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a b s t r a c t

This paper proposes a robust formation control scheme for networked multi-tilt tricopter UAVs
utilizing the Negative Imaginary (NI) and Positive Real (PR) theory. A Sliding Mode Control (SMC)
scheme is designed for a multi-tilt tricopter to ensure stable hovering at a desired height. Then, a
modified Subspace-based system identification algorithm is devised to identify a six-by-six NI model
of the inner-loop-SMC-controlled tricopter in the continuous-time domain by exploiting the Laguerre
filter. A two-loop formation control scheme has been developed for networked multi-tilt tricopters
where the inner loop of each tricopter applies the SMC scheme, and the outer loop implements a
distributed output feedback controller that satisfies the ‘mixed’ Strictly NI (SNI) + Strictly PR (SPR)
system properties. Subsequently, we have established the robustness of the proposed scheme against
NI/PR-type uncertainties and sudden loss of agents. The eigenvalue loci (also known as characteristic
loci) technique is used instead of the Lyapunov-based approach to prove the asymptotic stability of
the formation control scheme. An in-depth simulation case study was performed on a group of six
inner-loop-SMC-controlled multi-tilt tricopters connected via a network to achieve a formation control
mission, even in the presence of uncertainties.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

Cooperative control of multirotor Unmanned Aerial Vehicles
UAVs) has gained significant attention both from academia and
ndustry due to the improved reliability and efficiency it of-
ers, leading to a vast number of applications (Mahony, Ku-
ar, & Corke, 2012) including search and rescue (Senanayake,
enthooran, Barca, Chung, Kamruzzaman, & Murshed, 2016),
ipeline inspection and surveillance (Shukla & Karki, 2016) among
thers. This attention has led to more efficient configurations
nd innovations in size, flight range, airframe configuration and
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ttps://doi.org/10.1016/j.automatica.2024.111813
005-1098/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
other factors. The reader can refer to Nascimento and Saska
(2019) for an exhaustive review of multirotor UAVs. An inno-
vative platform with significant properties is a multi-tilt tri-
copter (Kara-Mohamed & Lanzon, 2012) with three rotors which
can independently tilt, offering greater agility and flexibility.
In contrast to the more common quadrotor (Lanzon, Freddi, &
Longhi, 2014) where trajectory tracking is achieved by manip-
ulating the attitude, the multi-tilt tricopter considered in this
work can achieve simultaneous independent attitude and tra-
jectory tracking (complete 6-DOF control), due to its airframe
configuration. In other words, it is possible to translate in the
lateral and longitudinal directions without changing the attitude,
thereby overcoming the limitation of quadrotors. This serves as
our justification and motivation for investigating the cooperative
control of the multi-tilt tricopter rather than the quadcopter,
thus creating more possibilities when performing specialized and
more complex tasks. One of the most investigated coordination
problems of multi-agent systems (MASs) is the formation con-
trol problem, with the key concern being the development of
control strategies to achieve group formation control. Several
approaches Hu, Bhowmick, and Lanzon (2020), Trinh, Zhao, Sun,

Zelazo, Anderson, and Ahn (2019), Wang, Tnunay, Zuo, Lennox,

data mining, AI training, and similar technologies.
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nd Ding (2019) have been proposed to solve the formation
ontrol problem, including the more recent Negative Imaginary
NI) approach (Hu, Lennox, & Arvin, 2022; Skeik, Hu, Arvin, &
anzon, 2019; Tran, Garratt, & Petersen, 2020; Wang, Lanzon, &
etersen, 2015b). NI theory was initially inspired by the ‘positive
osition feedback control’ of highly resonant systems (Lanzon &
etersen, 2008). It initially drew attention as a control technique
or vibration control of flexible structures (Bhikkaji, Moheimani,
Petersen, 2012; Liu, Lam, Lin, & Jing, 2020; Xiong, Petersen,
Lanzon, 2010), large space structures and robotic manipula-

ors (Mabrok, Kallapur, Petersen & Lanzon, 2014), and later saw
pplications in nano-positioning (Nikooienejad & Moheimani,
022), vehicle platooning (Cai & Hagen, 2010), train platoon-
ng (Li, Wang, Shan, Lanzon, & Petersen, 2021) and cooperative
ontrol of two-wheeled mobile robots (Skeik et al., 2019). The
ritical feature driving this growth is its simple internal stability
ondition that is, a necessary and sufficient condition for the
nternal stability of a positive feedback interconnection of NI and
NI systems M(s) and N(s), is λmax[N(0)M(0)] < 1 (Lanzon &
etersen, 2008), (Lanzon & Chen, 2017), which is a condition that
epends on the loop gain at zero frequency only. NI theory has
een utilized in Tran et al. (2020) and Tran, Garratt, and Petersen
2021) to design a consensus-based formation control framework
or a multi-vehicle system together with an obstacle detection
nd avoidance algorithm. They have utilized the results of Wang
t al. (2015b) and Wang, Lanzon, and Petersen (2015a) to de-
elop a particular consensus and formation control framework for
eterogeneous autonomous vehicles facilitating time-invariant
witching.
Motivated by the results above and applications and to im-

rove the formation control of multi-agent UAVs, this paper de-
elops a leader-following formation control scheme for a network
f multi-tricopter systems. The idea of utilizing the NI-SNI closed-
oop stability result to develop a cooperative control scheme for
he tricopter stems from the fact that a particular class of UAV
ystems can be modelled as a group of networked single/double
ntegrator agents (typically by feedback linearization), which in-
erently satisfies the NI property with poles at the origin. It has
lso been shown in Tran et al. (2020) and Tran et al. (2021)
hat linearized dynamics of the inner-loop of a class of UAVs
closed-loop dynamics) exhibit the negative imaginary property.
onsequently, a cooperative control scheme can be deployed as
he outer-loop controller. The main contributions of this paper
re as follows: (1) We derive the nonlinear model of a multi-
ilt tricopter using force and torque kinematics and dynamics
oo. Although the feedback linearization technique yields single
r double integrator systems, as previously mentioned, it lacks
he accuracy of the system model as it relies on the nonlinearity-
ancellation by introducing an inverse nonlinear function. Hence,
e use sliding mode control laws to linearize the inner loop of the
ulti-tilt tricopter UAV without sacrificing much of its original
roperties and, at the same time, stabilizing the system. Thus,
e obtain an SMC-controlled closed-loop system with six inputs
nd outputs corresponding to the tricopter’s Cartesian positions
nd attitude. (2) To characterize the inner-loop-SMC-controlled
s an NI system, we develop a closed-loop system identification
lgorithm that guarantees that the resultant model is NI. The
lgorithm exploits the classic subspace method but in continuous
ime by use of the Laguerre filter (Haverkamp, Chou, Verhaegen, &
ohansson, 1996) in the identification process, and its advantages
nd simplicity are highlighted. (3) The proposed identification
lgorithm is then applied to find NI models for all six channels of
he inner-loop-SMC-controlled multi-tilt tricopter. The frequency
esponses of the identified models are used to verify whether
he models exhibit the NI property. (4) A closed-loop stability

esult is developed for networked NI/SNI systems using a ‘mixed’

2

trictly Negative Imaginary (SNI) plus Strictly Positive Real (SPR)
ontroller in a negative feedback interconnection. (5) An ‘out-
ut feedback distributed SNI+SPR control’ law is proposed for
chieving robust cooperative control combining leader-following
onsensus and formation control principles. Rather than the Lya-
unov method, we use a new method to prove the convergence
f the control problem, which encompasses formation control
nd cooperative tracking, exploiting the characteristics of the
haracteristic loci of networked NI and SNI systems. The term
mixed’ with respect to the NI+SPR controller implies that for
ome of the channels of the tricopter, the controller is SNI, while
or others, the controller is SPR. (6) Finally, a simulation case
tudy involving a group of six inner-loop-SMC-controlled multi-
ilt tricopter agents is provided to demonstrate the usefulness and
ffectiveness of the proposed scheme.
otation: R≥0 and R>0 denote respectively the sets of all non-
egative and all positive real numbers. In ∈ Rn×n denotes the

identity matrix of dimension n × n, diag{a, b, c} represents a di-
agonal matrix with diagonal entries a, b, c . ae, ab and aln denote a
vector a given relative to the earth (inertial), body and local frame
n respectively. Rm×n denotes the set of all proper, real, rational
transfer function matrices, and RH m×n

∞
denotes the set of all

proper, real, rational and asymptotically stable transfer function
matrices, both of dimensions (m × n). For a transfer function
matrix M(s), M(jω)∗ = M(−jω)⊤ and M(s)∗ = M(s̄)⊤ where s̄
enotes the complex conjugate of s. The frequency response real-
ermitian and imaginary-Hermitian parts of M(s) are given by

1
2 [M(jω) + M(jω)∗] and 1

2j [M(jω) − M(jω)∗] respectively. A ⊗ B
indicates the Kronecker product of two matrices A and B.

2. Preliminaries and problem formulation

This section serves the purpose of building a solid technical
background for developing the main results of this paper and
reveals the problem statement. The frequently-used terminolo-
gies related to coordinate rotations, algebraic graph theory, basics
of NI and PR systems theory, and the concept of multi-agent NI
systems have been provided.

