AH

)⊤
Φ22

]
< 0, and[

Φ13

B̄ + ĀC⊤

H

]
= 0.

(14)

These two conditions are linear in Ā, B̄, C̄ , D̄, Y > 0, X > 0 and
they are indeed the same as (5a) and (5b). At this stage, we are
only left to show that the pair (Ac, Cc) is observable.

Observability of (Ac, Cc): The pair (Ac, Cc) is observable via (5c)
since the associated Observability Gramian (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994) condition PAc+A⊤

c P+C⊤
c Cc ≤ 0 ⇔

AcY +Y A⊤
c +Y C⊤

c CcY ≤ 0, where Y = P−1 > 0, is equivalent to
(5c) via a congruence transformation with respect to diag{Π1, Im}

and taking a Schur complement (Boyd et al., 1994). Note also that
the matrix Cc =

[
CH 0

]
has full row-rank since rank[CH ] = m

via assumption. This implies from the expression Bc+AcY C⊤
c = 0

that Bc has full column-rank since Y > 0 and Ac is Hurwitz via
(5a).

Hence, the LMI conditions (5a)–(5d) jointly ensure that C(s) is
SSNI via Lemma 2.

Reconstruction of Σ(s), F(s) and C(s): Reconstruct the auxiliary
filter Σ(s) = DΣ + CΣ

(
sI − AΣ

)−1BΣ via⎧⎪⎪⎪⎨⎪⎪⎪⎩
DΣ = D̄,

CΣ = C̄N−⊤,

BΣ = M−1(B̄ − XBH D̄),

AΣ = M−1(Ā − XAHY − XBH C̄
)
N−⊤,

where M and N are square and non-singular solutions1 of the
algebraic equation NM⊤

= In − YX . From the knowledge of

1 Note that the solutions M and N are not unique. A convenient choice can
e suggested as M = I and N = I − YX or N = I and M = I − XY .
n n n n
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(s), retrieve the filter F (s) relying on the relationship F (s) =

1
d(s)Σ(s)

[
I −

1
d(s)Σ(s)

]−1
. Finally, we also construct the Youla pa-

ameter Q (s) = Gm(s)−1F (s) and the desired controller C(s) =

(s)
[
I + Gm(s)Q (s)

]−1
= H(s)Σ(s) =

1
d(s)Gm(s)−1Σ(s).

art II: DC loop gain condition holds
The inequality condition (5e) is equivalent to Gm(0)

1
2 C(0)

Gm(0)
1
2 < Im since C(0) = CcY C⊤

c = CHYC⊤

H . This, in turn,
is equivalent to λmax[C(0)Gm(0)] < 1 via Lanzon and Petersen
(2008). As Gm(0) ≥ G(0) > 0 via assumption and C(0) > 0 via
onstruction, the preceding condition implies λmax[C(0)G(0)] < 1.
Therefore, Part I and Part II together prove that the positive

feedback interconnection (in Fig. 4) of C(s), being SSNI, and G(s),
being a stable and minimum-phase NI system, satisfies all the
assumptions of Theorem 1, as well as the DC loop gain condition.
Hence, the interconnection is asymptotically stable. ■

Remark 5. Unlike the frequency-domain approach, the LMI-
based IMC design approach can conveniently and efficiently han-
dle higher-order and MIMO systems. However, in the LMI ap-
proach, the filter function F (s) is not explicitly selected by the
designer. It is reconstructed from the variables obtained from the
LMI solutions. Therefore, we cannot guarantee the fulfilment of
all desired closed-loop performance criteria ‘‘a priori’’ via this
approach. In this situation, the choice of the polynomial d(s)
becomes crucial as d(s) is the only design parameter that can be
selected ‘‘a priori’’ to achieve a desired closed-loop response.

Remark 6. A necessary and sufficient condition for the stability
of an IMC scheme where G(s) is open-loop stable is that the Youla
parameter Q (s) must be stable. In the proposed NI-based IMC
scheme shown in Fig. 4, Q (s) = C(s) [I − Gm(s)C(s)]−1, which can
be treated as a positive feedback interconnection between C(s)
and Gm(s). Q (s) can be readily shown to be stable. Since Gm(s)
s stable NI and C(s) is designed to be SNI/SSNI (either via the
requency-domain approach or via the LMI-based methodology)
atisfying the condition λmax[C(0)Gm(0)] < 1, Theorem 2 guaran-
ees the closed-loop stability of the positive feedback IMC scheme
in Fig. 4), which, in turn, implies the stability of Q (s).

.3. Steady-state tracking performance of the LMI-based (NI) IMC
cheme

The following lemma shows that under a reasonable and prac-
ically feasible assumption Gm(0) = G(0) > 0, a perfect steady-
tate tracking can be achieved by the proposed scheme if the
nequality condition (5e) is replaced by the equality condition
m(0)

1
2 CHYC⊤

H Gm(0)
1
2 =

1
2 Im, keeping (5a)–(5d) intact.

emma 4. Let G(s) ∈ RH m×m
∞

be a minimum-phase NI plant
with a known G(0). Suppose Gm(0) = G(0) > 0. Then, the NI-based
MC scheme, developed in Theorem 2, achieves a perfect steady-state
racking (i.e. limt→∞

[
−r(t) + y(t)

]
= 0) where limt→∞ r(t) = rss

is a finite constant if the condition (5e) in Theorem 2 is modified to
Gm(0)

1
2
[
CHYC⊤

H

]
Gm(0)

1
2 =

1
2 Im.

roof. The closed-loop transfer function matrix from the refer-
nce input r to the output y of the IMC scheme, shown in Fig. 4,
s given by T (s) = G(s)C(s)

[
I − G(s)C(s)

]−1. Now, substituting the
expression C(s) = Gm(s)−1F (s)

[
I + F (s)

]−1 and upon simplifying,
we get T (s) = G(s)Gm(s)−1F (s)

