
Automatica 119 (2020) 109079

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Strictly negative imaginary state feedback control with a prescribed
degree of stability✩

James Dannatt a,∗, Ian R. Petersen a, Alexander Lanzon b

a Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, ACT 2600 Australia
b Control Systems Centre, Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester M13
9PL, U.K

a r t i c l e i n f o

Article history:
Received 10 April 2019
Received in revised form 19 December 2019
Accepted 6 May 2020
Available online 17 June 2020

Keywords:
Negative imaginary systems
State feedback control
Robust control
Algebraic Riccati equations
Uncertain dynamic systems

a b s t r a c t

This paper presents conditions for the synthesis of a strictly negative imaginary closed-loop system
with a prescribed degree of stability under the assumption of full state feedback. A perturbation
method is used to ensure the closed-loop system has both the strict negative imaginary property
and a prescribed degree of stability. This approach involves the real Schur decomposition of a matrix
followed by the solution to two Lyapunov equations. Also, we present and clarify the perturbation
properties of strictly negative imaginary systems.
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1. Introduction

Negative imaginary (NI) systems theory is a rapidly growing
topic originally motivated by the study of linear mechanical sys-
tems with collocated force inputs and position outputs (Lanzon
& Petersen, 2008; Petersen & Lanzon, 2010). Since its inception,
NI systems theory has been applied to many domains (Bhikkaji
& Moheimani, 2009; Das, Pota, & Petersen, 2014; Mabrok, Kalla-
pur, Petersen, & Lanzon, 2014b; Petersen, 2015; Tran, Garratt, &
Petersen, 2017; Wang, Lanzon, & Petersen, 2015). Also, a discrete-
time notion of NI systems has been explored in Ferrante, Lanzon,
and Ntogramatzidis (2016, 2017), Liu and Xiong (2017). One of
the major motivations for the study of NI systems is their robust
stability properties. The earliest results considering the robust
stability of NI and strictly negative imaginary (SNI) systems were
presented in Petersen and Lanzon (2010) and Song, Lanzon, Patra,
and Petersen (2010). Subsequently, the stability properties of NI
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and SNI systems have motivated feedback controller synthesis re-
sults with the aim of creating a closed-loop system with the NI or
SNI property. In this paper, we focus on the state feedback control
problem; see Dannatt and Petersen (2019), Kurawa, Bhowmick,
and Lanzon (2019) and Salcan-Reyes and Lanzon (2019) and
the references within for results concerning the output feedback
control problem. The earliest of the NI state feedback results
used a linear matrix inequality (LMI) approach to synthesize a
controller that rendered the closed-loop system NI (Lanzon &
Petersen, 2008; Patra & Lanzon, 2011). Following this, Mabrok,
Kallapur, Petersen, and Lanzon (2012a) drew from the H∞ lit-
erature (See Petersen, 1989; Petersen, Anderson, & Jonckheere,
1991) and offers an algebraic Riccati equation (ARE) approach
to the NI state feedback control problem. The papers (Mabrok,
Kallapur, Petersen, & Lanzon, 2012b, 2015) then modified the
approach of Mabrok et al. (2012a) using a perturbation applied
to the system matrix of the open-loop system. The perturbation
was used to give closed-loop asymptotic stability. However, the
result of Mabrok et al. (2012a) could not guarantee the closed
loop system was NI. To address this, Dannatt and Petersen (2018)
exploited the work in Ferrante and Ntogramatzidis (2013) to
show that a transfer function preserves the NI property after
a positive perturbation. Also, using an ARE approach to syn-
thesis (Salcan-Reyes & Lanzon, 2018, 2019) presented sufficient
conditions for the design of a controller that solves the NI state
feedback control problem. Considering the strong strictly neg-
ative imaginary (SSNI) control problem, Salcan-Reyes, Lanzon,
and Petersen (2018) presented necessary and sufficient condi-
tions for state feedback controller synthesis using an LMI based
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approach. Alternatively, Bhowmick and Patra (2017) devised a
state observer-based control scheme that resulted in an SSNI
closed-loop system. More recently, Mabrok (2019) proposed a
novel approach to the SNI synthesis problem using nonlinear
optimization.

At this time, necessary conditions for SNI controller synthe-
sis remain an open problem. This paper will address this with
separate necessary and sufficient conditions for the solution to
the SNI synthesis problem via static state feedback. Our suffi-
cient conditions generalize and extend the work of Mabrok et al.
(2012b, 2015) and Dannatt and Petersen (2018) by removing an
assumption on minimality, while guaranteeing the SNI property
of the closed-loop system along with a prescribed degree of
stability. In addition, we show that our sufficient conditions for
the existence of a suitable controller are also necessary when the
closed-loop system is minimal.