2.1. Coordinate rotations

The transformation of a vector from the inertial to body frame
following the (z, y, x) Euler rotation sequence (Stevens, Lewis, &
Johnson, 2015) is encoded in the rotation matrix

Rb
e(η) =

⎡⎣ cθ cψ cθ sψ −sθ
sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ
cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ

⎤⎦ , (1)

where η = [φ θ ψ]
⊤, cφ ≜ cosφ and sφ ≜ sinφ. The reverse

transformation is the inverse Rb
e(η)

−1
= Rb

e(η)
⊤

= Re
b(η) from

rotation matrix properties (Stevens et al., 2015). Similarly, the
function which transforms the Euler angle rates from body to
inertial frame is given in Stevens et al. (2015) as,

Γ =

⎡⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

⎤⎦ . (2)

2.2. Algebraic graph theory

Consider a weighted and undirected graph G = (V , E ,A ) with
a non-empty set of nodes V = {1, 2, . . . ,N}, a set of edges E ⊂

V ×V and the associated adjacency matrix A =
[
aij

]
∈ RN×N . An

edge rooted at the ith node and ended at the jth node is denoted
by (i, j), which means information can flow from the ith node to
the jth node. a is the weight of edge (j, i) and a > 0 if (j, i) ∈ E .
ij ij
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he jth node is called a neighbour of the ith node if (j, i) ∈ E .
he in-degree matrix is defined as D = diag{di} ∈ RN×N with

di =
∑N

j=1 aij. The Laplacian matrix L ∈ RN×N of G is defined as
L = D−A . If the ith agent is connected to the leader (considered
as the target or root node labelled with ‘0’), an edge (0, i) is said
to exist between them with a pinning gain gi > 0.

2.3. Negative imaginary and positive real theory

We will now recall the definitions of NI and SNI systems.

Definition 1 (NI System, Lanzon & Chen, 2017; Mabrok, Kallapur
et al., 2014). Let M(s) be the real, rational and proper transfer
function matrix of a finite-dimensional and square systemM with
no RHP poles. Then, M(s) is said to be NI if

• j[M(jω) − M(jω)∗] ≥ 0 ∀ω ∈ (0,∞) except the values of ω
where s = jω is a pole of M(s);

• If s = jω0 with ω0 ∈ (0,∞) is a pole of M(s), then it is
at most a simple pole and the residue matrix lims→jω0 (s −

jω0)jM(s) is Hermitian and positive semidefinite;
• If s = 0 is a pole of M(s), then lims→0 skM(s) = 0 ∀k ≥ 3

and lims→0 s2M(s) is Hermitian and positive semidefinite.

Definition 2 (SNI System, Lanzon & Chen, 2017; Lanzon & Petersen,
2008). Let M(s) be the real, rational and proper transfer function
matrix of a finite-dimensional, square and causal system. Then,
M(s) is said to be SNI if M(s) has no poles in {s ∈ C : ℜ[s] ≥ 0}
and j[M(jω) − M(jω)∗] > 0 ∀ω ∈ (0,∞).

Below, we present the state–space characterization (NI lemma)
of the class of NI systems without poles at the origin.

Lemma 1 (NI Lemma, Lanzon & Chen, 2017; Mabrok, Kallapur et al.,
2014). Let (A, B, C,D) be a minimal state–space realization of a
real, rational proper transfer function matrix M(s) with no poles in
{s ∈ C : ℜ[s] > 0}. Then, M(s) is NI without any pole at the origin
if and only if det[A] ̸= 0, D = D⊤ and there exists a real matrix
P = P⊤ > 0 such that

AP + PA⊤
≤ 0 and B + APC⊤

= 0. (3)

We will now recall the definition of Strictly Positive Real (SPR)
systems.

Definition 3 (SPR System). Let G be a finite-dimensional, square,
LTI system with G(s) ∈ RH m×m

∞
. Let [G(s) + G∼(s)] have full

normal rank m. Then, G(s) is said to be an SPR system if

G(jω) + G(jω)∗ > 0 ∀ω ∈ R. (4)

Ultimately, we would like to propose a new class of LTI sys-
tems that exhibits a ‘mixed’ SNI and SPR property. Originally, Pa-
tra and Lanzon (2011) proposed the notion of ‘mixed’ NI+Finite-
gain system property and later, Das, Pota, and Petersen (2013)
defined a class of ‘mixed’ NI+Finite-gain+Passive systems along
the direction of Patra and Lanzon (2011). According to Patra and
Lanzon (2011) and Das et al. (2013), a system is called ‘mixed’
SNI+SPR if it exhibits SNI property in some frequency intervals
and SPR property in others. For example, G1(s) =

(s+1)
(s+6)(s2+4s+8)

,
G2(s) =

s+1
(s2+8s+32)

, G3(s) =
s+1

(s+10)3
, etc. However, this ‘mixed’

roperty can be defined in another sense. A decoupled mul-
ivariable system with a diagonal transfer function matrix can
e designated as a ‘mixed’ SNI+SPR system if it comprises a
ixture of SNI and SPR transfer function elements, e.g., G4(s) =

iag{ 1
s+1 ,

1
s2+s+1

, s+2
s2+8s+20

}. In this paper, we have designed a
dynamic output feedback formation control scheme’ utilizing this
mixed’ SNI+SPR system property (refer to Sections 5 and 7).
 o

3

Fig. 1. Nyquist D-contour in the s-plane.

Definition 4 (‘Mixed’ SNI+SPR Property). Let G be a square,
LTI system with a diagonal transfer function matrix G(s) =

diag{g1(s), g2(s), . . . , gm(s)}. Let k be a positive integer and 0 <
k < m. Then, the system G is said to have ‘mixed’ SNI+SPR
property if k number of constituent transfer function elements
are SNI and the remaining (m − r) number of elements are SPR.

2.4. Characteristic loci theory

Similar to a Nyquist plot, the characteristic loci ρi(s) for i ∈

{1, 2, . . . , n} of a transfer function matrix G(s) is a conformal
mapping of the function det[G(s)] in a complex plane, known as
the characteristic loci plane, when s traverses along the s-plane
D-contour in the clockwise direction as shown in Fig. 1. For com-
plete details of the characteristic loci theory, please see Belletrutti
and MacFarlane (1971) and Macfarlane and Belletrutti (1973).

Theorem 1 (Belletrutti & MacFarlane, 1971; Macfarlane & Bel-
letrutti, 1973). The negative feedback interconnection of a plant
M(s) and a controller K (s) is asymptotically stable if and only if
the net sum of the critical point (−1 + j0) encirclements of all the
characteristic loci ρi(jw) of the loop transfer function M(s)K (s) for
i ∈ {1, 2, . . . , n} is counter-clockwise and equal to the number of
RHP zeros of the open-loop characteristic polynomial.

2.5. Multi-agent NI and SNI systems

This paper exploits multi-agent NI (also called distributed NI
property) theory to develop a new cooperative control method-
ology for a group of networked (via an undirected graph) inner-
loop-SMC-controlled (refer to Section 3) multi-tilt tricopters that
exhibit the distributed NI property.

Assumption 1. The communication topology of N homogeneous
agents is described by an undirected and connected graph G . A
oot node (leader or target) always exists that sends a reference
rajectory to the follower agent(s).

We will now review some fundamental properties of multi-
gent NI systems. Wang et al. (2015b) first established that a
omogeneous network of NI (or SNI) agents that satisfies As-
umption 1, given by M̄(s) = (L + G) ⊗ M(s), retains the NI (or
NI) property and M̄(0) > 0 (or < 0) ⇔ M(0) > 0 (or < 0).
ecently, Hu et al. (2022) has derived an important property of
multi-agent NI system exploiting the results of Bhowmick and
atra (2018). It shows that all the characteristic loci λi(jω) of a
omogeneous multi-agent NI (or SNI) system lie in the union

f the third and fourth quadrants of the complex plane (also
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Fig. 2. The coordinate systems associated with a multi-tilt tricopter and the
forces and torques acting on it.

known as the characteristic loci plane, discussed in Section 2.4).
The following mathematical notation will be adopted: the phase
angle contribution of each of the characteristic loci, denoted by
φi(λi(jω)), lies in the range [−π, 0] ∀ω ≥ 0 (for NI systems) and
respectively in the range (−π, 0) ∀ω ∈ (0,∞) (for SNI systems).
This resembles the Nyquist interpretation of SISO NI and SNI
transfer functions.

2.6. Problem formulation

Given a multi-agent system (e.g. a multi-UAV system) with
N agents connected via a communication graph G that satisfies
Assumption 1 and modelled as a group of networked agents
with identical dynamics, the control problem is to design a two-
loop distributed formation control scheme (Fig. 9) such that all
agents converge to the state trajectory of the leader node and the
agents asymptotically reach the desired static formation. That is,
limt→∞(xi(t)−x0(t)) = 0, ∀i ∈ {1, 2, . . . ,N}, where x0 is the state
f the leader node and xi is the state of each individual agent.

3. Multi-tilt tricopter modelling

This section presents the model of the tricopter UAV under
consideration. Note that a similar model is proposed in Kara-
Mohamed and Lanzon (2012), Hu and Lanzon (2018). The model
linearization using the sliding mode control technique in closed-
loop is also discussed.