[
I + F (s) − G(s)Gm(s)−1F (s)

]−1. This
readily implies T (0) = F (0) when Gm(0) = G(0). Furthermore,
G (0)

1
2
[
C YC⊤

]
G (0)

1
2 =

1 I ⇔ G (0)
1
2 C(0) G (0)

1
2 =

1 I ⇔
m H H m 2 m m m 2 m

6

Gm(0)−1F (0)
[
I + F (0)

]−1
=

1
2Gm(0)−1

⇒ F (0) = I . This hence en-
sures that yss = limt→∞ y(t) = lims→0 sY (s) = lims→0 sT (s)R(s) =

ims→0 sF (s) R(s) = F (0) lims→0 sR(s) = rss, since F (0) = I and on
noting that lims→0 sR(s) = rss is constant. ■

Remark 7. Lemma 4 proves that the NI-based IMC scheme
proposed via Theorem 2 facilitates perfect steady-state reference
tracking, when r(∞) exists, despite a model mismatch [i.e. when
m(s) = G(s)] as long as Gm(0) = G(0). This is not an overly
estrictive assumption because, in practice, it is possible to mea-
ure the steady-state gain (i.e. the DC-gain) of a plant accurately.
n that case, it is also possible to identify a reasonably accurate
lant model Gm(s) having the same DC-gain as that of the real
lant. However, the robust stability of the IMC scheme (in Fig. 4)
emains unaffected in the presence of a model mismatch as long
s G(0) ≤ Gm(0) since the closed-loop stability depends only
he DC loop gain condition λmax[C(0)G(0)] < 1, as established
n Theorem 2.

.4. Guidelines on how to choose the polynomial d(s)

The choice of the stable polynomial d(s) that we will now
uggest is based on empirical analysis rather than a theoretical
nalysis. We have considered four different models Gm1 (s), Gm2 (s),
m3 (s) and Gm4 (s) of a cantilever beam conforming with the
ractical setup shown in Fig. 2. The first model is a second-
rder system Gm1 (s) =

1
s2+0.2s+1

, which has its resonant mode

at ω = 1 rad/s. The next model is still a second-order system
m2 (s) =

13
s2+0.1s+358

, but it has a higher resonant frequency of

= 19 rad/s. After that, we consider a fourth-order model
Gm3 (s) =

1
s2+0.2s+2

+
4

s2+0.23s+9
having two resonant modes at

= 1.41 rad/s and ω = 3 rad/s respectively. Finally, we take
sixth-order model Gm4 (s) =

1
s2+0.2s+2

+
4

s2+0.23s+9
+

7
s2+0.15s+13

aving three resonant modes at ω = {1.37, 2.93, 3.6} rad/s
espectively.

For each of the four plant models, we have taken thirty dif-
erent d(s) candidates as mentioned in Tables 1–4 [Appendix]
nd accordingly, found thirty controller transfer functions {C1(s),
2(s), . . . , C30(s)} using the LMI-based design algorithm. Fig. 5(a)
hows the Bode plots of the set of thirty closed-loop transfer
unctions Ti(s) =

Gm1 (s)Ci(s)
1−Gm1 (s)Ci(s)

∀i ∈ {1, 2, . . . , 30} corresponding

to {d1(s), d2(s), . . . , d30(s)} chosen for Gm1 (s). Similarly, Figs. 6(a),
(a) and 8(a) show the Bode plots of the three sets of closed-loop
ransfer functions Tj(s) =

Gm2 (s)Cj(s)
1−Gm2 (s)Cj(s)

∀j ∈ {1, 2, . . . , 30}; Tk(s) =

Gm3 (s)Ck(s)
1−Gm3 (s)Ck(s)

∀k ∈ {1, 2, . . . , 30}; and Tl(s) =
Gm4 (s)Cl(s)

1−Gm4 (s)Cl(s)
∀l ∈

{1, 2, . . . , 30}. Whereas, Figs. 5(b), 6(b), 7(b) and 8(b) show
the impulse responses of each of the above four sets (each set
consists of thirty transfer functions) of the closed-loop systems
Ti(s), Tj(s), Tk(s) and Tl(s). The choice of each set of polynomi-
als {d1(s), d2(s), . . . , d30(s)} depends primarily on the resonant
modes of the plant model. They are constructed such that some
of the roots are real and slower, some of them are real and faster,
and the remaining are complex. This wide range of test cases
and their comparative study with respect to the time-domain
performance criteria (e.g. peak overshoot, settling/decaying time,
damping, etc.) help us to suggest useful guidelines for selecting
an appropriate d(s) for a given plant model.

Below, we summarise our findings on the effect of d(s) on the
losed-loop response of the NI-based IMC scheme:

• Bandwidth: A leftward-shift of the negative real roots of
d(s) or an increase in the natural frequency of complex roots
increases the bandwidth of the closed-loop system;
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Fig. 5. (a) Bode plots of the closed-loop transfer functions Ti(s) =
Gm1 (s)Ci(s)

1−Gm1 (s)Ci(s)
∀i ∈ {1, 2, . . . , 30} corresponding to {d1(s), d2(s), . . . , d30(s)} as

mentioned in Table 1; (b) Impulse responses of Ti(s) for all i.

• Settling time: A leftward-shift of the roots of d(s) decreases
the settling time of the step (resp. impulse) response. How-
ever, a substantial left-shift may also increase the settling
time as the closed-loop system becomes more oscillatory.
On the other hand, changing the imaginary parts of the
complex roots of d(s) whilst keeping the real parts un-
changed does not have any significant impact on the settling
time;

• Peak overshoot: A leftward-shift of the negative real roots
of d(s) or an increase in the natural frequency of complex
roots increases the speed of the step and impulse responses,
but at the cost of an higher peak overshoot;

• Fastest controller pole: A leftward-shift of the real or com-
plex roots of d(s) drives the controller poles to be faster.
However, this causes an increase in the control input de-
mand.