In order to present our main results on state feedback con-
troller synthesis, we introduce new definitions for NI and SNI
state space realizations. Also, we define SNI transfer functions
and realizations with a prescribed degree of stability. A new
ARE based NI lemma is given that does not assume minimality
and relaxes the constraints on the system matrix found in Song,
Lanzon, Patra, and Petersen (2012). Conditions for a perturbed
state space realization to have the NI or SNI property are derived.
We show that an NI system with a transfer function that is not
degenerate is SNI after any positive perturbation of the system
matrix. Further, we show that the set of SNI transfer functions
is not an open set in the space of real rational proper transfer
functions. Sufficient conditions are derived for the solution to the
state feedback SNI synthesis problem. We also show that these
conditions are necessary under the assumption of a minimal
closed-loop system. An advantage of our method is that it does
not require an ad-hoc check for the closed-loop SNI property and
it allows for a prescribed degree of stability in the closed-loop
system.

2. Definitions

Let R and C denote the fields of real and complex numbers
respectively. The notation Im[G(jω)] refers to the imaginary com-
ponent of the frequency response G(jω). Analogously, Re[G(jω)]
refers to the real component of G(jω). C∗ refers to the complex
conjugate transpose of a matrix or vector C . The notation C≤0
refers to the closed left half of the complex plane and C<0 refers
to the open left half of the complex plane. σ (A) refers to the

spectrum of a matrix A. Also,
[

A B
C D

]
denotes the state space

model

ẋ = Ax + Bu,
z = Cx + Du.

All definitions to follow are restricted to systems with transfer
functions that are real, rational and proper.

Definition 1 (Lanzon & Petersen, 2008; Mabrok, Kallapur, Petersen,
& Lanzon, 2014a; Petersen & Lanzon, 2010). A square transfer
function matrix G(s) is NI if the following conditions are satisfied:

(1) G(s) has no pole in Re[s] > 0;
(2) For all ω ≥ 0 such that jw is not a pole of G(s), j(G(jω) −

G(jω)∗) ≥ 0;
(3) If s = jω0 with ω0 > 0 is a pole of G(s), then it is a simple

pole and the residual matrix K = lims→jω0 (s − jω0)jG(s) is
positive semidefinite Hermitian;

(4) If s = 0 is a pole of G(s), then it is either a simple pole or a
double pole. If it is a double pole, then, lims→0 s2G(s) ≥ 0.

Definition 2. A state space realization
[

A B
C D

]
is NI if the

following conditions are satisfied:

(1) The corresponding transfer function matrix G(s) = C(sI −

A)−1B + D is NI;
(2) σ (A) ⊂ C≤0.

Definition 3 (Dannatt & Petersen, 2017; Lanzon & Petersen, 2008;
Petersen & Lanzon, 2010). A square transfer function matrix G(s)
is SNI if the following conditions are satisfied:

(1) G(s) has no poles in Re[s] ≥ 0;
(2) For all ω > 0 such that jω is not a pole of G(s), j(G(jω) −

G(jω)∗) > 0.

Definition 4. A state space realization
[

A B
C D

]
is SNI if the

following conditions are satisfied:

(1) The corresponding transfer function matrix G(s) = C(sI −

A)−1B + D is SNI;
(2) A is Hurwitz.

3. Preliminary results

The following example motivates some of the results to fol-

low. Consider a non-minimal state space realization
[

A B
C D

]
defined by the matrices

A =

[
0 −1
0 1

]
, B =

[
1
1

]
, C =

[
1 1

]
,D = 0 (1)

and corresponding transfer function G(s) = C(sI −A)−1B+D =
2
s .

The transfer function G(s) is NI via Definition 1 with a pole at the
origin. However, the corresponding state space realization also
has an unstable, unobservable pole at s = 1. This state space
realization is not NI via Definition 2.

We now present some existing and new results for checking if

a state space realization
[

A B
C D

]
has the NI or SNI property.

These results are referred to as NI or SNI lemmas. In this paper, we
are often concerned with NI and SNI lemmas that do not assume
minimality. An NI lemma without an assumption of minimality is
found in Song et al. (2012) and uses an LMI approach under the
assumption of a non-singular system matrix A. This assumption is
relaxed in Salcan-Reyes and Lanzon (2018) which gives necessary
and sufficient conditions for the transfer function matrix of a
given state space realization to be NI but allows for unstable
unobservable modes; e.g., consider the state space realization (1).
The following NI lemma provides an ARE based alternative to
the NI lemmas found in Salcan-Reyes and Lanzon (2018) and
Song et al. (2012). Here, we relax the non-singular system matrix
condition and do not allow unstable unobservable modes. We will
use this lemma in the proof of our main result.