3.1. Forces and moments

The multi-tilt tricopter as depicted in Fig. 2 is considered to be
a rigid-body with mass m and centre of mass G where (X e, Y e, Z e)
denotes the earth (inertial) frame and (Xb, Y b, Zb) denotes the
ody frame with its origin at G . The total force acting on the UAV
b
t ∈ R3 is the sum of the force produced by the rotors Fbm and
he force due to gravity Feg = [0 0 mg]

⊤, where g is the gravity
onstant. The forces and drag torques produced by each rotor are
ssumed to be proportional to the square of the angular speeds
i (Prouty, 1995) such that fi = ktω2

i and τi = kdω2
i , i ∈ {1, 2, 3}

here fi, τi denote the forces and drag torques respectively, and
t , kd denote the thrust and drag torque constants respectively.
rom Fig. 2, the 3D force produced by the ith rotor in its local
rame is given as f l

i

i = [0 − ktω2
i sinαi − ktω2

i cosαi]
⊤, i ∈

1, 2, 3}. The body frame forces for each rotor f bi are obtained
y pre-multiplying the local frame forces f l

i

i with (1) noting that
irst and second rotors need to be rotated 1200 clockwise (ψ =

π/3) and 1200 counter-clockwise (ψ = −2π/3) respectively,
oth about the yaw axis, to align the local frames with the body
4

rame. Note that f l
3

3 = f b3 as the third rotor is already aligned
to the body frame. Thus, the total force from the three rotors in
body coordinates is given by Fbm =

∑3
i=1 f

b
i = ktΨ tΩ where

= [ω2
1sα1 ω

2
2sα2 ω

2
3sα3 ω

2
1cα1 ω

2
2cα2 ω

2
3cα3 ]

T and

Ψ t =

⎡⎢⎣-
√
3
2

√
3
2 0 0 0 0

1
2

1
2 -1 0 0 0

0 0 0 -1 -1 -1

⎤⎥⎦ . (5)

Using Fig. 2, let Goi =
[
Goix Goiy Goiz

]⊤ be the vector of the ith
rotor’s distance from the centre of mass and (O1,O2,O3) be the
application points of f 1, f 2, f 3 respectively, with l1 =

√
3
2 l0 and

l2 =
1
2 l0 where l0 is the arm length. Then, the total moment

exerted by the rotors can be expressed with respect to the body
frame as Tb

r =
∑3

i=1(Goi × f bi ) = ktΨ dΩ where

Ψ d =

⎡⎣0 0 0 -l1 l1 0
0 0 0 l2 l2 -l0
l0 l0 l0 0 0 0

⎤⎦ . (6)

The drag torque on each rotor acts opposite to the ith rotor’s
spin direction and is expressed as τ li

d,i = [0 − kdω2
i sinαi −

kdω2
i cosαi]

⊤
∀i ∈ {1, 2, 3} with respect to the local frame. It

can also be expressed with respect to the body frame as τb
d,i =

Rb
e(η)τ

li
d,i where Rb

e(η) has been defined in (1). Therefore, the total
moment due to the rotor drag is given by Tb

d =
∑3

i=1 τb
d,i =

kdΨ tΩ ∀i ∈ {1, 2, 3}. Consequently, the net moment acting on
the tricopter becomes Tb

m = Tb
r +Tb

d = (ktΨ d+kdΨ t )Ω ∈ R3. The
relationship between the control inputs and actuator outputs (the
control allocation or mixer as depicted in Fig. 3) can be expressed

as U = MΩ where U =

[
Fbm
Tb
m

]
, Ω is already defined before and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

√
3
2 kt

√
3
2 kt 0 0 0 0

1
2kt

1
2kt −kt 0 0 0

0 0 0 −kt −kt −kt

−

√
3
2 kd

√
3
2 kd 0 −

√
3
2 kt l0

√
3
2 kt l0 0

1
2kd

1
2kd −kd 1

2kt l0
1
2kt l0 −kt l0

kt l0 kt l0 kt l0 −kd −kd −kd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.2. Rigid-body model

Let ξe and ωb be the 3D positions and angular velocities
espectively. The translational dynamics of a multi-tilt tricopter
s given by (obtained via applying the Newton–Euler technique
Stevens et al., 2015))

¨
e
=

[
Rb

e(η)
⊤Fbm + Feg

]
/m. (7)

Similarly, the rotational dynamics can be derived as

η̇ = Γωb, (8)

where Γ is defined in (2), by following the techniques reported
in Padfield (1996). The angular acceleration vector is given by
Stevens et al. (2015)

ω̇b
= J−1[(−ωb

× Jωb) + Tb
t

]
(9)

where J ≜ diag{Jx, Jy, Jz} is the inertia matrix. At a steady hovering
condition where the attitude angles and their rates are close
to zero (commonly known as small-angle approximation in the
literature, that is, if the variation of θ is assumed small, then
sin(θ ) ≈ θ , cos(θ ) ≈ 1 and θ̇ ≈ 0), the equations of motion
of the tricopter (7), (8) and (9) reduce to a double integrator

dynamics which inherently satisfies the NI property. This is one
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Fig. 3. A Sliding Mode Control scheme for the multi-tilt tricopter used to ensure
table hovering.

f the motivations for applying NI theory to the tricopter system.
ote that the small-angle-approximation-based modelling tech-
ique yields similar results to a feedback-linearized model (of
trirotor or quadrotor). However, the latter may fail because it

elies on cancelling the plant nonlinearities by multiplying them
y their inverse terms. Mathematically derived inverses may not
xactly match the dynamics due to inaccuracies in the real-time
arameter identification process or parameter variation.

.3. Tricopter hovering control using SMC

Assuming that the variation of the angles φ and θ are small,
e have Γ ≈ I3 from (2), which implies η̈ = ω̇b from (8). Upon

expanding, (9) yields

φ̈ =
[
(Jy − Jz)θ̇ ψ̇ + τφ

]
/Jx, (10)

θ̈ =
[
(Jz − Jx)φ̇ψ̇ + τθ

]
/Jy, (11)

ψ̈ =
[
(Ix − Iy)φ̇θ̇ + τψ

]
/Jz . (12)

he approximation Γ = I3 is typically used in the litera-
ure (Prach & Kayacan, 2018), (Kim, Kang, & Park, 2010), (Castillo,
zul, & Lozano, 2004), etc., to obtain a simplified yet reasonably
ccurate model without sacrificing the crucial system properties.
We first consider the roll dynamics (10) and aim to design an

MC law for it. Exploiting the classical SMC theory (Khalil, 1996),
e choose an attractive sliding surface s̃φ = ėφ + λφeφ where
φ ≜ φ − φd and λφ > 0. We shall select the control law so that

̇̃
φ = −kφ sgn(s̃φ) with kφ > 0 such that s̃φ ̇̃sφ ≤ 0. A standard
yapunov candidate function Vφ =

1
2 s̃

2
φ > 0 for all s̃φ ̸= 0 is taken

to analyse the stability of the sliding surface. We then calculate
V̇φ as

V̇φ = s̃φ ̇̃sφ = s̃φ(−kφ sgn(s̃φ)) = −kφ |s̃φ | ≤ 0 (13)

here

gn(s̃) ≜
|s̃|
s̃

=

⎧⎨⎩
−1 s̃ < 0,
0 s̃ = 0,
1 s̃ > 0.

sing the relation s̃φ ̇̃sφ = −kφ |s̃φ |, we can readily find

˜φ

( 1
Jx

[
(Jy − Jz)θ̇ ψ̇ + τφ

]
− φ̈d + λφ ėφ

)
= −kφ |s̃φ | (14)

y substituting the expression of φ̈ from (10). It gives

φ = Jx
(
−kφ sgn(s̃φ) + φ̈d − λφ ėφ

)
− (Jy − Jz)φ̇ψ̇ ≜ uφ . (15)

ince Vφ > 0 ∀s̃φ ̸= 0 and V̇φ ≤ 0, V̇φ = 0 only when
˜φ = 0, that is, ėφ + λφeφ = 0. Therefore, the error dynamics
̇φ is asymptotically stable (Khalil, 1996) as λφ > 0. It implies
imt→∞ φ(t) = φd under the action of τφ . Following the above
rocedure, we can choose another two sliding surfaces s̃θ = ėθ +

θeθ where eθ ≜ θ − θd and s̃ψ = ėψ + λψeψ where eψ ≜ ψ −ψd
nd obtain(

˜ ¨ ̇
)

̇ ̇

θ = Jy −kθ sgn(sθ ) + θd − λθeθ − (Jz − Jx)θ ψ ≜ uθ (16)

5

Table 1
Summary of tricopter parameters.
Parameter Value

l0 0.33 m
m 1.448 kg
kt 1.084 × 10−5 kg-m
kd 1.726 × 10−7 kg-m2

Jx 1.035 × 10−1 kg-m2

Jy 1.03 × 10−1 kg-m2

Jz 1.709 × 10−1 kg-m2

Fig. 4. Tricopter response to a spiral trajectory with SMC.

for controlling the pitch motion and

τψ = Jz
(
−kψ sgn(s̃ψ ) + ψ̈d − λψ ėψ

)
− (Jx − Jy)φ̇ θ̇ ≜ uψ (17)

or controlling the yaw motion.
We make the following assumptions for the translational dy-

amics (7). During vertical motion, ΣFz ̸= 0, ΣFx = ΣFy = 0;
uring longitudinal motion, ΣFy = 0, ΣFx ̸= 0, ΣFz ̸= 0; and
uring lateral motion, ΣFy ̸= 0, ΣFx = 0,ΣFz ̸= 0. Along
he translational axes, Fz ̸= 0 because the vertical thrust is
equired to hold the altitude. Expanding (7) and imposing these
implifying assumptions, we get

ẍ =
[
(cθ cψ )Fx + (cφsθ cψ + sφsψ )Fz

]
/m, (18)

¨ =
[
(sφsθ sψ + cφcψ )Fy

+ (cφsθ sψ − sφcψ )Fz
]
/m, (19)

z̈ = g +
[
(cφcθ )Fz

]
/m. (20)

Similar to the attitude control cases, we choose s̃x = ėx +λxex,
˜y = ėy + λyey, s̃z = ėz + λzez with λx > 0, λy > 0, λz > 0 and
e get the sliding-mode control laws for the x, y and z motions:

Fx =
[
m

(
−kx sgn(s̃x) + ẍd − λxėx

)
− Fz(cφsθ cψ + sφsψ )