Let ‘r ’ be the relative degree of Gm(s) [i.e. lims→∞ siGm(s) =

∀i ∈ {0, 1, 2, . . . , r − 1} and lims→∞ srGm(s) ̸= 0]. D
[
Gm(s)

]
de-

otes the polynomial whose roots are the fastest ‘r ’ poles of Gm(s).

or example, if Gm(s) =

[
s+z1

(s+p1)(s2+a1s+a0)
k1

(s2+a1s+a0)
k2

(s2+a1s+a0)
s+z2

(s+p2)(s2+a1s+a0)

]
, then

D
[
Gm(s)

]
= (s + p1)(s + p2)(s2 + a1s + a0). From the extensive

simulation studies shown in Figs. 5(a)–8(a) and Figs. 5(b)–8(b)
7

Fig. 6. (a) Bode plots of the closed-loop transfer functions Tj(s) =
Gm2 (s)Cj(s)

1−Gm2 (s)Cj(s)

j ∈ {1, 2, . . . , 30} corresponding to {d1(s), d2(s), . . . , d30(s)} as mentioned in
able 2; (b) Impulse responses of Tj(s) for all j.

nd Tables 1–4, we observe that a choice of d(s) = (s+a)D
[
Gm(s)

]
,

here the parameter a is selected as the frequency of the first
esonant mode of Gm(s), offers an acceptable trade-off between
he speed of response and the settling time. It does not also result
n too-fast controller poles, which inevitably demand higher con-
rol effort. However, this choice may increase the peak overshoot
f the impulse response. In applications where a reduction in
he peak overshoot is preferable over the other time-domain
erformance criteria, one could choose the real root s = −a
f d(s) at one or two decade(s) below the frequency of the first
esonant mode of Gm(s).

emark 8. In the LMI-based IMC design approach, the formula-
ion H(s) =

1
d(s)Gm(s)−1 introduces the inverse dynamics of the

model Gm(s) into the controller C(s) = H(s)Σ(s). If the Gm(s)
as poorly damped zeros or highly resonant interlacing pole-
ero pairs, we can choose d(s) = (s + a)p instead of the earlier
hoice d(s) = (s + a)D

[
Gm(s)

]
. The parameter a is selected as

he frequency of the first resonant mode of Gm(s) as before and
≥ r+1 such that 1

d(s)Gm(s)−1 remains strictly proper (preferably
with relative degree equal to one). This choice of d(s) results in a
reduced peak overshoot of the closed-loop step/impulse response,
but at the cost of compromising the speed.



P. Bhowmick, S. Kurawa, S. Kannan et al. Automatica 164 (2024) 111621

m

4
w

t
t
s
c
o
D
F

4

S
(
a

G

G
h
m

N

t

T

Fig. 7. (a) Bode plots of the closed-loop transfer functions Tk(s) =
Gm3 (s)Ck(s)

1−Gm3 (s)Ck(s)
∀k ∈ {1, 2, . . . , 30} corresponding to {d1(s), d2(s), . . . , d30(s)} as

entioned in Table 3; (b) Impulse responses of Tk(s) for all k.

. Case study on a vibration suppressor: Simulation results
ith experimental validation

This section will apply the proposed NI-based IMC scheme for
he vibration control of a lightweight cantilever beam attached
o a fixed end. The custom-made vibration suppressor system
hown in Fig. 9(a) consists of a lightweight aluminium beam
lamped at one end and mounted on a solid plate. The plate sits
n top of a moving rail powered by a 12 V, 251 rpm metal-geared
C motor. The beam is equipped with a pair of collocated Macro
ibre Composite (MFC) sensor and actuator patches.

.1. System identification of the vibration suppressor

For the system identification purpose, we used the Matlab
ystem Identification Toolbox to transform the time-series data
experimentally generated or obtained) into frequency-domain
nd obtained a fourth-order model of the system given by

m(s) =
30050 (s2 + 1.996s + 7631)

(s2 + 1.108s + 6350)(s2 + 28.43s + 2.21 × 105)
.

m(s) is indeed a stable and minimum-phase transfer function
aving relative degree 2. Fig. 9(b) reveals that the identified
odel Gm(s) is truly a good replica of the physical plant (i.e. the

vibration suppressor shown in Fig. 2), especially at the low-
frequency range. Moreover, the identified model Gm(s) is stable
I, as confirmed by the red-coloured Bode plot in Fig. 9(b).
 C

8

Fig. 8. (a) Bode plots of the closed-loop transfer functions Tl(s) =
Gm4 (s)Cl(s)

1−Gm4 (s)Cl(s)
∀l ∈ {1, 2, . . . , 30} corresponding to {d1(s), d2(s), . . . , d30(s)} as

mentioned in Table 4; (b) Impulse responses of Tl(s) for all l.

4.2. NI-based internal model controller (IMC) design

This subsection will design the NI-based IMC controllers for
the vibration suppressor system following the frequency-domain
and LMI-based design methodologies introduced in Sections 3.1
and 3.2. After that, we will examine the feasibility, effectiveness
and performance of the designed controllers via simulation case
studies and hardware experiments. A performance comparison
between the two methodologies is also provided.

4.2.1. Frequency-domain approach

We first decompose the plant model as Gm(jω) =
Nm(jω)
Dm(jω)

=

Nmr (ω) + jNmi(ω)
Dmr (ω) + jDmi(ω)

where Dmr (ω) = ω4
− 2.272× 105ω2

+ 1.41×

109, Dmi(ω) = 4.017 × 105ω − 29.75ω3, Nmr (ω) = 2.293 × 108
−

30050ω2 and Nmi(ω) = 5.998 × 104. Since Gm(s) has relative

degree 2, we choose the filter function F1(s) =
k

(s2 + bs + k)
and

he controller C1(s) =
kDm(s)

Nm(s)(s2 + bs + 2k)
following Lemma 3.

he controller parameters b, k > 0 need to be selected such that
(s) becomes SNI (resp. stable NI). Via Lemma 3, C (s) is SNI
1 1
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Fig. 9. (a) Closed-loop control set-up of the vibration suppressor using the
SPACE platform; and (b) Bode plots of the physical plant G(s) and its identified
odel Gm(s).