Lemma 5. Let
[

A B
C D

]
be a given state space realization with

R = CB + BTCT > 0. Suppose D = DT and there exists a real
P = PT

≥ 0 such that

PA + ATP + (CA − BTP)TR−1(CA − BTP) = 0 (2)

with σ (A−BR−1(CA−BTP)) ⊂ C≤0. Then, the state space realization
is NI.

Proof. Suppose there exists a P = PT
≥ 0 such that σ (A −

BR−1(CA − BTP)) ⊂ C≤0 and the ARE (2) is satisfied. It follows
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from Condition 1 of Lemma 2 in Salcan-Reyes and Lanzon (2018)
that the transfer function G(s) corresponding to this realization is
NI. We will now show that σ (A− BR−1(CA− BTP)) ⊂ C≤0 implies
σ (A) ⊂ C≤0. Let W = R−

1
2 (CA − BTP). Then, (2) implies

0 = PA + ATP + (CA − BTP)TR−1(CA − BTP)

= PA + ATP + W TW . (3)

Let λ ∈ C be an eigenvalue of A with corresponding eigenvector
y ̸= 0. Then Ay = λy and y∗AT

= λ∗y∗. If we pre-multiply (3) by
y∗ and post multiply by y then

0 = y∗(PA + ATP + W TW )y

= (λ + λ∗)y∗Py + y∗W TWy. (4)

Note that P ≥ 0 by assumption. When considering (4) there are
two cases of interest:

Case 1, y∗Py = 0. In this case, (4) implies Wy = 0. Hence,
(A − BR−

1
2 W )y = Ay = λy. However, all of the eigenvalues of

(A − BR−
1
2 W ) are in C≤0 and thus λ ∈ C≤0;

Case 2, y∗Py > 0. In this case, (4) implies (λ + λ∗) ≤ 0; i.e., λ ∈

C≤0.
Since λ was an arbitrary eigenvalue of A, we have σ (A) ⊂ C≤0.

Therefore, the state space realization is NI. □

Remark 6. Note that Lemma 5 only gives a sufficient condition
for a state space realization to be NI. It is straightforward to show
that the state space realization defined by (1) is NI but the ARE
condition in Lemma 5 is not satisfied.

The following lemma gives conditions for the SNI property of
a state space realization which is not necessarily minimal.

Lemma 7 (Salcan-Reyes & Lanzon, 2019). Let
[

A B
C D

]
be a

given state space realization with R = CB + BTCT > 0. Then, the
following statements are equivalent:

(1) The state space realization
[

A B
C D

]
is SNI;

(2) D = DT , A is Hurwitz and there exists a real P = PT
≥ 0 such

that

PA + ATP + (CA − BTP)TR−1(CA − BTP) = 0 (5)

with σ (A − BR−1(CA − BTP)) ⊂ C<0 ∪ {0}.

The following theorem provides motivation for our Lyapunov
equation approach to controller equation synthesis, as opposed
to an ARE approach such as in Salcan-Reyes and Lanzon (2018,
2019).

Theorem 8. Consider a state space realization
[

A B
C D

]
such

that R = CB + BTCT is non-singular. If there exists a matrix P = PT

which solves (5) then the matrix (A − BR−1(CA − BTP)) will always
be singular.

Proof. Suppose R is invertible and a solution P = PT exists that
satisfies (5). The Hamiltonian matrix associated with (5) is given
by

H =

[
A − BR−1CA BR−1BT

−ATCTR−1CA −AT
+ ATCTR−1BT

]
; (6)

e.g., see equations (13.1) and (13.2) in Zhou, Doyle, and Glover
(1996). It is straightforward to verify that (A−BR−1(CA−BTP)) is

singular if and only if H is singular. Also, we can write

H =

[
I 0
0 −AT

]
(I − V1(V T

2 V1)−1V T
2 )
[

A 0
0 I

]
(7)

where V T
1 := [BT

− C], and V T
2 := [C − BT

]. Hence if
K := (I − V1(V T

2 V1)−1V T
2 ) is singular, then H is singular. However,

KV1 = V1 − V1 = 0 (where V1 ̸= 0 follows from the assumption
that R = V T

2 V1 is invertible.). Thus, H is singular and therefore
(A − BR−1(CA − BTP)) must be singular. □

The proof of Theorem 8 shows that the Hamiltonian matrix
associated with the ARE (5) will always have eigenvalues at the
origin. This is significant since singular Hamiltonians may corre-
spond to AREs which are computationally difficult to solve (Bini,
Iannazzo, & Meini, 2012). Furthermore, it highlights the fact that
the ARE (2) cannot have a stabilizing solution; e.g., see Zhou et al.
(1996).

The following result is known as the Maximum Modulus The-
orem (e.g., see Zhou et al., 1996) and is used in the proof of our
main result.