]
/cφcψ ≜ ux, (21)

y =
[
m

(
−ky sgn(s̃y) + ÿd − λyėy

)
− Fz(cφsθ sψ

− sφcψ )
]
/(sφsθ sψ + cφcψ ) ≜ uy, (22)

Fz =
[
m

(
−kz sgn(s̃z) − g + z̈d − λz ėz

)]
/cφcθ ≜ uz . (23)

ig. 3 shows a schematic of the proposed SMC scheme for con-
rolling attitude (η) and position (ξ) of a multi-tilt tricopter. For
imulation purposes, λx = λy = λz = 1.4, λφ = λθ = λψ =

.3, kx = ky = 1, kz = 1.5 and kφ = kθ = kψ = 2.5 are taken and
he tricopter parameter values are listed in Table 1. Figs. 4 and
show the responses of the multi-tilt tricopter to a commanded

or reference) spiral trajectory with zero attitude change. Note
hat the tricopter under consideration can achieve independent
and y motions (6-DOF) without changing its attitude due to its
irframe configuration.
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. Subspace-based closed-loop system identification of a tri-
opter in the time-domain

This subsection focuses on developing a subspace-based clo-
ed-loop system identification technique in the continuous time
omain to identify a linear model of the tricopter under a stable
overing condition achieved by the SMC scheme shown in Fig. 3.
his technique also ensures that the identified linear model is NI
y embedding the NI constraints [AP+PA⊤

≤ 0 and B+APC⊤
= 0

from Lemma 1] within the system identification algorithm. The
idea has been inspired by Tran et al. (2020) and Tran et al. (2021),
which showed that a quadcopter in a stable hovering condi-
tion, achieved under the action of a forward-path PID controller,
exhibits NI properties. This work has first implemented an inner-
loop SMC scheme (see Figs. 3 and 9) on the tricopter to ensure
stable hovering. The sliding surface was chosen as s̃ = ė + λe for
ach of the six channels as described in Section 3.3. The map from
ξ Td ηTd ]

T to [ξ T ηT ]T in Fig. 3 should be close to unity at low
requencies under the action of the inner-loop SMC controller.
owever, at mid-to-high frequencies, noise will drive the inner
oop away from the sliding surface, resulting in a lack of perfect
racking. Since the output will nonetheless still broadly follow the
nput with some additional phase lag, we expect the closed-loop
ynamics from [ξ Td η

T
d ]

T to [ξ T ηT ]T in Fig. 3 to have NI properties.

4.1. Subspace-based closed-loop system identification in the contin-
uous time domain

Since we need a system identification technique to iden-
tify an NI model of a multi-tilt tricopter, as described above,
the NI constraints (3) given in Lemma 1 must to be imposed.
These constraints are defined in the time domain via state–space
matrices, which says subspace-based system identification can
be a good choice. However, subspace-based system identifica-
tion is generally performed in the discrete-time domain. If we
transform conditions (3) to discrete-time equivalents, as done
in Mabrok, Haggag, Petersen and Lanzon (2014) for instance,
conditions (3) become non-convex and are no longer LMIs, mak-
ing the identification process more complex and less intuitive.
To overcome this issue, we propose a continuous-time version
of the existing subspace-based system identification technique
utilizing the ideas of Haverkamp, Verhaegen, Chou, and Johansson
(1997), Mohd-Mokhtar and Wang (2008) and Haverkamp et al.
(1996). It is worth noting that the proposed system identifica-
tion technique is implemented on the inner-loop-SMC-controlled
tricopter. Open-loop system identification is too difficult in the
current situation because the tricopters are open-loop unstable.

Consider a minimal state–space realization (A, B, C,D) of a
SISO, real, rational, proper transfer function M(s) where A ∈

Rn×n, B ∈ Rn×1, C ∈ R1×n,D ∈ R1×1, x(t) ∈ Rn, u(t) ∈ R and
6

y(t) ∈ R for all t ≥ 0. For a continuous-time LTI system, the
output y(t) can be expressed as1

(t) = L −1
[Y (s)] = L −1[{C(sI − A)−1B + D

}
U(s)

]
= C

∫ t

0
eA(t−τ )Bu(τ ) dτ + Du(t). (24)

or a strictly-proper (D = 0) system, (24) can be rearranged as
(t) = C

{∫ t
0 eA(t−τ )u(τ ) dτ

}
B since the system M(s) is SISO.

The proposed system identification process is described below
hrough three main steps. The estimated A, B and C matrices will
e denoted by Â, B̂ and Ĉ .

tep 1: The Laguerre Filter algorithm in Haverkamp et al. (1996)
is used to generate filtered input–output data sets from
experimentally observed data sets;

tep 2: The error-in-variables family of subspace algorithms
(Mohd-Mokhtar & Wang, 2008) is used to estimate the
Â and Ĉ matrices of the system relying on the filtered
input–output data sets generated in Step 1;

tep 3: The column vector B̂ is constructed by solving the least
squares optimization problem (27) which uses the esti-
mated Â and Ĉ matrices (from Step 2).

The readers are referred to Mohd-Mokhtar and Wang (2008)
nd Haverkamp et al. (1996) to review the estimation algorithm
for finding Â and Ĉ), which we have utilized in Steps 1 and 2. In
his paper, Step 3 is modified by embedding the NI constraints
from Lemma 1) to enforce the NI property of the identified
odel.
For a SISO channel of a strictly proper LTI system, if we pack

he measured input–output time-series data in u = [u(t1), u(t2),
· · , u(tN )]⊤ ∈ RN×1 and y = [y(t1), y(t2), · · · , y(tN )]⊤ ∈ RN×1

here N data points have been collected in the time interval
0, tN ], we can express y as

y(t1)
y(t2)
...

y(tN )

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
Ĉ
{∫ t1

0 eÂ(t1−τ )u(τ ) dτ
}
B̂

Ĉ
{∫ t2

0 eÂ(t2−τ )u(τ ) dτ
}
B̂

...

Ĉ
{∫ tN

0 eÂ(tN−τ )u(τ ) dτ
}
B̂

⎤⎥⎥⎥⎥⎥⎦ , (25)

hich can be expressed in a vector-matrix form as y = ΦB̂
here Φ ∈ RN×n and B̂ ∈ Rn×1. The matrix Φ is known for a
nown input function u(t) over all t ∈ [0, tN ]. However, since Φ
nvolves integrals and our measured input contains discrete-time
ata points {u(t1), u(t2), · · · , u(tN )}, we can use a numerical
ntegration technique such as a first-order approximation of an
ntegral (or Trapezoidal rule, or Simpson’s rule, etc.) to calculate
.
Finally, imposing the NI constraint B̂ = −ÂPĈ⊤ from (3) into

= ΦB̂, we have

= −ΦÂPĈ⊤ (26)

here P = P⊤ > 0 is the unknown matrix variable to be
etermined. Eq. (26) can be solved for P > 0 satisfying ÂP +

Â⊤
≤ 0 via the following constrained least-squares minimiza-

ion problem:

min
P

∥Φ⊤y + Φ⊤ΦÂPĈ⊤
∥
2

(27)

ubject to
ˆP + PÂ⊤

≤ 0 and P = P⊤ > 0,

1 The notation L −1(·) stands for the Laplace inverse.
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sing techniques in Ljung (1999). The objective function in (27) is
uadratic in P , and the constraints are affine in P . Thus, it is a con-
ex optimization problem that can be conveniently solved using
ommercially available SDP solver packages (e.g. CVX, SeDuMi,
almip, etc.). Once P is obtained, B̂ is computed as B̂ = −ÂPĈ⊤.

.2. System identification of an inner-loop-SMC-controlled tricopter
nforcing NI property

In this subsection, the linearized multi-tilt tricopter from Sec-
ion 3.3 with six inputs (xd, yd, zd, φd, θd, ψd) and their respective
outputs is considered as the closed-loop system to be identified.
The input–output data is obtained by exciting each channel with
a square wave and measuring the corresponding output signal.
The continuous time identification algorithm described in Sec-
tion 4.1 is then used to identify a model for each channel. The
Laguerre filter gain p for each channel was heuristically chosen as
0.55, 0.45, 0.34, 0.35, 0.4 and 0.45 respectively, and by inspect-
ing the singular values in the identification process, the model
order was chosen as n = 2 for all channels, yielding the following
ISO NI transfer functions for the respective channels:

m1(s) =
X(s)
Xd(s)

=
2.3662 × 10−5s + 3.515 × 10−5

s2 + 0.006301s + 4.357 × 10−5 , (28)

m2(s) =
Y (s)
Yd(s)

=
2.659 × 10−14s + 2.714 × 10−5

s2 + 0.006625s + 3.682 × 10−5 , (29)

m3(s) =
Z(s)
Zd(s)

=
8.769 × 10−14s + 2.38 × 10−5

s2 + 0.006368s + 3.067 × 10−5 , (30)

m4(s) =
Φ(s)
Φd(s)

=
6.114 × 10−17s + 4.827 × 10−5

s2 + 0.01231s + 5.206 × 10−5 , (31)

m5(s) =
Θ(s)
Θd(s)

=
7.62 × 10−14s + 5.676 × 10−5

s2 + 0.01357s + 5.849 × 10−5 , (32)

m6(s) =
Ψ (s)
Ψd(s)

=
1.419 × 10−14s + 1.49 × 10−4

s2 + 0.003192s + 1.325 × 10−4 , (33)

here X(s), Y (s), Z(s), Φ(s), Θ(s) and Ψ (s) denote the Laplace
transform of the real-time physical variables x(t), y(t), z(t), φ(t),
θ (t) and ψ(t) respectively. Eqs. (28)–(33) together represent the
inner-loop-SMC-controlled dynamics of the multi-tilt tricopter
in the closed loop with six inputs and six outputs. Figs. 6–8
show the frequency response validation of the identified models
together with a comparison of these models with the classic
subspace identification algorithm (van Overschee & de Moor,
1996) and Ljung (1999). In Figs. 6–8, unconstrained refers to the
classic subspace algorithm (van Overschee & de Moor, 1996)
while constrained refers to our proposed continuous-time algo-
rithm, which solves the constrained optimization problem (27)
and guarantees that the identified model is NI. It is evident from
Figs. 6–8 that the identified models for each channel using the

proposed algorithm have a phase in the range [−π, 0], which is

7

Fig. 7. Frequency response comparison: z and roll channels.