(resp. stable NI) if

2k2(−8.34 × 105ω5
+ 5.27 × 109ω3

− 7.5 × 1012ω)+

ωkb(−30050ω6
+ 7.06 × 109ω4

− 9.45 × 1013ω2
+

3.23 × 1017) + ω2k(8.34 × 105ω5
− 5.27 × 109ω3

+

7.5 × 1012ω) > 0 (resp. ≥ 0) ∀ω ∈ (0, ∞).

The polynomial in the left-hand side of the above inequality can
be rearranged in a convenient form as

(8.34 × 105k − 30050kb)ω7
+

(7.06 × 109kb − 1.67 × 106k2 − 5.27 × 109k)ω5
+

(1.05 × 1010k2 − 9.45 × 1013kb − 7.5 × 1012k)ω3
+

(3.23 × 1017kb − 1.50 × 1013k2)ω,

which remains positive ∀ω ∈ (0, ∞) if the coefficients of all
the ω terms take on positive values. This can be mathematically
formulated as⎡⎢⎢⎢⎣

0 30050
1.67 × 106

−7.06 × 109

−1.05 × 1010 9.45 × 1013

1.51 × 1013
−3.23 × 1017

⎤⎥⎥⎥⎦
[
k
b

]
≤

⎡⎢⎢⎢⎣
8.34 × 105

−5.27 × 109

−7.5 × 1012

0

⎤⎥⎥⎥⎦ .

his can be treated as a constrained, linear, least-square estima-
ion problem, which can readily be solved using the Matlab-based
DP solver packages. We set the lower bounds for k and b as 100
nd 20, respectively, so that the filter poles can be placed at s =
1,2

9

10. This is entirely an arbitrary choice to ensure that the closed-
oop system is neither too sluggish nor too fast. Solving the above
east-square estimation problem in CVX (Grant & Boyd, 2014), we
et feasible upper bounds of k and b as k ≤ 4.2891 × 105 and

≤ 20. The filter is then constructed as F1(s) =
100

s2 + 20s + 100
and the desired SNI controller is obtained as

C1(s) = α1(s)/β1(s), (15)

here α1(s) = 3.3278 × 10−3(s2 + 1.108s + 6350)(s2 + 28.43s +

.21× 105) and β1(s) = (s2 + 20s+ 200)(s2 + 1.996s+ 7631). We
hen verify the DC loop gain condition C1(0)Gm(0) = 3.0599 ×

0.1634 = 0.4999 < 1. Hence, the NI-based IMC scheme shown
in Fig. 4 is guaranteed to be asymptotically stable via Theorem 1.

4.2.2. LMI-based approach
To proceed with the IMC design following Theorem 2, we

choose the polynomial d(s) = (s + 80)D
[
Gm(s)

]
= (s + 80)(s2 +

28.43s + 2.21 × 105) since the plant model Gm(s) has the first
resonant peak at approximately ω = 80 rad/s. This choice of d(s)
is based on the guidelines presented in Section 3.4 as it offers
an acceptable trade-off between speed of response and settling
time. Also, choosing d(s) in such a manner helps to avoid fast
poles in the controller dynamics. Upon solving the set of LMI
conditions (5a)–(5e), we obtain the desired SSNI controller

C2(s) =
14.383(s + 1429)
(s + 80)(s + 83.97)

. (16)

t can be readily verified that the DC loop gain is less than one
C2(0)G(0) = C2(0)Gm(0) = 3.0599 × 0.1634 = 0.5000 < 1],
which guarantees the closed-loop stability of the IMC scheme
shown in Fig. 4.

4.3. Matlab simulation results

This subsection provides a comprehensive Matlab simulation
study on the performance of the designed controllers C1(s) and
C2(s) under an ideal situation [i.e. when G(s) = Gm(s)] and a
erturbed condition [i.e. when G(s) ̸= Gm(s)]. The primary control
bjective of this case study is to reduce the vibration induced in
he cantilever beam externally.

.3.1. Under ideal situation [i.e. when G(s) = Gm(s)]
This subsection shows and analyses the regulatory (via pulse

esponse) and tracking (via step response) performances of the
I-based IMC scheme achieved by the controllers C1(s) and C2(s).
he open-loop pulse and step responses are respectively shown
n Figs. 10(a) and 10(b). Fig. 10(d) shows that in the ideal case,
oth C1(s) and C2(s) achieve a perfect steady-state tracking. In
ddition, C1(s) results in a well-damped closed-loop response
ith no overshoot, while the closed-loop response with C2(s)
xhibits little oscillations. However, the latter offers a remarkable
mprovement in the settling time (0.29 s) over the former (0.58 s).
o analyse the disturbance rejection capacity (subject to a pulse
isturbance input), Fig. 10(c) shows that C2(s) observes a decay
ime of 0.62 s and a peak overshoot of 0.3537 cm. In contrast,
1(s) causes a peak overshoot of 0.2789 cm and a settling time
f 2.56 s. Note that the peak overshoot [resulted by C2(s)] can be
urther reduced by choosing a more appropriate d(s), as outlined
n Section 3.4, but at the cost of increased settling time. Hence,
e can conclude that the performance achieved by the frequency-
omain design technique is not that appealing compared to the
MI-based design methodology.
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Fig. 10. [When G(s) = Gm(s)] (a) Open-loop response to a pulse input; (b) Open-
loop response to a unit step input; (c) Closed-loop pulse responses achieved by
the controllers C1(s) [via frequency-domain approach] and C2(s) [via LMI-based
approach]; (d) Closed-loop unit step responses achieved by C1(s) and C2(s).