Lemma 9. If f (s) : C → C is defined and continuous on a closed-
bounded set S and analytic on the interior of S, then the maximum
of |f (s)| on S is attained on the boundary of S; i.e., maxs∈S |f (s)| =

maxs∈δS |f (s)| where δS denotes the boundary of S.

4. Perturbation of NI systems

The perturbation of PR systems is well understood (See Chap-
ters 2 and 3 in Lozano, Brogliato, Egeland, & Maschke, 2000).
Although a direct mapping between PR and NI systems exists,
there is no such mapping between strictly positive real (SPR) and
SNI systems. A consequence of this is that perturbation results for
SPR systems do not readily translate to NI systems. This section
outlines new perturbation results for NI systems.

The following lemma is a generalization of the corresponding
transfer function results in Ferrante et al. (2016) and Ferrante and
Ntogramatzidis (2013). It applies to state space realizations with
a symmetric transfer function matrix G(s); i.e., G(s) = G(s)T .

Lemma 10. A state space realization
[

A B
C D

]
with symmetric

transfer function matrix G(s) = C(sI − A)−1B+D is NI if and only if
σ (A) ⊂ C≤0 and the inequality

j(G(s) − G(s)∗) ≥ 0 (8)

is satisfied for all s = jω+ϵ which is not a pole of G(s) where ω ≥ 0,
ϵ ≥ 0.

Proof. Suppose the state space realization s
[

A B
C D

]
with

symmetric transfer function G(s) is NI. Hence, it satisfies the
conditions of Definition 2. Then σ (A) ⊂ C≤0 is automatically
satisfied. Also, using Lemma 3.1 of Ferrante and Ntogramatzidis
(2013), it follows that (8) is satisfied.

Conversely suppose σ (A) ⊂ C≤0 and (8) is satisfied. G(s)
is clearly analytic in Re[s] > 0 and since G(s) is symmetric,
proper, real and rational, it satisfies the conditions of Lemma 3.1
of Ferrante and Ntogramatzidis (2013). Thus G(s) is NI and the
corresponding realization is NI according to Definition 2. □

Definition 11. A transfer function matrix G(s) is degenerate if
there exists a non-zero vector v such that the function f (s) =

v∗(j(G(s) − G(s)∗))v is identically zero.
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The following theorem relates Lemma 10 to perturbations
in the system matrix of a not necessarily minimal state space
realization. Specifically, we show that any positive perturbation
of an NI state space realization with a symmetric non-degenerate
transfer function will result in an SNI system.

Theorem 12. If a given state space realization
[

A B
C D

]
is NI

with a symmetric and non-degenerate transfer function G(s), then

the perturbed state space realization
[

A − ϵI B
C D

]
will be SNI

for all ϵ > 0.

Proof. Consider a state space realization
[

A B
C D

]
with a

symmetric transfer function matrix G(s) = C(sI − A)−1B + D that
is non-degenerate. Now let ϵ > 0 be given. The corresponding
state space model of the perturbed system is given by

ẋ = (A − ϵI)x + Bu,

y = Cx + Du (9)

with transfer function

Gϵ(s) = C(sI − A + ϵI)−1B + D = G(s + ϵ). (10)

If σ (A) ⊂ C≤0 then σ (A − ϵI) ⊂ C<0 for ϵ > 0. We now
show that after the perturbation, Gϵ(s) is NI. Since G(s) is assumed
to be NI, it follows from Lemma 10 that j(Gϵ(jω) − Gϵ(jω)∗) =

j(G(ϵ + jω) − G(ϵ + jω)∗) ≥ 0 for all ω ≥ 0. Also, Gϵ(s) is analytic
in C_ϵ = {s ∈ C : Re[s] > −ϵ}. Hence, Gϵ(s) is analytic in
Re[s] > −α for some α > 0. Thus, Gϵ(jω) satisfies the conditions
of Definition 1 and is NI. It remains to show that Gϵ(s) is SNI.
Suppose that there exists a finite s0 = jω0 ∈ {C_ϵ : Im[s] > 0}
and a nonzero vector v such that v∗(j(Gϵ(s0) − Gϵ(s0)∗))v = 0.

Since Gϵ(s) is analytic in C_ϵ , it follows that the function
fϵ(s) = v∗(j(Gϵ(s)−Gϵ(s)∗))v is harmonic within the same domain.
Now, choose an ϵs < ϵ such that Re[s0] > −ϵs and an arbitrary
M > 0. We define the compact set C̃_ϵs = {s ∈ C : −ϵs ≤

Re[s] ≤ M and 0 ≤ Im[s] ≤ M} (see Fig. 1). This set is such
that C̃_ϵs ⊂ C_ϵ . Since C̃_ϵs is a nonempty compact subset of C_ϵ ,
it follows from Lemma 9 that the function fϵ(s), which is harmonic
on C̃_ϵs , attains its maximum and minimum on the boundary of
C̃_ϵs . Also, as C̃_ϵs is connected, the function fϵ(s) can only have a
local maxima or minima on C̃_ϵs if it is constant.