Fig. 8. Frequency response comparison: pitch and yaw channels.

Fig. 9. A two-loop formation control scheme for networked multi-tilt tricopters
using an inner-loop cascaded SMC block and outer-loop distributed ‘mixed’
SNI+SPR control law.

required for a negative imaginary system. Furthermore, it can also
be observed from Figs. 6–8 that for all channels except roll and
yaw, the proposed algorithm (constrained) yields better fits with
the validation data compared to the classic subspace algorithm
(unconstrained).

5. A distributed two-loop formation control scheme for net-
worked multi-tilt tricopters

This section lays down the foundational results which under-
pin the main contributions of this paper that will be developed in
the subsequent sections. Here, we will establish that a network
of inner-loop-SMC-controlled agents can be made closed-loop
stable via a distributed ‘mixed’ SNI+SPR controller depending only
on the sign definiteness of the DC-gain matrix of the controller
transfer function. This result will be invoked later to develop a
leader-following formation control scheme (shown in Fig. 10) for
networked inner-loop-SMC-controlled multi-tilt tricopter agents.

5.1. Closed-loop stability of networked stable NI/SNI system with a
‘mixed’ SNI+SPR controller

In this subsection, we will first establish (in Lemma 2) that a
network of inner-loop-SMC-controlled multi-tilt tricopter agents
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Fig. 10. The outer-loop formation control scheme for a group of networked
inner-loop-SMC-controlled tricopter agents M(s) (being SNI) utilizing a dis-
tributed output feedback ‘mixed’ SNI+SPR controller K (s) with K (0) >

.

(s) = diag{m1(s),m2(s), . . . ,mm(s)} as derived in (28)–(33),
being stable NI/SNI with M(0) > 0, connected via an undirected
graph, can be stabilized in a negative feedback loop shown in
Fig. 10 by a distributed ‘mixed’ SNI+SPR controller K (s) having
K (0) > 0. The terminology ‘mixed’ SNI+SPR controller signifies
that the elements of K (s) exhibit either purely SNI property,
purely SPR property, or a mixture of SNI and SPR properties. In
other words, some elements of K (s) may be SNI, some may be
SPR, while the rest satisfy SNI and SPR properties. Theorem 2 is
the main contribution of this section, which proves that a group
of networked multi-tilt tricopter agents achieves a predefined
time-invariant or time-varying formation under the application
of a distributed ‘mixed’ SNI+SPR controller K (s), described before
when K (0) > 0. Lemma 2 is an essential technical prerequisite
result, which will be invoked for proving Theorem 2. The proof of
Lemma 2 significantly relies on the Characteristic loci theory (Bel-
letrutti & MacFarlane, 1971), (Macfarlane & Belletrutti, 1973) and
has been done taking the inspiration from Bhowmick and Patra
(2018) and Hu et al. (2022).

Lemma 2. Consider a network of N identical and decoupled NI/SNI
systems M(s) ∈ RH m×m

∞
with M(0) > 0. Let the graph G be

associated with a network satisfying Assumption 1. Then, there exists
a finite range of σ ∈ (0, σ ⋆] for which the negative feedback
interconnection of [LG ⊗ σK (s)] and M(s) shown in Fig. 11 remains
asymptotically stable where K (s) ∈ RH m×m

∞
is a decoupled, ‘mixed’

SNI+SPR system satisfying K (0) > 0.

Proof. In this proof, the notation ρi(s) is used to represent the
characteristic loci of the networked loop transfer function matrix
[LG ⊗ K (s)M(s)]. To apply the characteristic loci technique, we
will define the following two sets of the complex variable s

Ω±j = {s| s = jω, ω ∈ (−∞,∞)},

ΩR = {s| s = Rejθ , R ∈ R>0, R → +∞, −
π

2
≤ θ ≤

π

2
},

long the s-plane D-contour shown in Fig. 12(b). The negative
eedback interconnection of M(s) and [LG ⊗ K (s)], as shown in
ig. 11, remains asymptotically stable if none of the character-
stic loci ρi(jω) encircles the critical point (− 1

σ
+ j0) for any

∈ (0, σ ⋆] via Theorem 1. We will now establish via the
ollowing two parts (Parts I and II) that all the characteristic
oci ρi(s) remain confined within the Green-coloured region por-
rayed in Fig. 12(a). Before starting the proof, we note that both
(s) ∈ RH m×m

∞
and K (s) ∈ RH m×m

∞
have decoupled struc-

ures, that is, M(s) = diag{m (s),m (s), . . . ,m (s)} and K (s) =
1 2 m

8

Fig. 11. A rearranged block diagram of the scheme shown in Fig. 10 required
for closed-loop stability analysis.

Fig. 12. (a) All the characteristic loci ρi(jω) of LG ⊗ K (s)M(s) remain inside the
reen coloured region for any σ ∈ (0, σ ⋆] and ∀ω ∈ R∪{∞}. (− 1

σ ⋆
+ j0) denotes

the worst-case critical point (i.e. when σ = σ ⋆); (b) Nyquist D-contour in the
s-plane without any pole on the jω axis.

diag{k1(s), k2(s), . . . , km(s)}. Since M(s) is stable NI/SNI and K (s)
s ‘mixed’ SNI+SPR respectively, ̸ mi(jω) ∈ [−π, 0] and ̸ ki(jω) ∈

(−π, π2 ) ∀ω ∈ (0,∞) and ∀i ∈ {1, 2, . . . ,m}. Also, ̸ mi(0) = 0
nd ̸ ki(0) = 0 ∀i sinceM(0) = M(0)⊤ > 0 and K (0) = K (0)⊤ > 0

via supposition and due to satisfying the stable NI/SNI properties.
We also assume that [M(s) − M∼(s)] has full normal rank.

art I: When s ∈ Ω±j [i.e. when ω ∈ (−∞,∞)]
Let λi [LG ⊗ K (jω)M(jω)] = λi [LG] |ki(jω)||mi(jω)| ej(φi+ψi)

t each ω ∈ (0,∞) and ∀i ∈ {1, 2, . . . ,Nm}. Since M(s) is
table NI and K (s) is ‘mixed’ SNI+SPR, ψi(ω) ∈ [−π, 0] and
i(ω) ∈ (−π, π2 ) ∀ω ∈ (0,∞) and hence, ̸ ρi(jω) = (φi(ω) +

ψi(ω)) ∈ (−2π, 0] ∀ω ∈ (0,∞) ∀i. Similarly, ∀ω ∈ (−∞, 0),
̸ ρi(jω) ∈ (−2π, 0]. At ω = 0, we have λi

[
LG ⊗ K (0)M(0)

]
=

i [LG] |ki(0)||mi(0)|̸ 0 as K (0) > 0 and M(0) > 0. Therefore, the
zero-frequency points ρi(j0−) and ρi(j0+) lie on the positive real
axis of the characteristic loci plane, and they coincide as K (s)M(s)
does not have any pole(s) at the origin. Thus, when s ∈ Ω±j,
the angle contribution ̸ ρi(jω) of each ρi(jω) belongs to the range
−2π, 0] ∀ω ∈ R. Most importantly, there is no infinite crossover
n the negative or positive real axis as K (s)M(s) does not have any
ole at s = 0. However, the characteristic loci ρi(s) may intersect
he negative real axis one or multiple times at finite distances
ince the intercept, given by λi [LG] |ki(jω)||mi(jω)|, remains finite
t all ω ∈ R. These two arguments together imply that there
lways exists a finite range (0, σ ⋆] of the parameter σ for which
he critical point (− 1

σ
+ j0) is never encircled by any ρi(jω). The

fact has been graphically demonstrated in Fig. 12(a). It shows that
all ρi(jω) stay within the Green coloured region such that the
critical point (− 1

σ
+ j0) is never encircled for any σ ∈ (0, σ ⋆].

Part II: When s ∈ ΩR Similar to the zero-frequency points ρi(j0−)
and ρi(j0+), the infinite frequency points ρi(+j∞) and ρi(−j∞)
can be expressed as λi [LG ⊗ K (∞)M(∞)] = λi [LG] |ki(∞) ∥

i(∞)| ̸ (φi(∞) + ψi(∞)) ∀i ∈ {1, 2, . . . ,Nm}. Since the eigen-
values of K (∞)M(∞) are always real numbers (positive/negative/
zero), λi [LG] > 0 ∀i and neither of K (s) and M(s) contains a
pole at the origin, ρ (+j∞) and ρ (−j∞) coincide and lie either
i i
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Fig. 13. An equivalent block diagram of the formation control scheme shown in
Fig. 10 for inner-loop-SMC-controlled networked tricopter agents. Note LG =

L + G).

t the origin or on the real axis at finite distances from the
rigin. Combining all these arguments, we can conclude that
here always exists a finite range (0, σ ⋆] of the gain parameter
σ for which none of the characteristic loci ρi(jω) encircles the
critical point (− 1

σ
+j0) for the entire frequency range ω ∈ R∪{∞}

this has been demonstrated in Fig. 12(a), which shows that all
i(s) remain within the Green coloured region and the worst-

case critical point (− 1
σ ⋆

+ j0) also lies outside the Green coloured
egion].