Fig. 11. Bode plot of the cantilever beam Gδ(s) that is different from Gm(s).

4.3.2. Under perturbed condition [when G(s) ̸= Gm(s)]
Now, we consider the case where the identified model is not

identical to the physical plant [i.e. G(s) ̸= Gm(s)]. To handle
such situations, we impose a reasonable and practically feasible
assumption G(0) = Gm(0). Our objective is to test the robustness
of the designed controllers C1(s) and C2(s) against the model
mismatch [i.e. G(s) ̸= Gm(s)]. To induce a difference between G(s)
and Gm(s), we choose a slightly perturbed transfer function of the
cantilever beam, denoted as Gδ(s), given below:

Gδ(s) =
1502.5(s2 + 1.996s + 3816)

(s2 + 2.108s + 1270)(s2 + 10.43s + 2.763 × 104)
. (17)

It can be readily verified that this Gδ(s) is still a minimum-
hase SNI transfer function. Its Bode plot (shown in Fig. 11)
lso confirms its SNI property. The closed-loop stability of the
ositive feedback IMC scheme remains preserved for both C1(s)
nd C2(s) since the DC loop gain condition holds in both the cases:
1(0)Gδ(0) = 3.0599 × 0.1634 = 0.5000 < 1 and C2(0)Gδ(0) =

.0599 × 0.1634 = 0.5000 < 1.
Figs. 12(a)–12(d) show the open-loop and closed-loop re-

ponses of the perturbed plant G (s) subject to the same pulse
δ

10
Fig. 12. [When G(s) ̸= Gm(s)] (a) Open-loop response to a pulse input; (b) Open-
oop response to a unit step input; (c) Closed-loop pulse response using the
ontrollers C1(s) [via frequency-domain approach] and C2(s) [via the LMI-based
pproach]; (d) Closed-loop unit step response using the controllers C1(s) and
2(s).

nd unit step inputs applied in Figs. 10(a)–10(d). The time re-
ponses in Figs. 12(c) and 12(d) show that the achieved transient
erformance has slighted deteriorated compared to Figs. 10(c)
nd 10(d) due to the induced model mismatch. Fig. 12(c) reveals
hat although the reduction in the peak value in the closed-
oop response is negligible, the decay of oscillation is significant.
esides, it also reveals that C2(s) performs better than C1(s).
ig. 12(d) indicates that both C1(s) and C2(s) achieve perfect
teady-state tracking although C2(s) offers a faster dynamic per-
ormance than C1(s). Note that both C1(s) and C2(s) have been
ble to achieve perfect nominal steady-state tracking despite the
odel mismatch (as reflected in Fig. 12(d)) only due to the fact

hat Gm(0) = Gδ(0). If Gm(0) ̸= Gδ(0), to eliminate the inevitable
teady-state error, an additional feed-forward control input can
e designed following the ideas given in Garcia and Morari (1982)
nd Morari and Zafiriou (1989).

.4. Experimental validation results

This subsection will test the feasibility and performance of
he NI-based IMC controller C2(s) given in (16) on a vibration
ontrol problem of a lightweight cantilever beam. A custom-made
ibration suppressor shown in Fig. 3 was considered for the ex-
erimental validation purposes. The complete closed-loop control
etup is shown in Fig. 9(a). The cantilever beam we considered
or experimental validation has a SISO configuration, that is, a
ingle pair of collocated force actuator and position sensor. Both
he sensor and actuator use MFC patches glued with the beam.

.4.1. Regulatory response (disturbance rejection performance) un-
er nominal condition
The regulatory response (under a nominal operating condi-

ion) of the vibration suppressor system was tested by shaking
he base unit (which acts as a disturbance) of the system through
he belt–pulley–motor arrangement. A PWM signal was applied
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Fig. 13. [Experimental validation results: Regulatory response achieved by C2(s)]
a) under nominal operating condition; and (b) when an external weight was
ttached to the beam.

o the input of the motor for a duration of 0.5 s to produce a jerk
hat induces a vibration in the beam. The disturbance rejection
erformance is evident from Fig. 13(a), which reveals that the
ontroller C2(s) has significantly attenuated the vibration caused
y the external disturbance produced by the belt–pulley–motor
ssembly. The figure also compares the regulatory response with
he open-loop response subject to the disturbance. The regulatory
esponse has a decay time of 2.17 s and a peak overshoot of
.036 cm compared to the open-loop response having a decay
ime of 11.50 s and a peak overshoot of 3.2190 cm. Please access
he following web links https://youtu.be/CljRUaelS6Q and https:
/youtu.be/io4a4JXfFDI to watch the experimental demonstration
lips.

.4.2. Regulatory response (disturbance rejection) under perturbed
ondition
To test the robustness of the proposed NI-based IMC scheme

gainst a deliberate model mismatch [i.e. when G(s) is signifi-
antly different from the Gm(s)], we attached an external weight
f 5 g mass to the existing beam at the middle position. The
eam has a mass of 30 g, making the total mass of the beam
nd weight 35 g. This hardware change shifts the unperturbed
esonant modes of the beam. Then, the same experiment as done
n Section 4.4.1 was carried out. Fig. 13(b) shows the disturbance
ejection capability of C2(s) in the perturbed situation. It can
e noticed that the controller produces satisfactory performance
ven in this case also.