Now by taking M sufficiently large, s0 will be in the interior
of C̃_ϵs . Remembering that we assumed that fϵ(s0) = 0, it follows
from the connectedness of C̃_ϵs that fϵ(s) = fϵ(s0) = 0 for all s.
From this it follows that f0(s) = f (s) = v∗(j(G(s)−G(s)∗))v = 0 for
all s. This contradicts the assumption that G(s) is non-degenerate.
Therefore fϵ(jω) > 0 for all ω ∈ (0, ∞). Since v was arbitrary, we
can now conclude j(Gϵ(jw)−Gϵ(jw)∗) > 0 for all ω ∈ (0, ∞). Also,
Gϵ(s) is analytic in Re[s] ≥ 0. Therefore, according to Definition 4,
the state space realization is SNI. □

Remark 13. Note that Theorem 12 does not hold in the MIMO
case unless the symmetry of G(s) is assumed. To illustrate this,
consider the following non-symmetric MIMO state space realiza-
tion:

A =

[
−1 1
0 −1

]
, B =

[
1 −1
0 1

]
,

C =

[
1 0
0 1

]
, D =

[
0 0
0 0

]
with non-symmetric transfer function matrix

G(s) =

[
1

s+1 −
s

(s+1)2

0 1
s+1

]
.

Here, A is Hurwitz and G(s) is SNI according to Definition 3 if
j[G(jω) − G(jω)∗] > 0 for ω ∈ (0, ∞). It is straightforward to
verify that this property is satisfied here. Perturbing G(s) results
in the transfer function

Gϵ(jω) = G(jω + ϵ) =⎡⎣ 1+ϵ−jω
(1+ϵ)2+ω2

−(2+ϵ)ω2
−ϵ(1+ϵ)2+ω(ω2

+2ϵ(1+ϵ)−(1+ϵ)2)j
((1+ϵ)2−ω2)2+4(1+ϵ)2ω2

0 1+ϵ−jω
(1+ϵ)2+ω2

⎤⎦ .

The corresponding quantity M(jω) = j[Gϵ(jω) − Gϵ(jω)∗] has the
form

M(jω) =

[ 2ω
(1+ϵ)2+ω2

−α(ω)−β(ω)j
ζ (ω)

−α(ω)+β(ω)j
ζ (ω)

2ω
(1+ϵ)2+ω2

]
where

α(ω) = ω(ω2
+ 2ϵ(1 + ϵ) − (1 + ϵ)2),

β(ω) = ((2 + ϵ)ω2
+ ϵ(1 + ϵ)2),

ζ (ω) = ((1 + ϵ)2 − ω2)2 + 4(1 + ϵ)2ω2.

M(jω) satisfies Condition (2) of Definition 3 if and only if its
leading principle minors are positive for all ω ∈ (0, ∞). We can
immediately see this is satisfied for the (1, 1) block of M(jω).
Therefore, only the following minor which is the determinant of
M(jω) needs to be analyzed:

det(M(jω)) =
4ω2

((1 + ϵ)2 + ω2)2
−

α(ω)2 + β(ω)2

ζ (ω)2
. (11)

Note that if det(M(jω)) is strictly negative at ω = 0, it follows
from continuity that it cannot be positive for all ω > 0. When
ϵ = 0, (11) yields

det(M(jω)) = 4ω10
+ 16ω8

+ 24ω6
+ 16ω4

+ 4ω2 > 0.

This is clearly positive-definite for all ω ∈ (0, ∞). Therefore, G(s)
is SNI for ϵ = 0. When ω = 0, (11) yields

det(M(0)) = −ϵ2(1 + ϵ)8 < 0 for ϵ > 0.

Therefore G(s) is not NI for any ϵ > 0. Thus, this example shows
that Theorem 12 does not generalize to non-symmetric MIMO
systems.

Definition 14. A symmetric transfer function matrix G(s) is said
to be SNI with degree of stability ϵ > 0 if G(s − ϵ) is SNI.

Definition 15. A state space realization
[

A B
C D

]
with sym-

metric, non-degenerate transfer function matrix G(s) is said to
be SNI with degree of stability ϵ > 0 if G(s − ϵ) is SNI and
σ (A) ⊂ {s ∈ C : Re(s) ≤ −ϵ}.