Parts I and II together prove that all the characteristic loci ρi(s)
of the loop transfer function [LG ⊗ K (s)M(s)] remain within the
Green coloured region shown in Fig. 12(a) and hence, none of
the characteristic loci ρi(s) encircles the critical point (− 1

σ
+ j0)

or any σ ∈ (0, σ ⋆]. This proves the asymptotic stability of the
egative feedback closed-loop system shown in Fig. 11 exploiting
heorem 1.
Note that the same proof readily specializes to the cases when
(s) belongs to the SNI class for which the full normal rank

condition (i.e. [M(s) − M∼(s)] has full normal rank) is inherently
atisfied. Hence, the entire proof is done. ■

.2. Formation control protocol design using a ‘mixed’ SNI and SPR
ystem property

This subsection presents the key contribution of this paper.
I and PR theories have been exploited to design a simple yet
ffective formation control scheme as depicted in Fig. 10 for a
lass of UAVs that can be modelled as (or transformed into) a
etwork of linearized dynamics. Although the formation control
cheme developed in this section is meant for tricopter UAVs, it is
lso well-suited for other UAV configurations (e.g. quadcopter). In
heorem 2 and subsequent parts, the inner-loop-SMC-controlled
ynamics of a multi-tilt tricopter is represented by M(s) =

iag{m1(s),m2(s), . . . ,m6(s)} ∈ RH 6×6
∞

with M(0) > 0, as
erived in (28)–(33).

heorem 2. Consider a network of N identical inner-loop-SMC-
ontrolled, multi-tilt tricopter agents M(s) ∈ RH m×m

∞
, connected via

he topology G that satisfies Assumption 1. Let h(t) =

h⊤

1 h⊤

2 , . . . , h
⊤

N

]⊤
∈ RNm be the desired formation configuration

ector and r̄ = 1Nr ∈ RNm be the formation reference vector.
et K (s) ∈ RH m×m

∞
be a decoupled, ‘mixed’ SNI+SPR controller

atisfying K (0) > 0. Then, there always exists a finite σ ⋆ > 0
uch that for any σ ∈ (0, σ ⋆] the tricopter agents achieve the
esired formation with respect to r(t) and h(t) by the following
istributed dynamic output feedback control law (according to the
cheme shown in Fig. 10)

i = σK (s)
N∑
j=1

aij
(
(y j − hj) − (y i − hi)

)
+ gi(r + hi − y i) (35)

i ∈ {1, 2, . . . ,N}.
9

Proof. We begin this proof by noting that the inner-loop-SMC-
controlled model M(s) ∈ RH m×m

∞
of the multi-tilt tricopter,

derived in (28)–(33), satisfies the SNI property with M(0) > 0.
The proposed formation control scheme for networked multi-
tilt tricopter agents is shown in Fig. 10. An equivalent block
diagram of Fig. 10 has been drawn in Fig. 13 to assist the proof of
Theorem 2. We denote LG = L +G. The proof builds on Lemma 2,
which establishes the asymptotic stability of negative feedback
closed-loop interconnection of a networked stable NI/SNI plant
(LG ⊗ M(s)) and a decoupled ‘mixed’ SNI+SPR controller (IN ⊗

σK (s)) exploiting the characteristic loci technique (Theorem 1).
In Fig. 13, the Green dotted box represents the distributed

‘mixed’ SNI+SPR controller LG ⊗ σK (s). For the proof, the net-
work part (i.e. LG = L + G) has been decoupled from the
plant and attached with the controller block. Now, the nega-
tive feedback interconnection of the inner-loop-SMC-controlled
multi-tilt tricopter system M̄(s) = diag{M(s), M(s), . . . ,M(s)}
and the networked controller LG ⊗ σK (s), as shown in Fig. 13, is
asymptotically stable for a finite range of σ ∈ (0, σ ⋆] via Lemma 2
as Fig. 11 is equivalent to Fig. 13. The asymptotic stability of the
networked loop (i.e. the formation control scheme) ensures that
the formation tracking error will asymptotically decay to zero,
that is, limt→∞ e(t) = 0 or limt→∞ r(t) + h(t) − y(t) = 0.
This part readily follows from Theorem 1 of Seo, Shim, and Back
(2009) and Wang et al. (2015b). Hence, we can conclude that the
group of inner-loop-SMC-controlled multi-tilt tricopter agents
will achieve the desired formation specified by r and h under the
action of the distributed ‘mixed’ SNI+SPR output feedback control
protocol (35) following the scheme shown in Fig. 10 [equivalently
Fig. 13]. ■

Remark 1. The negative feedback consensus-seeking scheme
developed for inner-loop-SMC-controlled tricopter agents may be
easily modified to cater to single and double-integrator agents.
In that respect, the results presented in Hu and Lanzon (2018)
and Hu et al. (2022) where tricopters were feedback-linearized to
single/double integrator systems can be captured by our scheme.
However, it has been investigated that in the case of single
integrator agents, if a negative feedback consensus scheme is
used, then the requirement of an SNI controller can be relaxed
to a stable NI (as opposed to an SNI) controller. This reduces the
conservatism of the proposed consensus scheme and, hence, is
worth detailed analysis.

Remark 2. It is worth noting that different from Hu et al. (2022),
our SNI+SPR controller is more generalized since it supports any
NI system, including single and double integrator systems and
their combinations. Also, the authors in Hu et al. (2022) have
considered the SISO case while proposing a cooperative control
law, while we have considered the MIMO case, which also en-
compasses SISO systems. Furthermore, our SNI+SPR control law
offers better transient performance than the SNI-only control law
of Hu et al. (2022) due to the inclusion of a phase lead (a zero)
in the closed loop system, made possible by the strictly passive
part of the controller. The inclusion of the passive part also means
that our SNI+SPR control law is part of a wider set of controller
transfer functions as the Nyquist plot lies not only below the real
axis but within the first, third and fourth quadrants, providing
a larger family of controller transfer functions compared to the
SNI-only control law of Hu et al. (2022).

It is also worth noting that the proposed scheme (Theorem 2)
can be readily extended to take up a group formation control
problem, allowing multiple leaders.
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Fig. 14. A formation control scheme for inner-loop-SMC-controlled tricopter
agents with a class of IM-type uncertainty δi ∈ U ∀i.

. Robustness and fault-tolerance properties

.1. Robustness to model uncertainty

This subsection examines the robustness of the NI-based lea-
er-following consensus scheme developed for distributed dou-
le integrator agents. This study is particularly motivated by
he fact that many practical robotic systems can be feedback
inearized into double integrator dynamics along with uncer-
ain parts appearing in a multiplicative or an additive struc-
ure. We now declare a particular class of uncertainties ∆(s) =

iag{δ1(s), δ2(s),
. . , δm(s)} where δi(s) belongs to a set U defined below:

=
{
δ(s) ∈ RH ∞ : −π ≤ ̸ δ(jω) ≤

π

2
∀ω ∈ R≥0

and δ(0) > 0
}
. (36)

ote that the uncertainties are not restricted to the NI class. The-
rem 3 given below will establish that the NI-based distributed
eader-following consensus scheme offers robustness against U-
type uncertainties when they appear with double integrator dy-
namics.

Theorem 3. Consider a network of N identical multi-tilt tricopters
having an uncertain inner-loop-SMC-controlled model given by M∆

(s) = M(s)[I + ∆(s)] ∈ RH m×m
∞

where M(s) is the nominal model
(stable NI/SNI) and ∆(s) = diag{δ1(s), δ2(s), . . . , δm(s)} with δi ∈

U ∀i. The interaction topology G satisfies Assumption 1. Let h(t) =

h⊤

1 h⊤

2 , . . . , h
⊤

N

]⊤
∈ RNm be the desired formation configuration

ector and r̄ = 1Nr ∈ RNm be the formation reference vector.
et K (s) ∈ RH m×m

∞
be a decoupled, ‘mixed’ SNI+SPR controller

atisfying K (0) > 0. Then, there always exists a finite σ ⋆ > 0
uch that for any (0, σ ⋆], the tricopter agents achieve the desired
ormation with respect to r(t) and h(t) by the distributed ‘mixed’
NI+SPR output feedback control law (35) following the scheme
hown in Fig. 14.

roof. We will first establish the asymptotic stability of the
ormation control scheme (shown in Fig. 14) in the presence of
class input-multiplicative-type (IM-type) uncertainty ∆(s) =

iag{δ1(s), δ2(s), . . . , δm(s)} where δi(s) ∈ U ∀i ∈ {1, 2, . . . ,m}.
t is guaranteed that none of the eigenvalue loci ρi(jω) of

[
LG ⊗

(s)M∆(s)
]
, whereM∆(s) = M(s)[I+∆(s)], encircles the worst-case

ritical point ( 1
σ ⋆

+ j0) for any δ(s) ∈ U. Let M(s) be stable NI—the
roof proceeds along the similar track of the proof of Theorem 2.

art I: When s ∈ Ω±j [i.e. when ω ∈ (−∞,∞)]
Let λi [LG ⊗ K (jω)M∆(jω)] = λi [LG] |ki(jω)||mi(jω) [1+δi(jω)]|

ej(φi(ω)+ψi(ω)+νi(ω)) at each ω ∈ (0,∞) and ∀i ∈ {1, 2, . . . ,Nm}.
ote φi(ω) ∈ [−π, 0] as M(s) is stable NI, ψi(ω) ∈ (−π, π2 ) as

K (s) is ‘mixed’ SNI+SPR and ν (ω) ∈ [−π, π ] for all ω ∈ R . At
i 2 ≥0

10
Fig. 15. (a) All the characteristic loci ρi(jω) of LG⊗K (s)M∆(s) remain inside the
Cyan-coloured region for the full class of δ ∈ U; (b) The figure shows that the
set of critical points approaches (−∞+ j0) when σi → 0. Note that σi ∈ [0, σ ⋆i ].
This interprets the fault tolerance property.