.4.3. Effect of changes in d(s) on the transient performance of the
ontroller
This subsection analyses the effect of changing the real root

f the polynomial d(s) = (s + a)D
[
Gm(s)

]
on the closed-loop

erformance tested in experimentation. We took two different
hoices a1 = 0.8 and a2 = 8, fixed respectively at two decades
nd one decade below the first resonant mode (at ω = 80 rad/s)

of the identified plant model Gm(s). We seek to redesign the
IMC controller via the LMI-based design methodology (i.e. The-
orem 2) corresponding to the two new polynomials d2(s) = (s +

.8)D
[
Gm(s)

]
and d3(s) = (s+8)D

[
Gm(s)

]
. The new controllers are

obtained as:

C3(s) =
5.9357(s + 0.8385)
(s + 0.8)(s + 2.033)

(18)

nd

4(s) =
10.941(s + 12.56)
(s + 8)(s + 5.615)

. (19)

ote that C3(s) and C4(s) contain slower poles than C2(s), which
ave been dictated by the factors (s + 0.8) in d2(s) and (s + 8)
n d (s), respectively. The closed-loop stability of the IMC scheme
3

11
Fig. 14. Experimental validation results — Regulatory responses (Disturbance
rejection capability) achieved by the new IMC controllers: (a) C3(s) and (b) C4(s).

s still guaranteed since both C3(s) and C4(s) satisfy the DC loop
ain condition, as verified here: C3(0)Gm(0) = 3.0592×0.1618 =

.4950 < 1 and C4(0)Gm(0) = 3.0596 × 0.1618 = 0.4951 < 1.
Figs. 14(a) and 14(b) portray the regulatory responses (which

reflects the disturbance rejection capability) achieved by the new
controllers C3(s) and C4(s). Comparing Figs. 14(a), 14(b) and 13(a),
it can be asserted that C2(s) offers the best vibration attenuation
erformance. The decay time (considering a 2% tolerance band)
n case of C2(s) is even smaller than 2 s, in contrast to 8.5 s
chieved by C3(s) and 4 s achieved by C4(s) respectively. There-
ore, we conjecture that as the real root (at s = −a) of d(s)
oves farther in the left-hand side of the s-plane, the speed of

esponse improves. Regarding the vibration-amplitude reduction,
4(s) and C2(s) reduce the open-loop peak vibration of 3.2 cm to
.95 cm (shown in Fig. 14(b)) and 2.095 cm (shown in Fig. 13(a))
espectively. However, the degree of vibration attenuation in the
ase of C3(s) is much less than that achieved by C2(s) and C4(s).
he experimental results suggest that the real root (at s = −a)
f d(s) should not be placed more than a decade below the first
esonant mode of the plant model Gm(s).

. Conclusions

This paper has introduced a Negative Imaginary (NI) controller
ynthesis technique based on a positive feedback Internal Model
ontrol framework (see Fig. 4). A frequency-domain and an LMI-
ased design methodology are proposed for generating the NI
ontroller. The frequency-domain design technique offers two
pecific controller forms and solves a constrained least-square
stimation problem to find the controller parameters. While the
MI-based methodology relies on the choice of a stable polyno-
ial d(s), which plays a crucial role in constructing the auxiliary

ilter F (s) = Gm(s)Q (s) that governs the shape of the closed-
oop time response. A systematic set of guidelines is provided for
hoosing the polynomial d(s). Both synthesis techniques ensure
losed-loop stability, even in the presence of model-mismatch,
nd achieve perfect steady-state tracking. Simulation studies ac-
ompanied by experimental results are given, which advocate the
easibility and effectiveness of the proposed NI-based IMC scheme
n the vibration attenuation of a lightweight cantilever beam.
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ppendix

Let Γ (s, zi) = (s + zi)(s + z̄i).

https://youtu.be/CljRUaelS6Q
https://youtu.be/io4a4JXfFDI
https://youtu.be/io4a4JXfFDI
https://youtu.be/io4a4JXfFDI
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Table 1
Quantitative information of the performance parameters of the closed-loop impulse response of the plant model Gm1 subject to the choice of the pole polynomials
d1(s), d2(s), . . . , d30(s)}.
Choice of d(s) Bandwidth Impulse response settling time Peak of impulse response Farthest controller pole

d1(s) = (s + 0.5)Γ (s, 0.5 + j) 1.018 26.474 0.484 −5.911
d2(s) = (s + 0.5)Γ (s, 0.5 + 2j) 1.052 35.207 0.545 −34.710
d3(s) = (s + 0.5)Γ (s, 0.5 + 3j) 0.964 38.718 0.499 −32.533
d4(s) = (s + 0.5)Γ (s, 0.5 + 4j) 0.981 38.272 0.512 −39.526
d5(s) = (s + 1)Γ (s, 1 + j) 1.051 34.994 0.538 −36.433
d6(s) = (s + 1)Γ (s, 1 + 2j) 0.991 37.108 0.511 −34.295
d7(s) = (s + 1)Γ (s, 1 + 3j) 0.858 43.075 0.440 −56.949
d8(s) = (s + 1)Γ (s, 1 + 4j) 0.883 42.331 0.461 −63.009
d9(s) = (s + 2)Γ (s, 2 + j) 0.448 42.349 0.484 −75.035
d10(s) = (s + 2)Γ (s, 2 + 2j) 0.881 42.153 0.455 −77.485
d11(s) = (s + 2)Γ (s, 2 + 3j) 0.891 41.910 0.463 −81.548
d12(s) = (s + 2)Γ (s, 2 + 4j) 0.776 47.642 0.400 −152.346
d13(s) = (s + 3)Γ (s, 3 + j) 0.888 42.220 0.463 −112.141
d14(s) = (s + 3)Γ (s, 3 + 2j) 0.717 45.156 0.363 −225.809
d15(s) = (s + 3)Γ (s, 3 + 3j) 0.847 44.215 0.442 −156.8465
d16(s) = (s + 3)Γ (s, 3 + 4j) 0.574 48.655 0.286 −458.572
d17(s) = (s + 4)Γ (s, 4 + j) 0.569 49.046 0.283 −523.863
d18(s) = (s + 4)Γ (s, 4 + 2j) 0.559 49.712 0.278 −569.341
d19(s) = (s + 4)Γ (s, 4 + 3j) 0.534 51.637 0.262 −683.768
d20(s) = (s + 4)Γ (s, 4 + 4j) 0.535 51.756 0.263 −691.803
d21(s) = (s + 5)Γ (s, 5 + j) 0.597 53.713 0.301 −617.6388
d22(s) = (s + 5)Γ (s, 5 + 2j) 0.606 53.183 0.307 −597.666
d23(s) = (s + 5)Γ (s, 5 + 3j) 0.618 52.458 0.313 −576.443
d24(s) = (s + 5)Γ (s, 5 + 4j) 0.605 53.389 0.306 −599.979
d25(s) = (s + 1)D