Remark 16. The set of SNI transfer functions is not open in the
space of real, rational and proper transfer functions. To illustrate
this, consider the SISO transfer function G(s) =

s+1
(s+2)2

, which has
imaginary component

Im[G(jω)] =
−ω3

16ω2 + (4 − ω2)2
< 0 ∀ω ∈ (0, ∞).

Hence, G(s) is SNI. Now consider the perturbed transfer function
Gϵ(s) = G(s + ϵ) with imaginary component

Im[Gϵ(jω)] =
−2ϵ − ϵ2

− ω2

((2 + ϵ)2 − ω)2 + 4ω2(2 + ϵ)2
.

It follows that Im[Gϵ(jω)] is positive when −2ϵ − ϵ2
− ω2 > 0.

Thus, Gϵ(s) does not have the NI property for any ϵ ∈ (−2, 0).
Therefore, the set of SNI transfer functions is not open.
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Fig. 1. Complex plane showing the shaded region C̃_ϵs . This region is bounded
by a choice of ϵs < ϵ and an arbitrary M > 0. M is chosen to be sufficiently
large such that a point s0 = jω0 ∈ {C_ϵ : Im[s] > 0} will be in the interior of
C_ϵs .

Fig. 2. Positive feedback interconnection of an NI plant uncertainty ∆(s) and
the closed-loop SNI transfer function Gcl(s) = C1(sI − A − B2K )−1B1 .

5. SNI state feedback controller synthesis

Consider the state space representation of a linear uncertain
system given by

ẋ = Ax + B1w + B2u,

z = C1x (12)

where A ∈ Rn×n, B1 ∈ Rn×r , B2 ∈ Rn×r , C1 ∈ Rr×n. This system
is connected to an uncertain transfer function ∆(s) with minimal
state space realization

ẋ∆ = A∆x∆ + B∆z,

w = C∆x∆ + D∆z. (13)

We will assume that this system satisfies the assumptions

A1. The matrix C1B2 is non-singular;
A2. R = C1B1 + BT

1C
T
1 > 0.

If we apply a state feedback control law u = Kx to this system,
the corresponding closed-loop uncertain system has state space
representation

ẋ = (A + B2K )x + B1w,

z = C1x (14)

with corresponding closed-loop transfer function Gcl(s) = C1(sI −
A − B2K )−1B1 (see Fig. 2).

In order to design a robust control law u = Kx for this system,
first consider a real Schur transformation applied to the system.

5.1. Schur decomposition

Let the constant ϵ > 0 defining the required stability margin
be given. We begin by applying a Schur decomposition to the
matrix Am = A + ϵI − B2(C1B2)−1C1(A + ϵI) and then apply the
corresponding transformation to the rest of the system as follows:

Af = UTAmU =

[
A11 A12
0 A22

]
, (15a)

Bf = UT (B2(C1B2)−1
− B1R−1) =

[
Bf 1
Bf 2

]
, (15b)

B̃1 = UTB1 =

[
B11
B22

]
, (15c)

where A11 has all of its eigenvalues in the closed left half of the
complex plane and A22 is an anti-stable matrix; i.e., σ (A) ⊂ {s :

Re[s] > 0}. Here, U is an orthogonal matrix obtained through the
real Schur transformation; see Section 5.4 of Bernstein (2009).

The following theorem, which is our main result, extends
Theorem 4 in Mabrok et al. (2015); see also Dannatt and Petersen
(2018) and Mabrok et al. (2012a, 2012b). In Mabrok et al. (2015),
the perturbation approach was not shown to preserve the NI
property. We show that in fact, the perturbation approach leads
to the closed-loop SNI property. Also, in Mabrok et al. (2015)
the closed-loop system is assumed minimal. This assumption is
relaxed in our result using Lemma 5.

Theorem 17. Consider the uncertain system (12) with r = 1
satisfying assumptions A1–A2. For a given ϵ > 0, there exists a static
state feedback matrix K such that the closed-loop system (14) is SNI
with degree of stability ϵ if there exist matrices T ≥ 0 and S ≥ 0
such that

−A22T − TAT
22 + Bf 2RBT

f 2 = 0, (16)

−A22S − SAT
22 + B22R−1BT

22 = 0, (17)

T − S > 0, (18)

where A22, Bf 2 and B22 are obtained from the Schur decomposition
(15). Moreover, if the conditions (16)–(18) are satisfied, then the
required state feedback controller matrix K is given by

K = (C1B2)−1(BT
1P − C1A − ϵC1 − R(BT

2C
T
1 )

−1BT
2P), (19)

where P = UPfUT and Pf =

[
0 0
0 (T − S)−1

]
≥ 0. Here, U is the

orthogonal matrix obtained through the Schur transformation (15).