ω = 0, φi(0) = ψi(0) = νi(0) = 0. Therefore, (φi(ω) + ψi(ω) +

i(ω)) ∈ [−π, π] ∀ω ∈ R≥0. Similarly, ∀ω ∈ (−∞, 0), (φi(ω) +

i(ω) + νi(ω)) ∈ [−π, π]. It implies that the zero-frequency
oints ρi(j0−) and ρi(j0+) coincide and lie on the positive real
xis for any δ ∈ U since K (s)M∆(s) does not have any pole(s) at
= 0. Thus, when s ∈ Ω±j, the angle contribution ̸ ρi(jω) of each
ρi(jω) belongs to the range [−π, π] ∀ω ∈ R. Most importantly,
there is no infinite crossover on the negative or positive real axis
as K (s)M∆(s) does not have any pole at s = 0. However, ρi(s)
may intersect the negative real axis one or multiple times at
finite distances since the intercept, given by λi [LG] |ki(jω)||mi(jω)
[1 + δi(jω)]|, remains finite at all ω ∈ R and ∀i ∈ {1, 2, . . . ,Nm}.
These two arguments together imply that there always exists a
finite range of σ ∈ (0, σ ⋆] such that the worst-case critical point
(− 1

σ ⋆
+ j0) is never encircled by any ρi(jω). The fact has been

raphically demonstrated in Fig. 15(a). It shows that all ρi(jω) stay
ithin the Cyan-coloured region for any IM-type uncertainties
(s) ∈ U.

art II: When s ∈ ΩR Similar to the zero-frequency points ρi(j0−)
nd ρi(j0+), the infinite frequency points ρi(+j∞) and ρi(−j∞)
an be expressed as λi [LG ⊗ K (∞)M∆(∞)] = λi [LG] |ki(∞) ∥

i(∞)[1 + δi(∞)]| ̸ (φi(∞) + ψi(∞) + νi(∞)) ∀i ∈ {1, 2, . . . ,
Nm}. Since the eigenvalues of K (∞)M∆(∞) are always real num-
bers (positive/negative/zero) and K (s)M∆(s) does not contain any
oles at s = 0 for any δ ∈ U, ρi(+j∞) and ρi(−j∞) coincide
nd lie either at the origin or on the positive/negative real axis at
inite distances from the origin.

Combining Part I and Part II, we can conclude that there
lways exists a finite range of σ ∈ (0, σ ⋆] such that none of
he characteristic loci ρi(jω) encircles the worst-case critical point
−

1
σ ⋆

+ j0) for any uncertainty δ(s) ∈ U. This is graphically
interpreted through Fig. 15(a), which shows that all ρi(s) re-
main inside the Cyan-coloured region for all δ(s) ∈ U. Hence,
asymptotic stability of the formation control scheme is ensured
via Theorem 1 even in the presence of the class of the IM-type
uncertainties δ ∈ U. After this, it remains to be shown that the
formation tracking error decays to zero — which readily follows
from Seo et al. (2009, Theorem 1) and Wang et al. (2015b), as
mentioned also in the proof of Theorem 2.

The above proof can be easily specialized to the cases where
M(s) is SNI. Now, the proof is fully done. ■

Remark 3. Although Theorem 3 has been derived for U-type
uncertainties in an input-multiplicative (IM) configuration, it can
be readily established the scheme (Fig. 14) can also accommodate
the cases when δ(s) ∈ U appears in the output-multiplicative
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r additive form. The same lines of proof of Theorem 3 remain
pplicable with little modifications and re-adjustments.

emark 4. In contrast to the Lyapunov stability approach used
n most MAS-based formation control schemes, the proposed
ethodology relies on the eigenvalue loci technique to prove

he asymptotic convergence of the consensus-tracking error. The
roposed scheme (i) reduces mathematical complexity, offer-
ng a straightforward implementation, (ii) removes the need to
earch for an appropriate Lyapunov function, (iii) removes some
f the overly restrictive assumptions on the dynamics of the
nderlying systems and the communication graph to satisfy the
ormation feasibility condition and (iv) does not involve any
onlinear terms in the distributed control law that result in dis-
ontinuous control action accompanied by chattering problems.
he proposed scheme also exhibits robustness to a class of stable
including NI and PR-type) uncertainties when appearing in a
ultiplicative/additive form and fault tolerance to a sudden loss
f agents.

.2. Fault tolerance to a sudden loss of agents

This subsection examines the fault tolerance property of the
roposed formation control scheme in the event of a sudden
oss of agents due to hardware or communication failures. Ex-
loiting the notion of decentralized integral controllability of
I/SNI systems (Bhowmick & Patra, 2018) and inspired by a
imilar development in the case of single integrator MASs in Hu
t al. (2022), we will now show that how the overall closed-
oop stability can be maintained when some of the agents go out
f the network. During the controller design, the effect of the
oss of an agent can be considered by making the gain of that
articular control loop zero (i.e. σi = 0), which implies that the

faulty loop is temporarily deactivated (i.e. the defective agent is
excluded from the network). This is done autonomously by the
decision-making unit in situations when (i) an agent does not
communicate with its neighbours continuously for a few seconds
(decided with respect to the speed of the network), and (ii) an
agent sends an alarm signal to indicate a hardware failure. In the
second case, the inner-loop SMC block helps the faulty UAV to
descend and land safely. After the faulty agents are excluded from
the network, the decision-making unit executes an autonomous
reconfiguration, taking the healthy and active agents. Therefore,
a new Laplacian matrix with a reduced dimension is formed,
and the distributed ‘mixed’ SNI+SPR output feedback control law,
proposed in (37), drives the agents to achieve a new formation
surrounding the leader/target/virtual target and keep tracking the
same. The following proposition gives the problem formulation
and offers the theoretical proof.

Proposition 1. Under the assumptions and conditions of Theo-
rem 3, the formation control scheme given in Fig. 14 retains the
closed-loop asymptotic stability in the event of a sudden loss of
agents under the action of the following distributed ‘mixed’ SNI+SPR
output feedback control law

ui = σiK (s)
N∑
j=1

aij
(
(y j − hj) − (y i − hi)

)
+ gi(r + hi − y i) (37)

∀i ∈ {1, 2, . . . ,N}.
In such cases, after an autonomous reconfiguration of the net-

work, the remaining active agents attain a new formation and keep
tracking the target by the designed control law (37).

Proof. The proof essentially builds on Theorems 3 and 2. The
notations and symbols used in this proof are already introduced.
11
Note the slight modification in the control law in (37) com-
pared to (35). Separate controller gains σi for i ∈ {1, 2, . . . ,N}

are used instead of a common σ . Let σi ∈ [0, σ ⋆i ] and σ ⋆ =

max{σ ⋆1 , σ
⋆
2 , . . . , σ

⋆
N}.

Theorem 3 can be readily applied to establish the asymptotic
stability of the negative feedback formation control scheme given
in Fig. 14 for any σi ∈ (0, σ ⋆]. We will now show that the
closed-loop stability is preserved even when σi = 0 for some i ∈

{1, 2, . . . ,N}. This is equivalent to fulfilling the requirement that
none of the eigenvalue loci ρi(jω) of

[
LG ⊗ K (s)M∆(s)

]
encircles

the critical point (− 1
σi

+ j0) for any σi ∈ [0, σ ⋆], particularly
when σi = 0 for some i. Fig. 15(b) portrays the locus of the
critical points starting from (− 1

σ ⋆
+ j0) up to (−∞ + j0) when σi

aries in the range [0, σ ⋆]. Note that the critical point (− 1
σi

+ j0)
reaches (−∞ + j0) when σi = 0, which corresponds to a faulty
situation of the ith agent. Fig. 15(b) nicely depicts that the full set
of the critical points (− 1

σi
+ j0) for σi ∈ [0, σ ⋆] remains outside

he Pink-coloured region in Fig. 15(b). This, hence ensures that
ven though the ith critical point lies at (−∞ + j0), it will not be

encircled by the eigenvalue loci ρi(jω).
Under a faulty situation, the decision-making unit overwrites

the σi values (of the faulty agents) to zero, which indicates that
the faulty agents have been excluded from the network without
impairing the stability of the overall network. The inner-loop
controller will then help the faulty UAV safely reach the ground.
In the meantime, the decision-making unit will also initiate an
autonomous network reconfiguration, taking the healthy/active
agents. This will give rise to a new topology with fewer agents.
However, the bidirectional communication topology will be main-
tained. Hence, the new Laplacian matrix will retain the same
properties as before. Finally, the agents will achieve a formation
surrounding the given target/leader by the same distributed con-
trol law (37) following the same principle derived in Theorem 3
and keep tracking the target. This completes the proof. ■

7. Case study and Matlab simulation results

This section presents the formation control design for a net-
work of six multi-tilt tricopter agents using the results devel-
oped in Section 5. These six agents have identical NI dynamics
based on the inner-loop-SMC-controlled model identified in Sec-
tion 4.2. MATLAB simulation results are presented to show the
effectiveness of the proposed scheme.