[
Gm(s)

]
1.054 24.714 0.491 −15.136

d26(s) = (s + 1)3 0.997 27.596 0.486 −7.511
d27(s) = (s + 0.5)3 1.048 29.637 0.488 −9.414
d28(s) = (s + 2)3 0.865 42.384 0.445 −74.781
d29(s) = (s + 3)3 0.877 42.664 0.457 −114.690
d30(s) = (s + 4)3 0.858 43.775 0.449 −185.911
Table 2
Quantitative information of the performance parameters of the closed-loop impulse response of the plant model Gm2 subject to the choice of the pole polynomials
d1(s), d2(s), . . . , d30(s)}.
Choices of d(s) Bandwidth Impulse response settling time Peak of impulse response Farthest controller pole

d1(s) = (s + 15)Γ (s, 15 + j) 0.087 37.684 0.162 −15
d2(s) = (s + 15)Γ (s, 15 + 2j) 0.087 37.641 0.162 −15
d3(s) = (s + 15)Γ (s, 15 + 3j) 0.088 37.573 0.163 −15
d4(s) = (s + 15)Γ (s, 15 + 4j) 0.088 37.473 0.163 −15
d5(s) = (s + 16)Γ (s, 16 + j) 0.162 20.262 0.304 −16
d6(s) = (s + 16)Γ (s, 16 + 2j) 0.162 20.252 0.304 −16
d7(s) = (s + 16)Γ (s, 16 + 3j) 0.162 20.240 0.304 −16
d8(s) = (s + 16)Γ (s, 16 + 4j) 0.162 20.220 0.304 −16
d9(s) = (s + 17)Γ (s, 17 + j) 0.171 19.200 0.320 −17
d10(s) = (s + 17)Γ (s, 17 + 2j) 0.171 19.186 0.321 −17
d11(s) = (s + 17)Γ (s, 17 + 3j) 0.171 19.164 0.321 −17
d12(s) = (s + 17)Γ (s, 17 + 4j) 0.171 19.130 0.322 −17
d13(s) = (s + 18)Γ (s, 18 + j) 0.181 18.114 0.340 −18
d14(s) = (s + 18)Γ (s, 18 + 2j) 0.181 18.101 0.340 −18
d15(s) = (s + 18)Γ (s, 18 + 3j) 0.181 18.077 0.340 −18
d16(s) = (s + 18)Γ (s, 18 + 4j) 0.182 18.042 0.341 −18
d17(s) = (s + 19)Γ (s, 19 + j) 0.177 18.558 0.332 −19
d18(s) = (s + 19)Γ (s, 19 + 2j) 0.177 18.553 0.332 −19
d19(s) = (s + 19)Γ (s, 19 + 3j) 0.177 18.541 0.332 −19
d20(s) = (s + 19)Γ (s, 19 + 4j) 0.177 18.525 0.332 −19
d21(s) = (s + 20)Γ (s, 20 + j) 0.190 17.223 0.357 −20
d22(s) = (s + 20)Γ (s, 20 + 2j) 0.190 17.224 0.357 −20
d23(s) = (s + 20)Γ (s, 20 + 3j) 0.190 17.224 0.357 −20
d24(s) = (s + 20)Γ (s, 20 + 4j) 0.190 17.223 0.357 −20
d25(s) = (s + 19)D

[
Gm(s)

]
1.671 5.585 2.372 −19

d26(s) = (s + 15)3 0.087 37.689 0.162 −15
d27(s) = (s + 16)3 0.162 20.261 0.304 −16
d28(s) = (s + 17)3 0.171 19.204 0.320 −17
d29(s) = (s + 18)3 0.181 18.119 0.340 −18
d30(s) = (s + 19)3 0.177 18.561 0.332 −19
12



P. Bhowmick, S. Kurawa, S. Kannan et al. Automatica 164 (2024) 111621

{

{

B

Table 3
Quantitative information of the performance parameters of the closed-loop impulse response of the plant model Gm3 subject to the choice of the pole polynomials
d1(s), d2(s), . . . , d30(s)}.
Choices of d(s) Bandwidth Impulse settling time Peak of impulse response Farthest controller pole