Proof. Let ϵ > 0 be given and suppose there exist matrices
T , S ≥ 0 satisfying (16)–(18). Subtracting (17) from (16) gives
the following Lyapunov equation

A22X + XAT
22 − B22R−1BT

22 + Bf 2RBT
f 2 = 0 (20)

where X = T −S > 0. Let P1 = X−1 > 0. Pre and post multiplying
(20) by X yields the ARE

P1A22 + AT
22P1 − P1B22R−1BT

22P1 + P1Bf 2RBT
f 2P1 = 0. (21)

It follows that the ARE

Pf Af + AT
f Pf − Pf B̃1R−1B̃1

T
Pf + Pf Bf RBT

f Pf = 0 (22)

has a solution Pf =

[
0 0
0 P1

]
≥ 0, where Af , Bf and B̃1 are

defined as in (15). After rearranging and collecting terms and
using the Schur decomposition (15), (22) is equivalent to

PÃ + ÃTP + PB1R−1BT
1P + Q = 0 (23)

where

Ã = Acl − B1R−1C1Acl, R = C1B1 + BT
1C

T
1 , Q = AT

clC
T
1 R

−1C1Acl.

Here Acl = A + ϵI + B2K is the perturbed system matrix of
the closed-loop system (14). We now show that σ (Acl − BR−1

(CAcl − BTP)) ⊂ C≤0. After substituting in our choice of K we



6 J. Dannatt, I.R. Petersen and A. Lanzon / Automatica 119 (2020) 109079

see that

σ (Acl − BR−1(CAcl − BTP))

=σ (Af + (Bf RBT
f − B̃1R−1B̃1

T
)Pf )

=σ (
[

A11 ⋆

0 A22 + Bf 2RBT
f 2P1 − B22R−1BT

22P1

]
). (24)

Here, ⋆ denotes a matrix element which is not relevant to our
argument. Note σ (A11) ⊂ C≤0 by assumption so we need only
concern ourselves with the (2, 2) block of the matrix in (24). To
that end, note that if we post-multiply (20) by P1 we obtain

A22 + P−1
1 AT

22P1 − (B22R−1BT
22 − Bf 2RBT

f 2)P1 = 0. (25)

Therefore σ (A22 + Bf 2RBT
f 2P1 − B22R−1BT

22P1) = σ (−A22) ⊂ C<0.
Thus, σ (Acl − BR−1(CAcl − BTP)) ⊂ C≤0. It then follows from
Lemma 5 that the perturbed closed-loop state space realization
is NI with σ (Acl) ⊂ C≤0. Theorem 12 then implies that the actual
closed-loop system corresponding to the unperturbed system will
have all its poles shifted by an amount ϵ to the left in the complex
plane. Therefore, the closed-loop system is SNI with degree of
stability ϵ. □

Remark 18. Theorem 17 assumes that r = 1 in (12) which means
that the closed-loop system is SISO. This assumption is used
in order to guarantee the symmetry of the closed-loop transfer
function. For the case of a MIMO closed-loop transfer function
matrix, symmetry would first need to be confirmed before the
perturbation approach could be applied.

Remark 19. When considering a feasible value of ϵ we note that
we can choose ϵ within a set S = {ϵ : 0 < ϵ < ϵx} such that
T − S > 0 for all ϵ ∈ S. The size of ϵx depends on the parameters
of a given system and currently needs to be found numerically.

Note that by choosing ϵ = 0, Theorem 17 generalizes the
main result of Mabrok et al. (2015) and will synthesize an NI
closed-loop system with a pole at the origin.

General necessary conditions for the existence of a state feed-
back control that renders the closed-loop system SNI with degree
of stability ϵ remains an open problem. However, if the closed-
loop system is assumed to be minimal and SNI with degree of
stability ϵ, then the following result can be established.

Theorem 20. Consider the uncertain system (12). For a given ϵ > 0,
if there exists a static state feedback matrix K such that the closed-
loop system (14) is minimal and SNI with degree of stability ϵ then
there exist matrices T ≥ 0 and S ≥ 0 such that

−A22T − TAT
22 + Bf 2RBT

f 2 = 0, (26)

−A22S − SAT
22 + B22R−1BT

22 = 0, (27)

T − S > 0, (28)

where A22, Bf 2 and B22 are obtained from the Schur decomposition
(15).

Proof. Suppose there exists a control law u = Kx such that the
closed-loop system

ẋ = (A + ϵI + B2K )x + B1w,

z = C1x,

is minimal and SNI with degree of stability ϵ > 0. It follows from
Theorem 3 in Mabrok et al. (2015) that there exists a P = PT > 0
that satisfies

PÃ + ÃTP + PB1R−1BT
1P + Q = 0, (29)

where

Ã = Aϵ + B2K − B1R−1C1Aϵ − B1R−1C1B2K ,

Aϵ = A + ϵI, R = C1B1 + BT
1C

T
1 > 0,

Q = (Aϵ + B2K )TCT
1 R

−1C1(Aϵ + B2K ).