7.1. Formation control of a group of multi-tilt tricopters in the ideal
case

For this case study, we consider a group of six multi-tilt
tricopter UAVs, and the control objective is to achieve a desired
formation and escort a leader or target to its destination. Each of
the six agents has identical LTI state–space dynamics described
by,

ẋi = Axi + Bui and yi = Cxi ∀i ∈ {1, 2, . . . , 6},

where xi =
[
ẋi xi ẏi yi żi zi φ̇i φi θ̇i θi ψ̇i ψi

]⊤, ui =[
xdi ydi zdi φdi θdi ψdi

]⊤
, yi =

[
xi yi zi φi θi ψi

]⊤ and the matrices
A, B, C are given as

A =

⎡⎢⎢⎢⎢⎢⎢⎣

-63 -56 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 0
0 0 -66 -47 0 0 0 0 0 0 0 0
0 0 78 0 0 0 0 0 0 0 0 0
0 0 0 0 -64 -39 0 0 0 0 0 0
0 0 0 0 78 0 0 0 0 0 0 0
0 0 0 0 0 0 -123 -67 0 0 0 0
0 0 0 0 0 0 78 0 0 0 0 0
0 0 0 0 0 0 0 0 -136 -75 0 0
0 0 0 0 0 0 0 0 78 0 0 0
0 0 0 0 0 0 0 0 0 0 -32 -85

⎤⎥⎥⎥⎥⎥⎥⎦ × 10-4,
0 0 0 0 0 0 0 0 0 0 156 0
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Fig. 16. A bidirected interaction topology.

=

⎡⎢⎢⎢⎢⎢⎣
625 0 0 0 0 0
0 0 0 0 0 0
0 625 0 0 0 0
0 0 0 0 0 0
0 0 625 0 0 0
0 0 0 0 0 0
0 0 0 625 0 0
0 0 0 0 0 0
0 0 0 0 625 0
0 0 0 0 0 0
0 0 0 0 0 1250

⎤⎥⎥⎥⎥⎥⎦ × 10-4 and

=

⎡⎣ 4 720 0 0 0 0 0 0 0 0 0 0
0 0 0 556 0 0 0 0 0 0 0 0
0 0 0 0 0 487 0 0 0 0 0 0
0 0 0 0 0 0 0 989 0 0 0 0
0 0 0 0 0 0 0 0 0 1162 0 0
0 0 0 0 0 0 0 0 0 0 0 763

⎤⎦ × 10-4.

The above model represents the inner-loop-SMC-controlled
ulti-tilt tricopter system M(s) = diag{mj(s)} ∈ RH 6×6

∞
∀j ∈

{1, 2, . . . , 6} using (28)–(33), with m inputs and outputs, which
was identified in Section 4.2, and satisfies the NI property. It can
also be easily verified that (A, B, C) is stabilizable and detectable.
The undirected interaction topology among the six vehicles is
given in Fig. 16, where the leader agent or target (labelled ‘0’)
provides the formation reference signal. It follows from Fig. 16
that the Laplacian of the network is

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 -1 -1 0 0 0
-1 4 -1 -1 -1 0
-1 -1 4 0 -1 -1
0 -1 0 2 -1 0
0 -1 -1 -1 4 -1
0 0 -1 0 -1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (38)

and since only the first agent is connected to the leader, an edge
(0, 1) exists between them with a pinning gain g1 = 1 while
gi = 0 for i ∈ {2, . . . , 6}.

We choose a high-gain SNI controller k1(s) =
107

(s+ρ1)
to stabilize

he x position and a set of high-gain SPR controllers of the
orm kj(s) =

8×107(s+2)
(s+ρj)

∀j ∈ {2, 3, . . . , 6} for the rest of the
hannels with ρ =

[
ρ1, ρ2, . . . , ρ6

]
=

[
15, 100, 80, 90, 95, 49

]
.

onsequently, the ‘mixed’ SNI+SPR controller is given as K (s) =

iag{kj} ∀j ∈ {1, 2, . . . , 6} with σ = 1, and it is trivial to
how that K (0) > 0 as required. As depicted in Fig. 13, the
roup formation reference which achieves the desired formation
s given as (r + h) ∈ R36 where r̄ =

[
r⊤ r⊤, . . . , r⊤

]⊤
∈ R36

s the formation reference and h =
[
h⊤

1 h⊤

2 , . . . , h
⊤

6

]⊤
∈ R36 is

he formation configuration. The reference for the leader or root
ode is selected as r0 =

[
4 3 2 0 0 0

]⊤
∀t < 10s and r0 =

−1 5 3.2 0 0 0
]⊤

∀t ≥ 10 s.
12
Fig. 17. Group formation of six tricopter agents with SNI+SPR controllers with
formation configuration switched from diamond to triangle after 10 s.

Fig. 18. x position responses.

The formation configuration for the followers was chosen as

hi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ cos
( (i+1)π

3

)
γ sin

( (i+1)π
3

)
0

γ sin
( (i+1)π

3

)
γ cos

( (i+1)π
3

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∀t < 10s

and

hi =

⎡⎢⎢⎢⎢⎢⎢⎣

βi cos
( (2i+1)π

6

)
βi sin

( (2i+1)π
6

)
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∀t ≥ 10s

∀i ∈ {1, 2, . . . , 6} where γ = 2.0 m is the radius of the formation,
βi = γ ∀i ∈ {1, 3, 5} and βi = γ /2 ∀i ∈ {2, 4, 6}. Initially, with
t < 10s, the follower agents track a diamond formation bordering
the leader agent, while for t ≥ 10 s, the follower agents track a
triangle formation with respect to the formation configuration hi,
taking into account a change in the leader reference r at t = 10
s. Fig. 17 shows that the six multi-tilt tricopter agents achieve
leader-following consensus and formation tracking as t → ∞.
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t
n
t

Fig. 19. y position responses.

Fig. 20. Altitude z responses.

Fig. 21. Roll attitude responses.

Note that if h = 0, the entire scheme in Fig. 13 reduces to a
consensus problem. It, therefore, follows that the SNI+SPR con-
troller inherently achieves consensus tracking. When the leader
reference and demanded group formation changes at t = 10 s,
he SNI+SPR control scheme maintains the stability of the entire
etwork. It ensures that the six multi-tilt tricopter agents track
he newly demanded triangle formation.

Figs. 18–20 show the responses of the positions xi, yi, zi ∀i ∈

{1, 2, . . . , 6} to the demanded references. For the six follower
agents, the actual positions track the demanded leader within 5 s
before and after the period t ≥ 0, corresponding to a change
in the demanded group formation. Similarly, Figs. 21–23 show
that the attitudes of the six multi-tilt tricopter agents track the
target attitude. Considering Figs. 21–23, it is also worth noting
that for t < 10 s, the motion of the multi-tilt tricopter agents
occurs with a change in attitude, implying simultaneous position
and attitude control, which is an advantage of the tricopter under
consideration due to its airframe configuration. For t > 10 s, the

case where the tricopter agents translate to track the leader or

13
Fig. 22. Pitch attitude responses.

Fig. 23. Yaw attitude responses.

Fig. 24. Formation control achieved in the presence of IM-type uncertainty in
each axis of the multi-tilt tricopter UAVs.

target without a change in attitude is evident, indicating the abil-
ity of the tricopter under consideration to achieve simultaneous
independent attitude and trajectory control, extending the limits
of the classic tricopter (Abara, Kannan, & Lanzon, 2020) and other
commonly used multirotor UAVs such as quadcopters.

7.2. Formation control of a group of multi-tilt tricopters with uncer-
tainty

The same team of six multi-tilt tricopters is simulated follow-
ing the scheme in Fig. 14, considering an IM-type uncertainty
δ =

1
∀i ∈ {1, 2, . . . , 6} in each of the six axes. We denote
i s2+s+1
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Fig. 25. Multi-tilt tricopter agents with a fault on vehicle 4.

i = diag{δi} and ∆ = diag{∆i}. Fig. 24 reveals that the NI-based
ooperative control scheme has satisfactorily achieved formation
ontrol for all six agents, even in the presence of uncertainties.
lthough there is a performance degradation, still, it can be re-
arded as the robustness of the proposed scheme. We also tested
he near-worst-case scenario by considering uncertainties in all
ix axes of the multi-tilt tricopter.

.3. Formation control of a group of multi-tilt tricopters with faulty
gents

To show the fault tolerance properties of the proposed scheme,
e use the control law in (37) where the integral gain σi = 1

or i = {1, 2, 3, 5, 6} and σ4 = 0 indicating a fault in vehicle 4.
he fault is introduced after 10 s, and the proposed scheme can
eactivate the faulty vehicle within a short period and reconfigure
he network to use only the remaining five agents to achieve an
lternative formation as in Fig. 25.

. Conclusion

This paper has exploited ‘a blend of NI and PR theory’ to
esign a robust formation control scheme for a group of multi-tilt
ricopter agents. We have also developed a closed-loop system
dentification technique in the continuous time domain and im-
osed NI constraints to obtain an NI model. First, we derived a
omplete nonlinear kinematic and dynamic model of a multi-tilt
ricopter. A sliding mode control (SMC) scheme was designed to
chieve stable hovering. The identification algorithm was then
un on the SMC-controlled tricopter hovering at a certain height,
nd a second-order NI model was identified in the closed loop for
ach of the six channels (x, y, z, φ, θ, ψ). After that, a distributed
utput feedback formation control scheme was developed for
group of SMC-controlled tricopter agents (whose closed-loop
ynamics satisfy the NI property) exploiting a ‘mixed’ SNI+SPR
ontrol law. This two-loop control strategy helps to achieve the
arget position and attitude of the tricopters, independent of
ach other. The theoretical proof relies on the characteristic loci
echnique instead of the Lyapunov stability approach commonly
sed in the cooperative control literature. MATLAB simulation
esults showed decent performance and robustness to NI-type
ncertainties. Group formation control problems and obstacle

voidance aspects can be considered in the future.
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