d1(s) = (s + 0.5)Γ (s, 0.5 + j) 0.187 21.613 0.180 −0.500
d2(s) = (s + 0.5)Γ (s, 0.5 + 2j) 1.113 9.935 0.438 −2.204
d3(s) = (s + 0.5)Γ (s, 0.5 + 3j) 0.933 10.962 0.378 −2.788
d4(s) = (s + 0.5)Γ (s, 0.5 + 4j) 0.994 11.247 0.399 −3.160
d5(s) = (s + 1)Γ (s, 1 + j) 1.258 11.625 0.547 −2.398
d6(s) = (s + 1)Γ (s, 1 + 2j) 0.938 10.981 0.380 −2.875
d7(s) = (s + 1)Γ (s, 1 + 3j) 0.819 15.026 0.387 −4.3269
d8(s) = (s + 1)Γ (s, 1 + 4j) 1.013 25.767 0.535 −13.631
d9(s) = (s + 2)Γ (s, 2 + j) 1.035 24.387 0.533 −14.170
d10(s) = (s + 2)Γ (s, 2 + 2j) 1.051 24.261 0.539 −14.418
d11(s) = (s + 2)Γ (s, 2 + 3j) 1.000 31.285 0.559 −19.215
d12(s) = (s + 2)Γ (s, 2 + 4j) 0.948 31.772 0.559 −21.571
d13(s) = (s + 3)Γ (s, 3 + j) 0.971 31.574 0.572 −23.823
d14(s) = (s + 3)Γ (s, 3 + 2j) 0.711 37.441 0.412 −49.524
d15(s) = (s + 3)Γ (s, 3 + 3j) 0.703 44.379 0.424 −58.237
d16(s) = (s + 3)Γ (s, 3 + 4j) 0.720 43.426 0.438 −58.267
d17(s) = (s + 4)Γ (s, 4 + j) 0.753 41.711 0.462 −60.540
d18(s) = (s + 4)Γ (s, 4 + 2j) 0.750 42.160 0.461 −61.670
d19(s) = (s + 4)Γ (s, 4 + 3j) 0.765 41.233 0.472 −60.913
d20(s) = (s + 4)Γ (s, 4 + 4j) 0.798 44.505 0.499 −62.081
d21(s) = (s + 5)Γ (s, 5 + j) 0.736 49.277 0.470 −148.413
d22(s) = (s + 5)Γ (s, 5 + 2j) 0.742 48.953 0.475 −147.945
d23(s) = (s + 5)Γ (s, 5 + 3j) 0.754 47.966 0.484 −146.765
d24(s) = (s + 5)Γ (s, 5 + 4j) 0.640 49.269 0.381 −174.383
d25(s) = (s + 1.41)D

[
Gm(s)

]
1.445 20.512 0.846 −15.706

d26(s) = (s + 1.41)3 0.955 11.146 0.384 −3.056
d27(s) = (s + 3)D

[
Gm(s)

]
1.445 16.041 0.839 −32.709

d28(s) = (s + 3)3 0.974 31.521 0.572 −23.508
d29(s) = (s + 1.41)2(s + 3) 0.995 11.387 0.398 −3.458
d30(s) = (s + 1.41)(s + 3)2 1.062 27.553 0.547 −15.706
Table 4
Quantitative information of the performance parameters of the closed-loop impulse response of the plant model Gm4 subject to the choice of the pole polynomials
d1(s), d2(s), . . . , d30(s)}.
Choices of d(s) Bandwidth Impulse response settling time Peak of impulse response Farthest controller pole

d1(s) = (s + 0.5)Γ (s, 0.5 + j) 1.197 15.725 0.438 −7.769
d2(s) = (s + 0.5)Γ (s, 0.5 + 2j) 0.745 16.0688 0.330 −15.272
d3(s) = (s + 0.5)Γ (s, 0.5 + 3j) 0.899 25.163 0.427 −30.813
d4(s) = (s + 0.5)Γ (s, 0.5 + 4j) 0.906 30.061 0.450 −40.171
d5(s) = (s + 1)Γ (s, 1 + j) 0.921 15.558 0.390 −12.305
d6(s) = (s + 1)Γ (s, 1 + 2j) 0.573 21.040 0.255 −23.090
d7(s) = (s + 1)Γ (s, 1 + 3j) 0.856 26.372 0.405 −34.181
d8(s) = (s + 1)Γ (s, 1 + 4j) 0.518 41.412 0.242 −97.868
d9(s) = (s + 2)Γ (s, 2 + j) 0.755 24.216 0.358 −54.891
d10(s) = (s + 2)Γ (s, 2 + 2j) 0.636 28.746 0.300 −88.390
d11(s) = (s + 2)Γ (s, 2 + 3j) 0.587 36.184 0.271 −87.837
d12(s) = (s + 2)Γ (s, 2 + 4j) 0.582 39.256 0.281 −104.549
d13(s) = (s + 3)Γ (s, 3 + j) 0.642 34.516 0.295 −86.870
d14(s) = (s + 3)Γ (s, 3 + 2j) 0.617 42.560 0.295 −115.381
d15(s) = (s + 3)Γ (s, 3 + 3j) 0.483 45.954 0.239 −180.854
d16(s) = (s + 3)Γ (s, 3 + 4j) 0.476 47.855 0.248 −190.276
d17(s) = (s + 4)Γ (s, 4 + j) 0.485 45.965 0.240 −199.757
d18(s) = (s + 4)Γ (s, 4 + 2j) 0.428 51.235 0.207 −347.180
d19(s) = (s + 4)Γ (s, 4 + 3j) 0.386 46.667 0.181 −404.683
d20(s) = (s + 4)Γ (s, 4 + 4j) 0.261 48.585 0.112 −779.683
d21(s) = (s + 5)Γ (s, 5 + j) 0.306 53.346 0.134 −685.419
d22(s) = (s + 5)Γ (s, 5 + 2j) 0.424 63.030 0.217 −729.551
d23(s) = (s + 5)Γ (s, 5 + 3j) 0.437 61.940 0.226 −714.432
d24(s) = (s + 5)Γ (s, 5 + 4j) 0.377 59.740 0.183 −739.188
d25(s) = (s + 1.37)D

[
Gm(s)

]
1.418 20.982 0.998 −30.837

d26(s) = (s + 1.37)3 0.645 15.785 0.289 −14.587
d27(s) = (s + 2.93)D

[
Gm(s)

]
1.445 16.041 0.839 −32.709

d28(s) = (s + 2.93)3 0.523 33.702 0.238 −119.702
d29(s) = (s + 3.6)D

[
Gm(s)

]
1.430 20.048 1.101 −83.771

d30(s) = (s + 3.6)3 0.501 44.872 0.250 −181.865
B

B
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