It follows using straightforward algebraic manipulations that (29)
is equivalent to

PAm +AT
mP + P(B1R−1BT

1 −BmRBT
m)P + (K TMT

+NT )(MK +N) = 0,

where

Am = Aϵ − B2(C1B2)−1C1Aϵ,

Bm = B2(C1B2)−1
− B1R−1, M = R−

1
2 C1B2,

N = R−
1
2 C1Aϵ − R−

1
2 BT

1P + R
1
2 (BT

2C
T
1 )

−1BT
2P .

The matrix (K TMT
+ NT )(MK + N) is positive semi-definite and

therefore it follows that

PAm + AT
mP − PBmRBT

mP + PB1R−1BT
1P ≤ 0. (30)

Now let X = P−1
=

[
X11 X12

XT
12 X22

]
> 0, where X is partitioned

to be compatible with the Schur decomposition (15). We pre and
post multiply (30) by X to obtain

AmX + XAT
m − BmRBT

m + B1R−1BT
1 ≤ 0. (31)

If we apply the Schur decomposition (15) to (31), it follows that

UT (AmX + XAT
m − BmRBT

m + B1R−1BT
1)U ≤ 0.

The (2,2) block of this inequality gives

A22X22 + X22AT
22 − Bf 2RBT

f 2 + B22R−1BT
22 ≤ 0.

Hence, there exists a Q = Q T
≥ 0 such that

(−A22)X22 + X22(−A22)T + Bf 2RBT
f 2 − B22R−1BT

22 − Q = 0.

Let X̃ − X22 =
∫

∞

0 e−AT22tQe−A22tdt ≥ 0. X̃ satisfies the Lyapunov
equation

(−A22)X̃ + X̃(−A22)T + Bf 2RBT
f 2 − B22R−1BT

22 = 0.

Now let T ≥ 0 and S ≥ 0 be defined by

T =

∫
∞

0
e−AT22tBf 2RBT

f 2e
−A22tdt,

S =

∫
∞

0
e−AT22tB22R−1BT

22e
−A22tdt.

T and S satisfy the Lyapunov equations

(−A22)T + (−A22)TT + Bf 2RBT
f 2 = 0,

(−A22)S + (−A22)T S + B22R−1BT
22 = 0,

which we recognize as Eqs. (26) and (27). Furthermore,

X̃ =

∫
∞

0
e−AT22t

(
Bf 2RBT

f 2 − B22R−1BT
22

)
e−A22tdt

= T − S.

Hence T − S ≥ X22 > 0 as required. □

6. Illustrative example

Consider an uncertain system of the form (12) where:

A =

[
−1 0 −1
1 1 −1
0 1 1

]
, B1 =

[ 2
1
0.5

]
, B2 =

[ 0
1
0

]
,
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C1 =
[

2 2 −1
]
.

The example given in Mabrok et al. (2012b) considers this system
with a perturbation of ϵ = 0.3 in order to move the poles
away from the origin to achieve a stable closed-loop NI system.
It follows from Theorem 17 that any ϵ > 0 will actually result
in a SNI closed-loop system provided that the condition T > S is
satisfied. We choose ϵ = 1.

The solutions to the Lyapunov equations (16) and (17) are
T = 0.027 and S = 0.012 which implies that X = 0.015. We can
use this to solve for P = UPfUT

≥ 0 and the controller gain matrix
is then given by K =

[
−1 −17.99 −35.77

]
. The closed-

loop transfer function formed using this state feedback controller
is given by

Gcl(s) =
5.5s2 + 16.21s + 11.85

s3 + 16.99s2 + 35.77s + 19.78
.

Gcl(s) is SNI with real poles located at −1.0, −1.35 and −14.64
in the complex plane. In this case, the closed loop state space
realization (14) is minimal and so these poles correspond to the
eigenvalues of the closed loop system matrix Acl = A+B2K which
is Hurwitz.

7. Conclusions

In this paper, we have developed conditions for synthesizing a
state feedback controller that guarantees a strictly negative imag-
inary closed-loop system with a prescribed degree of stability.
This synthesis approach relies on the solution to two Lyapunov
equations. In addition, we show that our sufficient condition for
the existence of a suitable controller is also necessary when the
closed-loop transfer function is minimal. Future work will ex-
tend the necessity result to remove this minimality assumption.
Currently no SNI synthesis results have been published for the
discrete-time case. However, the discrete-time mappings in Fer-
rante et al. (2017) may be useful in extending the results of this
paper to discrete-time systems.
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